Skip to content
2000
Volume 21, Issue 3
  • ISSN: 1573-4137
  • E-ISSN: 1875-6786

Abstract

Silicon Nanowires (SiNWs), a novel category of nanomaterials, exhibit several outstanding properties, including superior transistor performance, quantum tunneling effects, and remarkable electrical and optical capabilities. These properties are expected to contribute significantly to the development of future nanodevices, such as sensors and optoelectronic components. The potential for device miniaturization with SiNWs is based on their ease of monocrystallization. This leads to a reduced rate of hole-electron complexes and their extensive specific surface area that promotes boundary effects, thereby diminishing conductivity. Characterized by unique structural attributes, SiNWs hold promise for a wide range of applications in various sectors. To date, multiple methods have been established for SiNW fabrication, including sol-gel, electrochemical, laser ablation, chemical vapor deposition, and thermal vapor deposition techniques. Subsequently, the focus has shifted to the application of SiNWs in electronics, energy, and biomedicine. SiNWs are instrumental in producing high-performance electronic devices, such as field-effect transistors, sensors, and memory units. They also exhibit outstanding photovoltaic properties, making them suitable for high-efficiency solar cell and photocatalyst production. Additionally, SiNWs are poised to make significant contributions to biomedicine, particularly in biosensors, drug delivery systems, and tissue engineering materials. This article provides a concise review of the current status of SiNWs in electronics, sensing devices, and solar cell applications, and their roles in high-performance transistors, biosensors, and solar cells. It concludes with an exploration of the challenges and prospects for SiNWs.

In summary, the unique attributes of SiNWs establish them as a versatile nanomaterial with broad applicability. This review offers a comprehensive overview of SiNW research and theoretical insights that may guide similar studies. The insights into recent SiNW research presented here are intended to inform future applications and investigations involving these nanomaterials.

Loading

Article metrics loading...

/content/journals/cnano/10.2174/0115734137295190240321042642
2024-04-02
2025-03-30
Loading full text...

Full text loading...

References

  1. MakK.F. ShanJ. Semiconductor moiré materials.Nat. Nanotechnol.202217768669510.1038/s41565‑022‑01165‑6 35836003
    [Google Scholar]
  2. Abdul HameedA.A. AliB. Al TaayH.F. Fabrication of SiNWs/PEDOT:PSS Heterojunction Solar Cells. Iran. J.Mater. Sci. Eng.20201716976
    [Google Scholar]
  3. KolayA. MaityD. GhosalP. DeepaM. Carbon@Tellurium Nanostructures Anchored to a Si Nanowire Scaffold with an Unprecedented Liquid-Junction Solar Cell Performance.ACS Appl. Mater. Interfaces20191151479724798310.1021/acsami.9b17573 31845584
    [Google Scholar]
  4. JuemingB. Growth of low temperature silicon nano-structures for electronic and electrical energy generation applications.Nanoscale Res. Lett.2013818310.1186/1556‑276X‑8‑83 23413969
    [Google Scholar]
  5. ShahS.A. HuK-J. NaveedM. LuC. HuS. Synthesis and study of the quantum-confinement effect of gold-nanoclusters via optical properties protected by 2-phenylethanethiol ligand.Chem. Phys. Lett.202381114020610.1016/j.cplett.2022.140206
    [Google Scholar]
  6. KashyapV. KumarC. ChaudharyN. GoyalN. SaxenaK. Comparative study of quantum confinements effect present in Silicon Nanowires using absorption and Raman spectroscopy.Opt. Mater.202112111153810.1016/j.optmat.2021.111538
    [Google Scholar]
  7. SahooM.K. KaleP. Role of secondary etching of silicon nanowires towards quantum confinement effect.Superlattices Microstruct.202115610694910.1016/j.spmi.2021.106949
    [Google Scholar]
  8. KashyapV. KumarC. ChaudharyN. GoyalN. SaxenaK. The correlation of resistivity with the crystal size present in silicon nanowires through confinement based models.Mater. Lett.202130113031210.1016/j.matlet.2021.130312
    [Google Scholar]
  9. CuiY. ZhongZ. WangD. WangW.U. LieberC.M. High-performance silicon nanowire field effect transistors.Nano Lett.20033214915210.1021/nl025875l
    [Google Scholar]
  10. ZhangY. PengK. HuY. ZhangL. LeeS.T. Silicon nanowires for field effect devices.Adv. Mater.20082071160116610.1002/adma.200701364
    [Google Scholar]
  11. DubrovskiiV.G. Quantum confinement in Si and Ge nanowires: Theory and experiment.Nanotechnology20102140405701 20823499
    [Google Scholar]
  12. BjörkM.T. SchmidH. KnochJ. RielH. RiessW. One-dimensional hole gas in germanium/silicon nanowire heterostructures.Appl. Phys. Lett.20028061058106010.1063/1.1447312
    [Google Scholar]
  13. HofheinzM. JehlX. SanquerM. CuetoO. MolasG. VinetM. DeleonibusS. Capacitance measurements in nanometric silicon devices using Coulomb blockade.Solid-State Electron.200751456056410.1016/j.sse.2007.02.002
    [Google Scholar]
  14. AltebaeumerT. AhmedH. The effect of cross-coupling in a bidirectional electron pump.Microelectron. Eng.200261-6254955410.1016/S0167‑9317(02)00475‑6
    [Google Scholar]
  15. AltebaeumerT. AhmedH. Silicon nanowires and their application in bi-directional electron pumps.Microelectron. Eng.200157–581029103310.1016/S0167‑9317(01)00434‑8
    [Google Scholar]
  16. MartinezA. BarkerJ. Quantum transport in a silicon nanowire fet transistor: hot electrons and local power dissipation.Materials (Basel)20201315332610.3390/ma13153326 32722649
    [Google Scholar]
  17. ChulH. Kyung-HyunK. KyuB. K Enhancement in Light emission efficiency of a silicon nanocrystal light-emitting diode by multiple-luminescent structures.Adv. Mater.2010224450585062
    [Google Scholar]
  18. LorussoA. NassisiV. CongedoG. LovergineN. VelardiL. PreteP. Pulsed plasma ion source to create Si nanocrystals in SiO2 substrates.Appl. Surf. Sci.2009255105401540410.1016/j.apsusc.2008.08.030
    [Google Scholar]
  19. RayU. SarkarS. BanerjeeD. Silicon nanowires as an efficient material for hydrogen evolution through catalysis: A review.Catal. Today202342311396410.1016/j.cattod.2022.11.025
    [Google Scholar]
  20. CuiJ. SunY. ChenH. YangY. ChenG. KeP. NishimuraK. YangY. TangC. JiangN. Atomic insights of self‐healing in silicon nanowires.Adv. Funct. Mater.2023336221005310.1002/adfm.202210053
    [Google Scholar]
  21. De SantiagoF. SantanaJ.E. MirandaÁ. PérezL.A. RuraliR. Cruz-IrissonM. Silicon nanowires as acetone-adsorptive media for diabetes diagnosis.Appl. Surf. Sci.202154714917510.1016/j.apsusc.2021.149175
    [Google Scholar]
  22. SmithR. GearyS.M. SalemA.K. Silicon nanowires and their impact on cancer detection and monitoring.ACS Appl. Nano Mater.2020398522853610.1021/acsanm.0c01572 36733606
    [Google Scholar]
  23. ZabotnovS.V. SkobelkinaA.V. KashaevF.V. KolchinA.V. PopovV.V. PresnovD.E. SergeevaE.A. KirillinM.Y. GolovanL.A. Pulsed laser ablation of silicon nanowires in water and ethanol.Diffus. Defect Data Solid State Data Pt. B Solid State Phenom.202031220020510.4028/www.scientific.net/SSP.312.200
    [Google Scholar]
  24. YangJ. HeJ. ZouX. SunB. SunY. WangC. Multi-time scale photoelectric behavior in facile fabricated transparent and flexible silicon nanowires aerogel membrane.Nano Res.20221521609161510.1007/s12274‑021‑3709‑0
    [Google Scholar]
  25. Salazar-HernándezJ. RamosE. GonzalezG. Romero-IbarraJ.E. DuttA. SantanaG. Two-step process for the growth of uniform core-shell Si nanowires using chlorinated precursors.Mater. Lett.202026712753012753010.1016/j.matlet.2020.127530
    [Google Scholar]
  26. LiuT. LiangR. OkoliO. ZhangM. Fabrication of silicon nanowire on freestanding multiwalled carbon nanotubes by chemical vapor deposition.Mater. Lett.201515935335610.1016/j.matlet.2015.07.032
    [Google Scholar]
  27. ProsiniP.P. CentoC. AlessandriniF. GislonP. ManciniA. RufoloniA. RondinoF. SantoniA. Electrochemical characterization of silicon nanowires as an anode for lithium batteries.Solid State Ion.2014260495410.1016/j.ssi.2014.03.004
    [Google Scholar]
  28. HutagalungD.S. AhmadA. YaacobA.K. Nickel nanoclusters catalyse growth of silicon nanowires[J].Int. J. of Nanomanufacturing200941/2/3/413914510.IJNM/1504.2009.028120
    [Google Scholar]
  29. Al-RuqeishiM.S. NorR.M. AminY.M. Al-AzriK. Direct growth and photoluminescence of silicon nanowires without catalyst.Arab. J. Chem.201710S2S2025S203110.1016/j.arabjc.2013.07.032
    [Google Scholar]
  30. LiuK. QuS. TanF. BiY. LuS. wang, Z. Ordered silicon nanowires prepared by template-assisted morphological design and metal-assisted chemical etching.Mater. Lett.2013101969810.1016/j.matlet.2013.03.086
    [Google Scholar]
  31. XueZ. SunM. DongT. TangZ. ZhaoY. WangJ. WeiX. YuL. ChenQ. XuJ. ShiY. ChenK. Roca i CabarrocasP. Deterministic line-shape programming of silicon nanowires for extremely stretchable springs and electronics.Nano Lett.201717127638764610.1021/acs.nanolett.7b03658 29189013
    [Google Scholar]
  32. YunJ. AhnJ.H. MoonD.I. ChoiY.K. ParkI. Joule-Heated and Suspended Silicon Nanowire Based Sensor for Low-Power and Stable Hydrogen Detection.ACS Appl. Mater. Interfaces20191145423494235710.1021/acsami.9b15111 31617994
    [Google Scholar]
  33. KatoS. KurokawaY. GotohK. SogaT. Silicon nanowire heterojunction Solar Cells with an Al2O3 Passivation film fabricated by atomic layer deposition.Nanoscale Res. Lett.20191419910.1186/s11671‑019‑2930‑1 30877482
    [Google Scholar]
  34. RahmanZ. TohoraN. MahatoM. AhamedS. SultanaT. Selim Arif Sher ShahM. BorahA. Kumar DasS. Photoluminescent pyrene-based ionic liquid derived ratiometric organo nanosensor for rapid and selective detection of picric acid.J. Photochem. Photobiol. Chem.202344411490610.1016/j.jphotochem.2023.114906
    [Google Scholar]
  35. HashimH. MaruyamaH. MasudaT. AraiF. Manipulation and immobilization of a single fluorescence nanosensor for selective injection into cells.Sensors (Basel)20161612204110.3390/s16122041 27916931
    [Google Scholar]
  36. WangJ. ZhaoG. FengL. ChenS. Metallic nanomaterials with biomedical applications.Metals (Basel)20221212213310.3390/met12122133
    [Google Scholar]
  37. SprungerY. CapuaL. ErnstT. BarraudS. LoccaD. IonescuA. SaeidiA. pH quantification in human dermal interstitial fluid using ultra-thin SOI silicon nanowire ISFETs and a high-sensitivity constant-current approach.Biosensors (Basel)2023131090810.3390/bios13100908 37887101
    [Google Scholar]
  38. ZhangC. ParichenkoA. ChoiW. ShinS. Panes-RuizL.A. BelyaevD. CustódioT.F. LöwC. LeeJ.S. IbarluceaB. CunibertiG. Sybodies as novel bioreceptors toward field-effect transistor-based detection of SARS-CoV-2 antigens.ACS Appl. Mater. Interfaces20231534401914020010.1021/acsami.3c06073 37603713
    [Google Scholar]
  39. HuJ. LiY. ZhangX. WangY. ZhangJ. YanJ. LiJ. ZhangZ. YinH. WeiQ. JiangQ. WeiS. ZhangQ. Ultrasensitive silicon nanowire biosensor with modulated threshold voltages and ultra-small diameter for early kidney failure biomarker cystatin C.Biosensors (Basel)202313664510.3390/bios13060645 37367010
    [Google Scholar]
  40. ZhuY. WeiQ. JinQ. LiG. ZhangQ. XiaoH. LiT. WeiF. LuoY. Polyethylene glycol functionalized silicon nanowire field-effect transistor biosensor for glucose detection.Nanomaterials (Basel)202313360460410.3390/nano13030604 36770565
    [Google Scholar]
  41. BenserhirY. SalaünA.C. GenesteF. OlivieroN. PichonL. Jolivet-GougeonA. Silicon nanowires-based biosensors for the electrical detection of Escherichia coli.Biosens. Bioelectron.202221611462511462510.1016/j.bios.2022.114625 35995028
    [Google Scholar]
  42. Abd RahmanS.F. YusofN.A. Md ArshadM.K. HashimU. Md NorM.N. HamidonM.N. Fabrication of silicon nanowire sensors for highly sensitive pH and DNA hybridization detection.Nanomaterials (Basel)202212152652265210.3390/nano12152652 35957087
    [Google Scholar]
  43. LuZ. LiuT. ZhouX. YangY. LiuY. ZhouH. WeiS. ZhaiZ. WuY. SunF. WangZ. LiT. HongJ. Rapid and quantitative detection of tear MMP-9 for dry eye patients using a novel silicon nanowire-based biosensor.Biosens. Bioelectron.202221411449811449810.1016/j.bios.2022.114498 35779410
    [Google Scholar]
  44. LiD. ChenH. FanK. LabunovV. LazaroukS. YueX. LiuC. YangX. DongL. WangG. A supersensitive silicon nanowire array biosensor for quantitating tumor marker ctDNA.Biosens. Bioelectron.202118111314710.1016/j.bios.2021.113147 33773219
    [Google Scholar]
  45. PatialP. DeshwalM. Selectivity and sensitivity property of metal oxide semiconductor based gas sensor with dopants variation: A review.Trans. Elect. Electron. Mater.202223161810.1007/s42341‑021‑00367‑4
    [Google Scholar]
  46. NazemiH. JosephA. ParkJ. EmadiA. Advanced micro- and nano-gas sensor technology: A review.Sensors (Basel)2019196128510.3390/s19061285 30875734
    [Google Scholar]
  47. IrfanM. HamidA. KhanM. NadeemA. KhanW.A. NasirN. Enhancement of heat transfer considering Joule heating and variable conductivity in magneto Maxwell nanofluid.Int. J. Mod. Phys. B2023378235007610.1142/S0217979223500765
    [Google Scholar]
  48. GonzalezA. ZhukovaV. Corte-LeonP. ChizhikA. IpatovM. BlancoJ.M. ZhukovA. Tuning of magnetoimpedance effect and magnetic properties of fe-rich glass-coated microwires by Joule Heating.Sensors (Basel)2022223105310.3390/s22031053 35161798
    [Google Scholar]
  49. MartynenkoA. MisraN.N. Thermal phenomena in electrohydrodynamic (EHD) drying.Innov. Food Sci. Emerg. Technol.20217410285910.1016/j.ifset.2021.102859
    [Google Scholar]
  50. PichonL. SalaünA.C. WengaG. RogelR. JacquesE. Ammonia sensors based on suspended silicon nanowires.Procedia Eng.2014871003100610.1016/j.proeng.2014.11.329
    [Google Scholar]
  51. LiuY. QinZ. JiaX. ZhouJ. LiH. WangX. ChenY. DengJ. JinZ. WangG. Directly and ultrasensitivity detecting SARS-CoV-2 spike protein in pharyngeal swab solution by using SERS-based biosensor.Spectrochim. Acta A Mol. Biomol. Spectrosc.202330312327510.1016/j.saa.2023.123275 37611522
    [Google Scholar]
  52. DeyC. YariP. WuK. Recent advances in magnetoresistance biosensors: A short review.Nano Futures20237101200210.1088/2399‑1984/acbcb5
    [Google Scholar]
  53. ShenC. SuiW. JunZ. Research progress on surface plasmon resonance biosensors.Jiguang Yu Guangdianzixue Jinzhan202360115669
    [Google Scholar]
  54. ChenH. DengL. SunJ. LiH. ZhuX. WangT. JiangY. Dynamic detection of HbA1c using a silicon nanowire field effect tube biosensor.Biosensors (Basel)2022121191691610.3390/bios12110916 36354424
    [Google Scholar]
  55. EspinosaF. UhligM. GarciaR. Molecular recognition by silicon nanowire field-effect transistor and single-molecule force spectroscopy.Micromachines (Basel)2022131979710.3390/mi13010097 35056261
    [Google Scholar]
  56. YingtaoY. SiC. QitaoH. Ultra-low noise Schottky Junction Tri-Gate silicon nanowire FET on bonded silicon-on insulator substrate.IEEE Elertron Dev. Lett.202142446947210.1109/LED.2021.3057285
    [Google Scholar]
  57. XuS. HuR. WangJ. LiZ. XuJ. ChenK. YuL. Terrace-confined guided growth of high-density ultrathin silicon nanowire array for large area electronics.Nanotechnology2021322626560210.1088/1361‑6528/abf0c9 33752187
    [Google Scholar]
  58. KlinghammerS. RauchS. PreglS. UhlmannP. BarabanL. CunibertiG. Surface modification of silicon nanowire based field effect transistors with stimuli responsive polymer brushes for biosensing applications.Micromachines (Basel)202011327427410.3390/mi11030274 32155794
    [Google Scholar]
  59. ChenX. ChenS. HuQ. ZhangS.L. SolomonP. ZhangZ. Device noise reduction for silicon nanowire field-effect-transistor based sensors by using a schottky junction gate.ACS Sens.20194242743310.1021/acssensors.8b01394 30632733
    [Google Scholar]
  60. ShuZ. ZhuL. ShuoY. An overview of the application of silicon nanowires in biosensors.Chin. J. Biotechnol.202242Z1174181
    [Google Scholar]
  61. QuangD.T. KimJ.S. Fluoro- and chromogenic chemodosimeters for heavy metal ion detection in solution and biospecimens.Chem. Rev.2010110106280630110.1021/cr100154p 20726526
    [Google Scholar]
  62. LuN. DaiP. GaoA. ValiahoJ. KallioP. WangY. LiT. Label-free and rapid electrical detection of hTSH with CMOS-compatible silicon nanowire transistor arrays.ACS Appl. Mater. Interfaces2014622203782038410.1021/am505915y 25338002
    [Google Scholar]
  63. DayyaniN. RamazaniA. KhoeeS. ShafieeA. Synthesis and characterization of the first generation of polyamino-ester dendrimer-grafted magnetite nanoparticles from 3-Aminopropyl-triethoxysilane (APTES) via the convergent approach.Silicon201810259560110.1007/s12633‑016‑9497‑6
    [Google Scholar]
  64. IrmaM.E.K. Protonation state control of electric field induced molecular switching mechanisms.Phys. Chem. Chem. Phys.202325652515261
    [Google Scholar]
  65. SaiyasombatW. EiamprasertU. ChantarojsiriT. ChainokK. KiatiseviS. Bis-BODIPY-based fluoride and cyanide sensor mediated by unconventional deprotonation of C−H proton.Dyes Pigments202220611064310.1016/j.dyepig.2022.110643
    [Google Scholar]
  66. LeeJ. NohJ. LeeH.S. Cracked palladium films on an elastomeric substrate for use as hydrogen sensors.Int. J. Hydrogen Energy2011502353015305 21557409
    [Google Scholar]
  67. HouT.F. ShanmugasundaramA. NguyenB.Q.H. LeeD-W. Fabrication of surface-functionalized PUA composites to achieve superhydrophobicity.Micro Nano Syst. Lett.2019711210.1186/s40486‑019‑0090‑9
    [Google Scholar]
  68. WangY. QinW. ZhangJ. CaoC. ZhangJ. JinY. RenX. ZhengZ. LüS. Synthesis, photoluminescence and bioconjugation of rare-earth (Eu) complexes-embedded silica nanoparticles.Solid State Commun.20071421268969310.1016/j.ssc.2007.04.038
    [Google Scholar]
  69. CretìA. PreteP. LovergineN. LomascoloM. Enhanced optical absorption of gaas near-band-edge transitions in gaas/algaas core–shell nanowires: Implications for nanowire solar cells.ACS Appl. Nano Mater.2022512181491815810.1021/acsanm.2c04044
    [Google Scholar]
  70. ZuoX. ZhuJ. Müller-BuschbaumP. ChengY-J. Silicon based lithium-ion battery anodes: A chronicle perspective review.Nano Energy20173111314310.1016/j.nanoen.2016.11.013
    [Google Scholar]
  71. PengK.Q. LeeS.T. Silicon nanowires for photovoltaic solar energy conversion.Adv. Mater.201123219821510.1002/adma.201002410 20931630
    [Google Scholar]
  72. BashoutiM.Y. SardashtiK. RisteinJ. ChristiansenS.H. Early stages of oxide growth in H-terminated silicon nanowires: Determination of kinetic behavior and activation energy.Phys. Chem. Chem. Phys.20121434118771188110.1039/c2cp41709j 22837043
    [Google Scholar]
  73. KangW. WeiR. YinH. LiD. ChenZ. HuangQ. ZhangP. JingH. WangX. LiC. Unraveling sequential oxidation kinetics and determining roles of multi-cobalt active sites on Co 3 O 4 catalyst for water oxidation.J. Am. Chem. Soc.202314563470347710.1021/jacs.2c11508 36724407
    [Google Scholar]
  74. AmriC. OuertaniR. HamdiA. EzzaouiaH. Enhancement of electrical parameters in solar grade monocrystalline silicon by external gettering through sacrificial silicon nanowire layer.Mater. Res. Bull.20189841-46414610.1016/j.materresbull.2017.10.003
    [Google Scholar]
  75. FarangiM. ZahedifarM. MozdianfardM.R. PakzamirM.H. Effects of silicon nanowires length on solar cells photovoltaic properties.Appl. Phys., A Mater. Sci. Process.2012109229930610.1007/s00339‑012‑7054‑8
    [Google Scholar]
  76. PakzamirM.H. Study the effect of silicon nanowire length on characteristics of silicon nanowire based solar cells by using impedance spectroscopy.Int. J. Nanosci. Nanotechnol.201392101108
    [Google Scholar]
  77. XuZ. Preparation and supercapacitive performance study of biomass carbon materials and vanadium-based/carbon composite materials.Doctoral Dissertation, Ningxia Universit2022
    [Google Scholar]
  78. YuP. WuJ. LiuS. XiongJ. JagadishC. WangZ.M. Design and fabrication of silicon nanowires towards efficient solar cells.Nano Today201611670473710.1016/j.nantod.2016.10.001
    [Google Scholar]
  79. Soo JooB. Soo KimI. Ki HanI. KoH. Gu KangJ. Kang, G. Plasmonic silicon nanowires for enhanced heat localization and interfacial solar steam generation.Appl. Surf. Sci.202258315256310.1016/j.apsusc.2022.152563
    [Google Scholar]
  80. HuangZ.W. HuK.Q. LiX.B. BinZ.N. WuQ.Y. ZhangZ.H. GuoZ.J. WuW.S. ChaiZ.F. MeiL. ShiW.Q. Thermally Induced orderly alignment of porphyrin photoactive motifs in metal–organic frameworks for boosting photocatalytic CO 2 reduction.J. Am. Chem. Soc.202314532181481815910.1021/jacs.3c07047 37531566
    [Google Scholar]
  81. NaffetiM. ZaïbiM.A. NefziC. García-AriasA.V. ChtourouR. PostigoP.A. Highly efficient photodegradation of methylene blue by a composite photocatalyst of bismuth nanoparticles on silicon nanowires.Environ. Technol. Innov.20233010313310.1016/j.eti.2023.103133
    [Google Scholar]
  82. AyvazyanG.Y. KovalenkoD.L. LebedevM.S. MatevosyanL.A. SemchenkoA.V. Investigation of the structural and optical properties of silicon-perovskite structures with a black silicon layer.J. Contemp. Phys.202257327427910.1134/S1068337222030069
    [Google Scholar]
  83. LiY. YangC. YueJ.C. CongH. LuoW. Polymorphism‐interface‐induced work function regulating on ru nanocatalyst for enhanced alkaline hydrogen oxidation reaction.Adv. Funct. Mater.20233313221158610.1002/adfm.202211586
    [Google Scholar]
  84. ZhangQ. ZhangS. SperlingB.A. NguyenN.V. Band offset and electron affinity of monolayer mose2 by internal photoemission.J. Electron. Mater.201948106446645010.1007/s11664‑019‑07396‑z
    [Google Scholar]
  85. PeiL. HeZ. GuoH. Numerical simulation study on the transport of holes and H+ in SiO2.J. Numeric. Methods Comp. Appl.20204102151158
    [Google Scholar]
  86. DuanH. XuanY. QiangL. Enhancement and control of nanostructured photonic absorption properties.Sci. Bull. (Beijing)2015246
    [Google Scholar]
  87. SaidiH. HidouriT. FrajI. SaidiF. BouaziziA. Effect of etching time and illumination on optical properties of SiNWs elaborated by Metal Assisted Chemical Etching (MACE) for organic photovoltaic applications.Superlattices Microstruct.20158592593010.1016/j.spmi.2015.07.012
    [Google Scholar]
  88. LiuR. WangJ. SunT. WangM. WuC. ZouH. SongT. ZhangX. LeeS.T. WangZ.L. SunB. Silicon nanowire/polymer hybrid solar cell-supercapacitor: A self-charging power unit with a total efficiency of 10.5%.Nano Lett.20171774240424710.1021/acs.nanolett.7b01154 28586231
    [Google Scholar]
  89. ZhengW. ChengQ. WangD. ThompsonC.V. High-performance solid-state on-chip supercapacitors based on Si nanowires coated with ruthenium oxide via atomic layer deposition.J. Power Sources201734111010.1016/j.jpowsour.2016.11.093
    [Google Scholar]
  90. GaboriauD. BonifaceM. ValeroA. AldakovD. BrousseT. GentileP. SadkiS. Atomic layer deposition alumina-passivated silicon nanowires: Probing the transition from electrochemical double-layer capacitor to electrolytic capacitor.ACS Appl. Mater. Interfaces2017915137611376910.1021/acsami.7b01574 28333432
    [Google Scholar]
  91. AradillaD. GaoF. Lewes-MalandrakisG. Müller-SebertW. GaboriauD. GentileP. IlievB. SchubertT. SadkiS. BidanG. NebelC.E. A step forward into hierarchically nanostructured materials for high performance micro-supercapacitors: Diamond-coated SiNW electrodes in protic ionic liquid electrolyte.Electrochem. Commun.201663343810.1016/j.elecom.2015.12.008
    [Google Scholar]
  92. PengK.Q. WangX. LiL. HuY. LeeS-T. Silicon nanowires for advanced energy conversion and storage.Nano Today201381759710.1016/j.nantod.2012.12.009
    [Google Scholar]
  93. de Jesús Pérez BuenoJ. LópezM.L.M. Jesús Betancourt MedinaM. RodríguezC.H. Maldonado PérezA.X. Bocarando ChacónJ.G. LópezC.M. RoblesM.R.G. OzaG. Heterogeneous photocatalysis using electroless deposition of Ni/NiO nanoparticles on silicon nanowires for the degradation of methyl orange.Curr. Nanosci.202319343244310.2174/1573413718666220602144340
    [Google Scholar]
  94. UesugiA. NishiyoriS. NakagamiT. SuganoK. IsonoY. Integration of silicon nanowire bridges in microtrenches with perpendicular bottom-up growth promoted by surface nanoholes.Jpn. J. Appl. Phys.202261707550210.35848/1347‑4065/ac50bd
    [Google Scholar]
  95. YaoC. ZhaoY. ZhangX. LiH. XieC. Design and fabrication of wafer-scale highly uniform silicon nanowire arrays by metal-assisted chemical etching for antireflection films.Results Phys.20213110501810.1016/j.rinp.2021.105018
    [Google Scholar]
  96. SanduG. Avila OssesJ. LucianoM. CainaD. StopinA. BonifaziD. GohyJ.F. SilhanekA. FloreaI. BahriM. ErsenO. LeclèreP. GabrieleS. VladA. MelinteS. Kinked silicon nanowires: Superstructures by metal-assisted chemical etching.Nano Lett.201919117681769010.1021/acs.nanolett.9b02568 31593477
    [Google Scholar]
  97. RoyA. SatpatiB. Metal nanoparticle-decorated silicon nanowire arrays on silicon substrate and their applications.Microsc. Microanal.20192561407141510.1017/S1431927619014946 31514761
    [Google Scholar]
  98. AlperJ.P. WangS. RossiF. SalviatiG. YiuN. CarraroC. MaboudianR. Selective ultrathin carbon sheath on porous silicon nanowires: Materials for extremely high energy density planar micro-supercapacitors.Nano Lett.20141441843184710.1021/nl404609a 24635718
    [Google Scholar]
  99. ZhouQ. BaoM. NiX. A novel surface modification of silicon nanowires by polydopamine to prepare SiNWs/NC@NiO electrode for high-performance supercapacitor.Surf. Coat. Tech.202140612666010.1016/j.surfcoat.2020.126660
    [Google Scholar]
  100. LiangY. WeiJ. HuY.X. ChenX.F. ZhangJ. ZhangX.Y. JiangS.P. TaoS.W. WangH.T. Metal–polydopamine frameworks and their transformation to hollow metal/N-doped carbon particles.Nanoscale20179165323532810.1039/C7NR00978J 28398436
    [Google Scholar]
  101. ZhaoH. WengC-C. HuZ-P. GeL. YuanZ-Y. CdS-polydopamine-derived N,S-Codoped hierarchically porous carbons as highly active electrocatalyst for oxygen reduction.ACS Sustain. Chem.& Eng.20175119914992210.1021/acssuschemeng.7b01875
    [Google Scholar]
  102. WanY. ShaJ. ChenB. FangY. WangZ. WangY. Nanodevices based on silicon nanowires.Recent Pat. Nanotechnol.2009311910.2174/187221009787003348 19149750
    [Google Scholar]
  103. ZhangY. QiuT. ZhangW. ChuP.K. Recent progress in patterned silicon nanowire arrays: Fabrication, properties and applications.Recent Pat. Nanotechnol.201151627010.2174/187221011794474921 21190542
    [Google Scholar]
  104. SivasubramanianM. LoL. Silicon Nanowires for Green Energy Applications.Curr. Org. Chem.201418182442245010.2174/1385272819666140806203336
    [Google Scholar]
  105. NuzaihanM.N. Fabrication of silicon nanowires array using e-beam lithography integrated with microfluidic channel for pH sensing.Curr. Nanosci.201511223924410.2174/1573413711999150112100709
    [Google Scholar]
  106. ZhangR.Q. DouK.P. De SarkarA. Conductivity enhancement by surface chemistry in silicon nanowires.Nanosci. Nanotechnol. Asia20111217718210.2174/2210681211101020177
    [Google Scholar]
  107. ChuanM.W. WongK.L. HamzahA. RusliS. AliasN.E. LimC.S. TanM.L.P. 2D Honeycomb Silicon: A review on theoretical advances for silicene field-effect transistors.Curr. Nanosci.202016459560710.2174/1573413715666190709120019
    [Google Scholar]
  108. AbidinW.A.B.Z. NorM.N.M. ArshadM.K.M. FathilM.F.M. ParminN.A. SisinN.A.H.T. IbauC. AzlanA.S. Femtomolar dengue virus Type-2 DNA detection in back-gated silicon nanowire field-effect transistor biosensor.Curr. Nanosci.202218113914610.2174/1573413717666210226120940
    [Google Scholar]
  109. DingJ. ZhangF. YuanN. ChengG. WangX. LingZ. ZhangZ. Influence of experimental conditions on the antireflection properties of silicon nanowires fabricated by metal-assisted etching method.Curr. Nanosci.201410340240810.2174/157341371130900102
    [Google Scholar]
  110. ZhaiY. PalardM. MathewL. HussainM. Fabrication of three-dimensional MIS nano-capacitor based on nanoimprinted single crystal silicon nanowire arrays.Micro Nanosyst.20124433333810.2174/1876402911204040333
    [Google Scholar]
/content/journals/cnano/10.2174/0115734137295190240321042642
Loading
/content/journals/cnano/10.2174/0115734137295190240321042642
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test