Skip to content
2000
Volume 21, Issue 3
  • ISSN: 1573-4137
  • E-ISSN: 1875-6786

Abstract

Self-assembly techniques play a pivotal role in the field of nanotechnology, enabling the spontaneous organization of individual building blocks into ordered nanostructures without external intervention. In DNA origami, the design and synthesis of DNA strands allow for precise folding into complex nanoarchitectures. This technique holds immense promise in nanoelectronics, nanomedicine, and nanophotonics, offering nanoscale precision and versatility in structural design. Block copolymers represent another fascinating self-assembly system, driven by phase separation and microdomain formation. Understanding and controlling the self-assembly behavior of block copolymers enable applications in nanolithography, nanopatterning, and nanofabrication, owing to their ability to generate well-defined nanostructures. Colloidal assembly is a versatile and powerful technique for fabricating ordered nanostructures and materials with precise control over their properties. The process involves the spontaneous arrangement of colloidal particles into well-defined structures at the microscale or larger, driven by interparticle interactions, Brownian motion, and entropic effects. As research and technology continue to progress, colloidal assembly holds promising opportunities for creating novel materials with applications in diverse fields, contributing to advancements in nanotechnology, optics, electronics, and biomedicine. The continuous exploration and development of colloidal assembly techniques will undoubtedly open new avenues for innovation and impact various areas of science and technology in the future. This review article provides a comprehensive overview of various self-assembly techniques used to fabricate nanostructures, focusing on DNA origami, block copolymers, and colloidal assembly. With a focus on DNA origami in particular, its uses in drug administration, biosensing, nanofabrication, and computational storage are introduced. There is also a discussion of the potential and difficulties involved in assembling and using DNA origami.

Loading

Article metrics loading...

/content/journals/cnano/10.2174/0115734137283662240129073747
2024-02-13
2025-03-30
Loading full text...

Full text loading...

References

  1. HaS. LaY. KimK.T. Polymer cubosomes: Infinite cubic mazes and possibilities.Acc. Chem. Res.202053362063110.1021/acs.accounts.9b00563
    [Google Scholar]
  2. MishraA.K. RaniL. SinghR. DewanganH.K. SahooP.K. KumarV. Nanoinformatics and nanotechnology in anti-inflammatory therapy: A review.J. Drug Deliv. Sci. Technol.202493105446
    [Google Scholar]
  3. BatesF.S. FredricksonG.H. Block copolymers—designer soft materials.Phys. Today1999522323810.1063/1.882522
    [Google Scholar]
  4. RejS. MascarettiL. SantiagoE.Y. TomanecO. KmentŠ. WangZ. ZbořilR. FornasieroP. GovorovA.O. NaldoniA. Determining plasmonic hot electrons and photothermal effects during H2 evolution with TiN–Pt nanohybrids.ACS Catal.20201095261527110.1021/acscatal.0c00343
    [Google Scholar]
  5. DahiyaR. DahiyaS. Handbook on nanobiomaterials for therapeutics and diagnostic applications; Anand, K.; Saravanan, M.; Chandrasekaran, B.; Kanchi, S.; Jeeva Panchu, S. ChenQ. LondonElsevier202129733910.1016/B978‑0‑12‑821013‑0.00021‑0
    [Google Scholar]
  6. RaiA. ShahK. DewanganH.K. Review on the artificial intelligence-based nanorobotics targeted drug delivery system for brain-specific targeting.Curr. Pharm. Des.2023294435193531
    [Google Scholar]
  7. RaghuvanshiA. ShahK. DewanganH.K. Ethosome as antigen delivery carrier: optimization, evaluation and induction of immunological response via nasal route against hepatitis B.J. Microencapsul.202228112
    [Google Scholar]
  8. UtyushevA.D. ZakomirnyiV.I. RasskazovI.L. Collective lattice resonances: Plasmonics and beyond.Rev. Phys.2021610005110.1016/j.revip.2021.100051
    [Google Scholar]
  9. LutzJ.F. LehnJ.M. MeijerE.W. MatyjaszewskiK. From precision polymers to complex materials and systems.Nat. Rev. Mater.2016151602410.1038/natrevmats.2016.24
    [Google Scholar]
  10. GargA. DewanganH.K. Nanoparticles as adjuvants in vaccine delivery.Crit. Rev. Ther. Drug Carrier Syst.202037218320410.1615/CritRevTherDrugCarrierSyst.2020033273
    [Google Scholar]
  11. TomarS. YadavR.K. ShahK. DewanganH.K. A comprehensive review on carrier mediated nose to brain targeting: Emphasis on molecular targets, current trends, future prospects, and challenges.Int. J. Polym. Mater.2022123
    [Google Scholar]
  12. DewanganH.K. Rational application of nanoadjuvant for mucosal vaccine delivery system.J. Immunol. Methods2020481-48211279110.1016/j.jim.2020.112791
    [Google Scholar]
  13. MavilaS. EivgiO. BerkovichI. LemcoffN.G. Intramolecular cross-linking methodologies for the synthesis of polymer nanoparticles.Chem. Rev.2016116387896110.1021/acs.chemrev.5b00290
    [Google Scholar]
  14. MuellerN.S. OkamuraY. VieiraB.G.M. JuergensenS. LangeH. BarrosE.B. SchulzF. ReichS. Deep strong light–matter coupling in plasmonic nanoparticle crystals.Nature2020583781878078410.1038/s41586‑020‑2508‑1
    [Google Scholar]
  15. DewanganH.K. SinghN. MeghS.K. SinghS. MauryaL. Optimization and evaluation of Gymnema sylvestre (GYM) extract loaded polymeric nanoparticles for enhancement of in-vivo efficacy and reduction of toxicity.J. Microencapsul.20221122
    [Google Scholar]
  16. HaradaA. KataokaK. Supramolecular assemblies of block copolymers in aqueous media as nanocontainers relevant to biological applications.Prog. Polym. Sci.2006311194998210.1016/j.progpolymsci.2006.09.004
    [Google Scholar]
  17. IkkalaO. ten BrinkeG. Functional materials based on self-assembly of polymeric supramolecules.Science200229555642407240910.1126/science.1067794
    [Google Scholar]
  18. ChenP. HuJ. YinM. BaiW. ChenX. ZhangY. MoS 2 nanoflowers decorated with Au nanoparticles for visible-light-enhanced gas sensing.ACS Appl. Nano Mater.2021465981599110.1021/acsanm.1c00847
    [Google Scholar]
  19. SharmaAK DewanganHK UpadhyayPK Comprehensive review on herbal medicine: emphasis on current therapy and role of phytoconstituents for cancer treatmentchem biodivers11202420230146810.1002/cbdv.202301468
    [Google Scholar]
  20. MoughtonA.O. HillmyerM.A. LodgeT.P. Multicompartment block polymer micelles.Macromolecules201245121910.1021/ma201865s
    [Google Scholar]
  21. HolderS.J. SommerdijkN.A.J.M. New micellar morphologies from amphiphilic block copolymers: Disks, toroids and bicontinuous micelles.Polym. Chem.2011251018102810.1039/C0PY00379D
    [Google Scholar]
  22. DeyK. BhuniaS. SasmalH.S. ReddyC.M. BanerjeeR. Self-assembly-driven nanomechanics in porous covalent organic framework thin films.J. Am. Chem. Soc.2021143295596310.1021/jacs.0c11122
    [Google Scholar]
  23. GröschelA.H. MüllerA.H.E. Self-assembly concepts for multicompartment nanostructures.Nanoscale2015728118411187610.1039/C5NR02448J
    [Google Scholar]
  24. YashimaE. OusakaN. TauraD. ShimomuraK. IkaiT. MaedaK. Supramolecular helical systems: Helical assemblies of small molecules, foldamers, and polymers with chiral amplification and their functions.Chem. Rev.201611622137521399010.1021/acs.chemrev.6b00354
    [Google Scholar]
  25. WangL. LinJ. ZhangX. Hierarchical microstructures self-assembled from polymer systems.Polymer201354143427344210.1016/j.polymer.2013.03.054
    [Google Scholar]
  26. LuY. LinJ. WangL. ZhangL. CaiC. Self-assembly of copolymer micelles: Higher-level assembly for constructing hierarchical structure.Chem. Rev.202012094111414010.1021/acs.chemrev.9b00774
    [Google Scholar]
  27. LutzJ.F. OuchiM. LiuD.R. SawamotoM. Sequence-controlled polymers.Science20133416146123814910.1126/science.1238149
    [Google Scholar]
  28. LutzJ.F. Sequence-Controlled Polymers.Weinheim, GermanyWiley-VCH2017
    [Google Scholar]
  29. GandaS. StenzelM.H. Concepts, fabrication methods and applications of living crystallization-driven self-assembly of block copolymers.Prog. Polym. Sci.202010110119510.1016/j.progpolymsci.2019.101195
    [Google Scholar]
  30. JiM. LiuJ. DaiL. WangL. TianY. Programmable cocrystallization of DNA origami shapes.J. Am. Chem. Soc.202014251213362134310.1021/jacs.0c08525
    [Google Scholar]
  31. GurnaniP. PerrierS. Controlled radical polymerization in dispersed systems for biological applications.Prog. Polym. Sci.202010210120910.1016/j.progpolymsci.2020.101209
    [Google Scholar]
  32. WehnerM. WürthnerF. Supramolecular polymerization through kinetic pathway control and living chain growth.Nat. Rev. Chem.201941385310.1038/s41570‑019‑0153‑8
    [Google Scholar]
  33. RaiA. ShahK. SharmaR. DewanganH.K. A comprehensive review on COVID-19: Emphasis on current vaccination and nanotechnology aspects.Recent Pat. Nanotechnol.202317359377
    [Google Scholar]
  34. MishraA.S. PandeyM. DewanganH.K. NehaS.L. SahooP.K. A comprehensive review on liver targeting: emphasis on nanotechnology-based molecular targets and receptors mediated approaches.Curr. Drug Targets2022231513811405
    [Google Scholar]
  35. LiuC. HongC.Y. PanC.Y. Polymerization techniques in polymerization-induced self-assembly (PISA).Polym. Chem.202011223673368910.1039/D0PY00455C
    [Google Scholar]
  36. LuoX. Lachance-BraisC. BantleA. SleimanH.F. The assemble, grow and lift-off (AGLO) strategy to construct complex gold nanostructures with pre-designed morphologies.Chem. Sci.202011194911492110.1039/D0SC00553C
    [Google Scholar]
  37. ZhangW.J. KadirkhanovJ. WangC.H. DingS.G. HongC.Y. WangF. YouY.Z. Polymerization-induced self-assembly for the fabrication of polymeric nano-objects with enhanced structural stability by cross-linking.Polym. Chem.202011223654367210.1039/D0PY00368A
    [Google Scholar]
  38. BlanazsA. ArmesS.P. RyanA.J. Self-assembled block copolymer aggregates: From micelles to vesicles and their biological applications, macromol.Macromol. Rapid Commun.2009304-526727710.1002/marc.200800713
    [Google Scholar]
  39. WangD. YuL. JiB. ChangS. SongJ. KeY. Programming the curvatures in reconfigurable DNA domino origami by using asymmetric units.Nano Lett.202020118236824110.1021/acs.nanolett.0c03348
    [Google Scholar]
  40. SchacherF.H. RuparP.A. MannersI. Functional block copolymers: Nanostructured materials with emerging applications.Angew. Chem. Int. Ed.201251327898792110.1002/anie.201200310
    [Google Scholar]
  41. JainS. BatesF.S. On the origins of morphological complexity in block copolymer surfactants.Science2003300561846046410.1126/science.1082193
    [Google Scholar]
  42. JainS. BatesF.S. Consequences of nonergodicity in aqueous binary PEO-PB micellar dispersions.Macromolecules20043741511152310.1021/ma035467j
    [Google Scholar]
  43. HaywardR.C. PochanD.J. Tailored assemblies of block copolymers in solution: it is all about the process.Macromolecules20104383577358410.1021/ma9026806
    [Google Scholar]
  44. MerrettF.M. The interaction of polymerizing systems with rubber and its homologues. Part 2.—Interaction of rubber in the polymerization of methyl methacrylate and of styrene.Trans. Faraday Soc.195450075976710.1039/TF9545000759
    [Google Scholar]
  45. NewmanS. Note on colloidal dispersions from block copolymers.J. Appl. Polym. Sci.1962621S15S1610.1002/app.1962.070062121
    [Google Scholar]
  46. MolauG.E. Colloidal and morphological behavior of block and graft copolymers.Block Polymers. AggarwalS.L. Boston, MASpringer US19707910610.1007/978‑1‑4684‑1842‑2_7
    [Google Scholar]
  47. TuzarZ. KratochvílP. Block and graft copolymer micelles in solution.Adv. Colloid Interface Sci.19766320123210.1016/0001‑8686(76)80009‑7
    [Google Scholar]
  48. LuP.J. ZaccarelliE. CiullaF. SchofieldA.B. SciortinoF. WeitzD.A. Gelation of particles with short-range attraction.Nature2008453719449950310.1038/nature06931
    [Google Scholar]
  49. AmbrosettiA. FerriN. DiStasioR.A.Jr TkatchenkoA. Wavelike charge density fluctuations and van der Waals interactions at the nanoscale.Science201635162781171117610.1126/science.aae0509
    [Google Scholar]
  50. HamakerH.C. The London—van der Waals attraction between spherical particles.Physica19374101058107210.1016/S0031‑8914(37)80203‑7
    [Google Scholar]
  51. DerjaguinB. Studies on friction and adhesion, IV.Colloid Polym. Sci.1934692155164
    [Google Scholar]
  52. IsraelachviliJ.N. Intermolecular and Surface Forces.Oxford, U.K.Elsevier2011
    [Google Scholar]
  53. VincentB. EdwardsJ. EmmettS. JonesA. Depletion flocculation in dispersions of sterically-stabilised particles (“soft spheres”).Colloids Surf.1986182-426128110.1016/0166‑6622(86)80317‑1
    [Google Scholar]
  54. NapperD.H. Steric stabilization.J. Colloid Interface Sci.197758239040710.1016/0021‑9797(77)90150‑3
    [Google Scholar]
  55. BolesM.A. TalapinD.V. Self-assembly of tetrahedral cdse nanocrystals: Effective “patchiness” via anisotropic steric interaction.J. Am. Chem. Soc.2014136165868587110.1021/ja501596z
    [Google Scholar]
  56. WangP. HuhJ.H. ParkH. YangD. ZhangY. ZhangY. LeeJ. LeeS. KeY. DNA origami guided self-assembly of plasmonic polymers with robust long-range plasmonic resonance.Nano Lett.202020128926893210.1021/acs.nanolett.0c04055
    [Google Scholar]
  57. Mohamad NorN. ArivalakanS. ZakariaN.D. NilamaniN. LockmanZ. Abdul RazakK. Self-assembled iron oxide nanoparticle-modified APTES-ITO electrode for simultaneous stripping analysis of Cd(II) and Pb(II) ions.ACS Omega2022743823383310.1021/acsomega.1c07158
    [Google Scholar]
  58. MattoussiH. CummingA.W. MurrayC.B. BawendiM.G. OberR. Properties of CdSe nanocrystal dispersions in the dilute regime: Structure and interparticle interactions.Phys. Rev. B Condens. Matter199858127850786310.1103/PhysRevB.58.7850
    [Google Scholar]
  59. YangY. QinH. PengX. Intramolecular entropy and size-dependent solution properties of nanocrystal–ligands complexes.Nano Lett.20161642127213210.1021/acs.nanolett.6b00737
    [Google Scholar]
  60. YangY. QinH. JiangM. LinL. FuT. DaiX. ZhangZ. NiuY. CaoH. JinY. ZhaoF. PengX. Entropic ligands for nanocrystals: From unexpected solution properties to outstanding processability.Nano Lett.20161642133213810.1021/acs.nanolett.6b00730
    [Google Scholar]
  61. ZhangM. EttelaieR. DongL. LiX. LiT. ZhangX. BinksB.P. YangH. Pickering emulsion droplet-based biomimetic microreactors for continuous flow cascade reactions.Nat. Commun.202213147510.1038/s41467‑022‑28100‑6
    [Google Scholar]
  62. KimJ.U. MatsenM.W. Interaction between polymer-grafted particles.Macromolecules200841124435444310.1021/ma8002856
    [Google Scholar]
  63. SchapotschnikowP. PoolR. VlugtT.J.H. Molecular simulations of interacting nanocrystals.Nano Lett.2008892930293410.1021/nl8017862
    [Google Scholar]
  64. FischerS. SalcherA. KornowskiA. WellerH. FörsterS. Completely miscible nanocomposites.Angew. Chem. Int. Ed.201150347811781410.1002/anie.201006746
    [Google Scholar]
  65. WangX. JunH. BatheM. Programming 2d supramolecular assemblies with wireframe DNA origami.J. Am. Chem. Soc.2022144104403440910.1021/jacs.1c11332
    [Google Scholar]
  66. RubinsteinM. ColbyR. Polymer Physics.Oxford University Press200310.1093/oso/9780198520597.001.0001
    [Google Scholar]
  67. SalemL. Attractive forces between long saturated chains at short distances.J. Chem. Phys.19623792100211310.1063/1.1733431
    [Google Scholar]
  68. WangY. BensonE. FördősF. LolaicoM. BaarsI. FangT. TeixeiraA.I. HögbergB. DNA origami penetration in cell spheroid tissue models is enhanced by wireframe design.Adv. Mater.20213329200845710.1002/adma.202008457
    [Google Scholar]
  69. DuboisL.H. NuzzoR.G. Synthesis, structure, and properties of model organic surfaces.Annu. Rev. Phys. Chem.199243143746310.1146/annurev.pc.43.100192.002253
    [Google Scholar]
  70. FragassoA. Sto¨ mmer, P.; van der Sluis, E.O; Dietz, H.; Dekker, C Reconstitution of ultrawide DNA origami pores in liposomes for transmembrane transport of macromolecules.ACS Nano2021151276812779
    [Google Scholar]
  71. ManciniG.F. LatychevskaiaT. PennacchioF. RegueraJ. StellacciF. CarboneF. Order/disorder dynamics in a dodecanethiol-capped gold nanoparticles supracrystal by small-angle ultrafast electron diffraction.Nano Lett.20161642705271310.1021/acs.nanolett.6b00355
    [Google Scholar]
  72. KimJ. LeeS. ChoiJ. BaekK. ShimT.S. HyunJ.K. ParkS-J. Shape‐changing DNA‐linked nanoparticle films dictated by lateral and vertical patterns.Adv. Mater.20223413210909110.1002/adma.202109091
    [Google Scholar]
  73. LuedtkeW.D. LandmanU. Structure, dynamics, and thermodynamics of passivated gold nanocrystallites and their assemblies.J. Phys. Chem.199610032133231332910.1021/jp961721g
    [Google Scholar]
  74. BorahR. NinakantiR. BalsS. VerbruggenS.W. Plasmon resonance of gold and silver nanoparticle arrays in the Kretschmann (attenuated total reflectance) vs. direct incidence configuration.Sci. Rep.20221211573810.1038/s41598‑022‑20117‑7
    [Google Scholar]
  75. OhH.K. KimK. ParkJ. ImH. MaherS. KimM.G. Plasmon color-preserved gold nanoparticle clusters for high sensitivity detection of SARS-CoV-2 based on lateral flow immunoassay.Biosens. Bioelectron.202220511409410.1016/j.bios.2022.114094
    [Google Scholar]
  76. HuangZ. KoubekJ.T. SellingerA. BeardM.C. Pickering emulsions of self-assembled lead sulfide quantum dots with janus-ligand shells as nanoreactors for photocatalytic reactions.ACS Appl. Nano Mater.2022533183318710.1021/acsanm.2c00341
    [Google Scholar]
  77. TranV.T. KimJ. OhS. JeongK.J. LeeJ. Rapid assembly of magnetoplasmonic photonic arrays for brilliant, noniridescent, and stimuli‐responsive structural colors.Small20221817220031710.1002/smll.202200317
    [Google Scholar]
  78. XieM. HuY. YinJ. ZhaoZ. ChenJ. ChaoJ. DNA nanotechnologyenabled fabrication of metal nanomorphology.Research20222022984013110.34133/2022/9840131
    [Google Scholar]
  79. DewanganH.K. The emerging role of nanosuspensions for drug delivery and stability.CNANOM2021114213223
    [Google Scholar]
  80. BadiaA. CucciaL. DemersL. MorinF. LennoxR.B. Structure and dynamics in alkanethiolate monolayers self-assembled on gold nanoparticles: A DSC, FT-IR, and deuterium NMR study.J. Am. Chem. Soc.1997119112682269210.1021/ja963571t
    [Google Scholar]
  81. LeeB. PodsiadloP. RupichS. TalapinD.V. RajhT. ShevchenkoE.V. Comparison of structural behavior of nanocrystals in randomly packed films and long-range ordered superlattices by time-resolved small angle X-ray scattering.J. Am. Chem. Soc.200913145163861638810.1021/ja906632b
    [Google Scholar]
  82. JacksonA.M. MyersonJ.W. StellacciF. Spontaneous assembly of subnanometre-ordered domains in the ligand shell of monolayer-protected nanoparticles.Nat. Mater.20043533033610.1038/nmat1116
    [Google Scholar]
  83. SinghC. GhoraiP.K. HorschM.A. JacksonA.M. LarsonR.G. StellacciF. GlotzerS.C. Entropy-mediated patterning of surfactant-coated nanoparticles and surfaces.Phys. Rev. Lett.2007992222610610.1103/PhysRevLett.99.226106
    [Google Scholar]
  84. BaigN. KammakakamI. FalathW. Nanomaterials: A review of synthesis methods, properties, recent progress, and challenges.AdV.20212618211871
    [Google Scholar]
  85. LiS. GuoX. SunM. QuA. HaoC. WuX. GuoJ. XuC. KuangH. XuL. Self-limiting self-assembly of supraparticles for potential biological applications.Nanoscale20211342302231110.1039/D0NR08001B
    [Google Scholar]
  86. MauryaL VijayakumarMR DewanganHK SinghS Lipid based aqueous core nanocapsules (ACNs) for encapsulating hydrophilic vinorelbine bitartrate: preparation, optimization, characterization and in vitro safety assessment for intravenous administration.Curr Drug Deliv.2018159) (2018128493
    [Google Scholar]
  87. BorahR. NinakantiR. NuytsG. PeetersH. Pedrazo-TardajosA. NutiS. Vande VeldeC. De WaelK. LenaertsS. BalsS. VerbruggenS.W. Selectivity in the ligand functionalization of photocatalytic metal oxide nanoparticles for phase transfer and self‐assembly applications.Chemistry202127359011902110.1002/chem.202100029
    [Google Scholar]
  88. KahnJ.S. GangO. Designer nanomaterials through programmable assembly.Angew. Chem. Int. Ed.2022613e20210567810.1002/anie.202105678
    [Google Scholar]
  89. LiuY. MaL. JiangS. HanC. TangP. YangH. DuanX. LiuN. YanH. LanX. DNA programmable self-assembly of planar, thin-layered chiral nanoparticle superstructures with complex two-dimensional patterns.ACS Nano20211510166641667210.1021/acsnano.1c06639
    [Google Scholar]
  90. DeepikaD. DewanganH.K. MauryaL. SinghS. Intranasal drug delivery of frovatriptan succinate loaded polymeric nanoparticles for brain targeting.J. Pharm. Sci.20191082851859
    [Google Scholar]
  91. NieZ. FavaD. KumachevaE. ZouS. WalkerG.C. RubinsteinM. Self-assembly of metal–polymer analogues of amphiphilic triblock copolymers.Nat. Mater.20076860961410.1038/nmat1954
    [Google Scholar]
  92. DewanganH.K. PandeyT. SinghS. SinghS. Rational design and evaluation of HBsAg polymeric nanoparticles as antigen delivery Carriers.Int. J. Biol. Macromol.2018111804812
    [Google Scholar]
  93. McLeishT.C.B. LarsonR.G. Molecular constitutive equations for a class of branched polymers: The pom-pom polymer.J. Rheol.19984218111010.1122/1.550933
    [Google Scholar]
  94. NehaS.L. MishraA.K. RaniL. ParohaS. DewanganH.K. SahooP.K. Design and evaluations of a nanostructured lipid carrier loaded with dopamine hydrochloride for intranasal bypass drug delivery in Parkinson’s disease.J. Microencapsul.202340859961210.1080/02652048.2023.2264386
    [Google Scholar]
  95. Kumar DubeyR. ShahK. ObaidullahA.J. AlanaziM.M. Faris AlotaibiH. Kumar DewanganH. Nanostructured lipid carriers of ivabradine hydrochloride: Optimization, characterization and in-vivo estimation for management of stable angina.Arab. J. Chem.2023161010517710.1016/j.arabjc.2023.105177
    [Google Scholar]
  96. MishraA.K. NehaS.L. RaniL. JainA. DewanganH.K. SahooP.K. Rationally designed nanoparticulate delivery approach for silymarin with natural bio-enhancer: In vitro characterization and in vivo evaluations of hepatoprotective effects in a mouse model.J. Drug Deliv. Sci. Technol.20238610458010.1016/j.jddst.2023.104580
    [Google Scholar]
  97. SinghV GargA DewanganHK Recent advances in drug design and delivery across biological barriers using computational models LDDD2022191086587610.2174/1570180819999220204110306
    [Google Scholar]
  98. SharmaV. DewanganH.K. MauryaL. VatsK. VermaH. SinghS. Rational design and in-vivo estimation of Ivabradine Hydrochloride loaded nanoparticles for management of stable angina.J. Drug Deliv. Sci. Technol.20195410133710134610.1016/j.jddst.2019.101337
    [Google Scholar]
  99. YadavD. DewanganH.K. Pegylation: An important approach for novel drug delivery system.J. Biomater. Sci. Polym. Ed.20203115
    [Google Scholar]
  100. MarwahH. PantJ. YadavJ. ShahK. DewanganH.K. Biosensor detection of COVID-19 in lung cancer: Hedgehog and mucin signaling insights.Curr. Pharm. Des.202329433442345710.2174/0113816128276948231204111531
    [Google Scholar]
  101. LiuK. NieZ. ZhaoN. LiW. RubinsteinM. KumachevaE. Step-growth polymerization of inorganic nanoparticles.Science2010329598819720010.1126/science.1189457
    [Google Scholar]
  102. ChoueiriR.M. KlinkovaA. Thérien-AubinH. RubinsteinM. KumachevaE. Structural transitions in nanoparticle assemblies governed by competing nanoscale forces.J. Am. Chem. Soc.201313528102621026510.1021/ja404341r
    [Google Scholar]
  103. ZhangF. LiuR. WeiY. WeiJ. YangZ. Self-assembled open porous nanoparticle superstructures.J. Am. Chem. Soc.202114330116621166910.1021/jacs.1c04784
    [Google Scholar]
  104. WangZ. VahidMohammadi, A.; Ouyang, L.; Erlandsson, J.; Tai, C-W.; Wågberg, L.; Hamedi, M.M. Layer‐by‐Layer self‐assembled nanostructured electrodes for lithium‐ion batteries.Small2021176200643410.1002/smll.202006434
    [Google Scholar]
  105. MishraA.K. NehaS.L. RaniL. DewanganH.K. SahooP.K. QbD assisted development and validation of uv spectroscopic method in estimation of silymarin.Lett. Drug Des. Discov.202320115
    [Google Scholar]
  106. JohnN. MariammaA.T. Recent developments in the chiroptical properties of chiral plasmonic gold nanostructures: Bioanalytical applications.Mikrochim. Acta20211881242410.1007/s00604‑021‑05066‑8
    [Google Scholar]
  107. ChoS. TakahashiM. FukudaJ. YoshidaH. OzakiM. Directed self-assembly of soft 3D photonic crystals for holograms with omnidirectional circular-polarization selectivity.Communications Materials2021213910.1038/s43246‑021‑00146‑x
    [Google Scholar]
  108. CaiZ. LiZ. RavaineS. HeM. SongY. YinY. ZhengH. TengJ. ZhangA. From colloidal particles to photonic crystals: Advances in self-assembly and their emerging applications.Chem. Soc. Rev.202150105898595110.1039/D0CS00706D
    [Google Scholar]
  109. FanS. ChengJ. LiuY. WangD. LuoT. DaiB. ZhangC. CuiD. KeY. SongJ. Proximity-induced pattern operations in reconfigurable DNA origami domino array.J. Am. Chem. Soc.202014234145661457310.1021/jacs.0c06061
    [Google Scholar]
  110. LiuY. ChengJ. FanS. GeH. LuoT. TangL. JiB. ZhangC. CuiD. KeY. SongJ. Modular reconfigurable DNA origami: From two-dimensional to three-dimensional structures.Angew. Chem. Int. Ed.20205951232772328210.1002/anie.202010433
    [Google Scholar]
  111. LeeH.Y. ShinS.H.R. DrewsA.M. ChirsanA.M. LewisS.A. BishopK.J.M. Self-assembly of nanoparticle amphiphiles with adaptive surface chemistry.ACS Nano20148109979998710.1021/nn504734v
    [Google Scholar]
  112. PetukhovaA. GreenerJ. LiuK. NykypanchukD. NicolaÿR. MatyjaszewskiK. KumachevaE. Standing arrays of gold nanorods end‐tethered with polymer ligands.Small20128573173710.1002/smll.201101297
    [Google Scholar]
  113. YadavR.K. ShahK. DewanganH.K. Intranasal Drug Delivery of Sumatriptan Succinate Loaded Polymeric Solid Lipid Nanoparticles for Brain Targeting.Drug Dev. Ind. Pharm.202215122
    [Google Scholar]
  114. NguyenM.K. NguyenV.H. NatarajanA.K. HuangY. RyssyJ. ShenB. KuzykA. Ultrathin silica coating of DNA origami nanostructures.Chem. Mater.202032156657666510.1021/acs.chemmater.0c02111
    [Google Scholar]
  115. ShresthaS. WangB. DuttaP. Nanoparticle processing: Understanding and controlling aggregation.Adv. Colloid Interface Sci.202027910216210.1016/j.cis.2020.102162
    [Google Scholar]
  116. HuD. OgawaK. KajiyamaM. EnomaeT. Characterization of self-assembled silver nanoparticle ink based on nanoemulsion method.R. Soc. Open Sci.20207520029610.1098/rsos.200296
    [Google Scholar]
  117. HeH. OstwaldtJ.E. HirschhäuserC. SchmuckC. NiemeyerJ. Dual pH‐induced reversible self‐assembly of gold nanoparticles by surface functionalization with zwitterionic ligands.Small20201628200104410.1002/smll.202001044
    [Google Scholar]
  118. LiuY. DengK. YangJ. WuX. FanX. TangM. QuanZ. Shape-directed self-assembly of nanodumbbells into superstructure polymorphs.Chem. Sci.202011164065407310.1039/D0SC00592D
    [Google Scholar]
  119. SchulzF. PavelkaO. LehmkühlerF. WestermeierF. OkamuraY. MuellerN.S. ReichS. LangeH. Structural order in plasmonic superlattices.Nat. Commun.2020111382110.1038/s41467‑020‑17632‑4
    [Google Scholar]
  120. ZhuR. SuL. DaiJ. LiZ.W. BaiS. LiQ. ChenX. SongJ. YangH. Biologically responsive plasmonic assemblies for second near-infrared window photoacoustic imaging-guided concurrent chemo-immunotherapy.ACS Nano20201443991400610.1021/acsnano.9b07984
    [Google Scholar]
  121. SongL. QiuN. HuangY. ChengQ. YangY. LinH. SuF. ChenT. Macroscopic orientational gold nanorods monolayer film with excellent photothermal anticounterfeiting performance.Adv. Opt. Mater.2020818190208210.1002/adom.201902082
    [Google Scholar]
  122. ZhouT. DongB. QiH. MeiS. LiC.Y. Janus hybrid hairy nanoparticles.J. Polym. Sci., B, Polym. Phys.201452241620164010.1002/polb.23611
    [Google Scholar]
  123. UrbanM. FreisingerB. GhazyO. StaffR. LandfesterK. CrespyD. MusyanovychA. Polymer janus nanoparticles with two spatially segregated functionalizations.Macromolecules201447207194719910.1021/ma5013545
    [Google Scholar]
  124. RaoA. RoyS. JainV. PillaiP.P. Nanoparticle self-assembly: From design principles to complex matter to functional materials.ACS Appl. Mater. Interfaces20231521252482527410.1021/acsami.2c05378
    [Google Scholar]
  125. NepalD. ParkK. VaiaR.A. High‐yield assembly of soluble and stable gold nanorod pairs for high‐temperature plasmonics.Small2012871013102010.1002/smll.201102152
    [Google Scholar]
  126. GrzelczakM. Sánchez-IglesiasA. MezerjiH.H. BalsS. Pérez-JusteJ. Liz-MarzánL.M. Steric hindrance induces crosslike self-assembly of gold nanodumbbells.Nano Lett.20121284380438410.1021/nl3021957
    [Google Scholar]
  127. BianT. ShangL. YuH. PerezM.T. WuL.Z. TungC.H. NieZ. TangZ. ZhangT. Spontaneous organization of inorganic nanoparticles into nanovesicles triggered by UV light.Adv. Mater.201426325613561810.1002/adma.201401182
    [Google Scholar]
  128. PeilA. XinL. BothS. ShenL. KeY. WeissT. ZhanP. LiuN. DNA assembly of modular components into a rotary nanodevice.ACS Nano20221645284529110.1021/acsnano.1c10160
    [Google Scholar]
  129. BorahR. SmetsJ. NinakantiR. TietzeM.L. AmelootR. ChigrinD.N. BalsS. LenaertsS. VerbruggenS.W. Self-assembled ligand-capped plasmonic au nanoparticle films in the kretschmann configuration for sensing of volatile organic compounds.ACS Appl. Nano Mater.202258114941150510.1021/acsanm.2c02524
    [Google Scholar]
  130. HeL. MuJ. GangO. ChenX. Rationally programming nanomaterials with DNA for biomedical applications.Adv. Sci.202188200377510.1002/advs.202003775
    [Google Scholar]
  131. ZhangY. QuZ. JiangC. LiuY. Pradeep NarayananR. WilliamsD. ZuoX. WangL. YanH. LiuH. FanC. Prescribing silver chirality with DNA origami.J. Am. Chem. Soc.2021143238639864610.1021/jacs.1c00363
    [Google Scholar]
  132. OchmannS.E. JoshiH. BuberE. FranquelimH.G. StegemannP. SaccaB. KeyserU.F. AksimentievA. TinnefeldP. DNA origami voltage sensors for transmembrane potentials with singlemolecule sensitivity.Nano Lett.20212186348641
    [Google Scholar]
  133. RajendranA. KrishnamurthyK. GiridasappaA. NakataE. MoriiT. Stabilization and structural changes of 2d DNA origami by enzymatic ligation.Nucleic Acids Res.202149147884790010.1093/nar/gkab611
    [Google Scholar]
  134. ScheckenbachM. SchubertT. ForthmannC. GlembockyteV. TinnefeldP. Self-regeneration and self-healing in DNA origami nanostructures.Angew. Chem. Int. Ed.20216094931493810.1002/anie.202012986
    [Google Scholar]
  135. TangZ. ZhangZ. WangY. GlotzerS.C. KotovN.A. Self-assembly of cdte nanocrystals into free-floating sheets.Science2006314579727427810.1126/science.1128045
    [Google Scholar]
  136. ZhangZ. TangZ. KotovN.A. GlotzerS.C. Simulations and analysis of self-assembly of CdTe nanoparticles into wires and sheets.Nano Lett.2007761670167510.1021/nl0706300
    [Google Scholar]
  137. WalkerD.A. BrowneK.P. KowalczykB. GrzybowskiB.A. Self‐assembly of nanotriangle superlattices facilitated by repulsive electrostatic interactions.Angew. Chem. Int. Ed.201049386760676310.1002/anie.201002558
    [Google Scholar]
  138. KovalenkoM.V. BodnarchukM.I. TalapinD.V. Nanocrystal superlattices with thermally degradable hybrid inorganic−organic capping ligands.J. Am. Chem. Soc.201013243151241512610.1021/ja106841f
    [Google Scholar]
  139. BodnarchukM.I. YakuninS. PiveteauL. KovalenkoM.V. Host–guest chemistry for tuning colloidal solubility, self-organization and photoconductivity of inorganic-capped nanocrystals.Nat. Commun.2015611014210.1038/ncomms10142
    [Google Scholar]
  140. BartlettP. CampbellA.I. Three-dimensional binary superlattices of oppositely charged colloids.Phys. Rev. Lett.2005951212830210.1103/PhysRevLett.95.128302
    [Google Scholar]
  141. HynninenA.P. ChristovaC.G. van RoijR. van BlaaderenA. DijkstraM. Prediction and observation of crystal structures of oppositely charged colloids.Phys. Rev. Lett.2006961313830810.1103/PhysRevLett.96.138308
    [Google Scholar]
  142. KalsinA.M. KowalczykB. SmoukovS.K. KlajnR. GrzybowskiB.A. Ionic-like behavior of oppositely charged nanoparticles.J. Am. Chem. Soc.200612847150461504710.1021/ja0642966
    [Google Scholar]
  143. FourkasJ.T. GaoJ. HanZ. LiuH. MarmiroliB. NaughtonM.J. PetersenJ.S. SunY. Vagilio PretA. ZhengY. Grand challenges in nanofabrication: There remains plenty of room at the bottom.Front. Nanotechnol.2021370084910.3389/fnano.2021.700849
    [Google Scholar]
  144. LuoS. RenX. LinH. SongH. YeJ. Plasmonic photothermal catalysis for solar-to-fuel conversion: Current status and prospects.Chem. Sci.202112165701571910.1039/D1SC00064K
    [Google Scholar]
  145. CirauloB. Garcia-GuiradoJ. de MiguelI. Ortega ArroyoJ. QuidantR. Long-range optofluidic control with plasmon heating.Nat. Commun.2021121200110.1038/s41467‑021‑22280‑3
    [Google Scholar]
  146. DengS. ZhangB. ChooP. SmeetsP.J.M. OdomT.W. Plasmonic photoelectrocatalysis in copper–platinum core–shell nanoparticle lattices.Nano Lett.20212131523152910.1021/acs.nanolett.0c05029
    [Google Scholar]
  147. FangW. XieM. HouX. LiuX. ZuoX. ChaoJ. WangL. FanC. LiuH. WangL. DNA origami radiometers for measuring ultraviolet exposure.J. Am. Chem. Soc.2020142198782878910.1021/jacs.0c01254
    [Google Scholar]
  148. RaveendranM. LeeA.J. SharmaR. WältiC. Actis, P Rational design of DNA nanostructures for single molecule biosensing.Nat. Commun.2020111438410.1038/s41467‑020‑18132‑1
    [Google Scholar]
  149. MelaI. Vallejo-RamirezP.P. MakarchukS. ChristieG. BaileyD. HendersonR.M. SugiyamaH. EndoM. KaminskiC.F. DNA nanostructures for targeted antimicrobial delivery.Angew. Chem. Int. Ed.20205931126981270210.1002/anie.202002740
    [Google Scholar]
  150. KalsinA.M. FialkowskiM. PaszewskiM. SmoukovS.K. BishopK.J.M. GrzybowskiB.A. Electrostatic self-assembly of binary nanoparticle crystals with a diamond-like lattice.Science2006312577242042410.1126/science.1125124
    [Google Scholar]
  151. PillaiP.P. KowalczykB. GrzybowskiB.A. Self-assembly of like-charged nanoparticles into microscopic crystals.Nanoscale20168115716110.1039/C5NR06983A
    [Google Scholar]
  152. KowalczykB. KalsinA.M. OrlikR. BishopK.J.M. PatashinskiiA.Z. MitusA. GrzybowskiB.A. Size selection during crystallization of oppositely charged nanoparticles.Chemistry20091592032203510.1002/chem.200802334
    [Google Scholar]
  153. PiccininiE. PallarolaD. BattagliniF. AzzaroniO. Self-limited self-assembly of nanoparticles into supraparticles: Towards supramolecular colloidal materials by design.Mol. Syst. Des. Eng.20161215516210.1039/C6ME00016A
    [Google Scholar]
  154. XiaY. NguyenT.D. YangM. LeeB. SantosA. PodsiadloP. TangZ. GlotzerS.C. KotovN.A. Self-assembly of self-limiting monodisperse supraparticles from polydisperse nanoparticles.Nat. Nanotechnol.20116958058710.1038/nnano.2011.121
    [Google Scholar]
  155. NguyenT.D. SchultzB.A. KotovN.A. GlotzerS.C. Generic, phenomenological, on-the-fly renormalized repulsion model for self-limited organization of terminal supraparticle assemblies.Proc. Natl. Acad. Sci. USA201511225E3161E316810.1073/pnas.1509239112
    [Google Scholar]
  156. DemirörsA.F. StiefelhagenJ.C.P. VissersT. SmallenburgF. DijkstraM. ImhofA. van BlaaderenA. Long-ranged oppositely charged interactions for designing new types of colloidal clusters.Phys. Rev. X20155202101210.1103/PhysRevX.5.021012
    [Google Scholar]
  157. KowalczykB. BishopK.J.M. LagziI. WangD. WeiY. HanS. GrzybowskiB.A. Charged nanoparticles as supramolecular surfactants for controlling the growth and stability of microcrystals.Nat. Mater.201211322723210.1038/nmat3202
    [Google Scholar]
  158. CabaneB. LiJ. ArtznerF. BotetR. LabbezC. BareigtsG. SztuckiM. GoehringL. Hiding in plain view: Colloidal self-assembly from polydisperse populations.Phys. Rev. Lett.20161162020800110.1103/PhysRevLett.116.208001
    [Google Scholar]
  159. FasoloM. SollichP. Equilibrium phase behavior of polydisperse hard spheres.Phys. Rev. Lett.200391606830110.1103/PhysRevLett.91.068301
    [Google Scholar]
  160. SollichP. WildingN.B. Crystalline phases of polydisperse spheres.Phys. Rev. Lett.20101041111830210.1103/PhysRevLett.104.118302
    [Google Scholar]
  161. BotetR. CabaneB. GoehringL. LiJ. ArtznerF. How do polydisperse repulsive colloids crystallize?Faraday Discuss.2016186022924010.1039/C5FD00145E
    [Google Scholar]
  162. KostiainenM.A. HiekkataipaleP. LaihoA. LemieuxV. SeitsonenJ. RuokolainenJ. CeciP. Electrostatic assembly of binary nanoparticle superlattices using protein cages.Nat. Nanotechnol.201381525610.1038/nnano.2012.220
    [Google Scholar]
/content/journals/cnano/10.2174/0115734137283662240129073747
Loading
/content/journals/cnano/10.2174/0115734137283662240129073747
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test