Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-4137
  • E-ISSN: 1875-6786

Abstract

Surface enhancement improves the porousness and surface area (SSA) of biomass materials, which boosts their adsorption capability. This work investigates recent advances in surface modification technologies of biomass-based materials for heavy metal adsorption, including Pb, As, Cr, Fe, Cd, Mn, Cu, Co, Hg, Ni, Zn, and their ions in waters/wastewaters. The chemical structure and surface properties of biomass were examined in connection with various surface modification approaches and their effects on the adsorption process. In addition, adsorption performance we assessed using various operating conditions, isotherms, kinetics, and computational and artificial intelligence methodologies. This study found that acid-activated Posidonia oceanica had the highest adsorption effectiveness of 631.13 mg/g to eliminate Pb2+, whereas HPO/furnace-modified oil palm biomass had the lowest (0.1576 mg/g) for removing Cd2+. Important insights into knowledge gaps for changing these materials for extremely effective adsorption performance were emphasized to improve the area.

Loading

Article metrics loading...

/content/journals/cnano/10.2174/0115734137282899240102085324
2025-01-01
2025-06-27
Loading full text...

Full text loading...

References

  1. AhmadM.A. EusoffM.A. AdegokeK.A. BelloO.S. Sequestration of methylene blue dye from aqueous solution using microwave assisted dragon fruit peel as adsorbent.Environ. Technol. Innov.202124101917
    [Google Scholar]
  2. BrtnickyM. DokulilovaT. HolatkoJ. PecinaV. KintlA. LatalO. VyhnanekT. PrichystalovaJ. DattaR. Long-term effects of biochar-based organic amendments on soil microbial parameters.Agronomy201991174710.3390/agronomy9110747
    [Google Scholar]
  3. LiuW.J. JiangH. YuH.Q. Development of biochar-based functional materials: Toward a sustainable platform carbon material.Chem. Rev.201511522122511228510.1021/acs.chemrev.5b00195 26495747
    [Google Scholar]
  4. Mohamed S. Afify, Mohamed M. El Faham, Usama Eldemerdash, S. I. El-Dek, Waleed M. A. El Rouby, Effects of Ag doping on LaMnO3 photocatalysts for photoelectrochemical water splitting,Applied Physics A202212887110.1007/s00339‑022‑05895‑1
    [Google Scholar]
  5. RozumováL. ŽivotskýO. SeidlerováJ. MotykaO. ŠafaříkI. ŠafaříkováM. Magnetically modified peanut husks as an effective sorbent of heavy metals.J. Environ. Chem. Eng.20164154955510.1016/j.jece.2015.10.039
    [Google Scholar]
  6. AdegokeK.A. OlagunjuA.O. AlagbadaT.C. AlaoO.C. AdesinaM.O. AfolabiI.C. AdegokeR.O. BelloO.S. Adsorptive removal of endocrine-disrupting chemicals from aqueous solutions: A review.Water Air Soil Pollut.202223323810.1007/s11270‑021‑05405‑8
    [Google Scholar]
  7. AdegokeK.A. AdesinaO.O. Okon-AkanO.A. AdegokeO.R. OlabintanA.B. AjalaO.A. OlagokeH. MaxakatoN.W. BelloO.S. Sawdust-biomass based materials for sequestration of organic and inorganic pollutants and potential for engineering applications.Curr. Res. Green Sustain. Chem.2022510027410.1016/j.crgsc.2022.100274
    [Google Scholar]
  8. NiadM. RasoolzadehL. ZareiF. Biosorption of copper (II) on Sargassum angostifolium C.Agardh phaeophyceae biomass.Chem. Spec. Bioavail.201426317618310.3184/095422914X14039722451529
    [Google Scholar]
  9. YoonS. HanS. ShinS. The effect of hemicelluloses and lignin on acid hydrolysis of cellulose.Energy201477192410.1016/j.energy.2014.01.104
    [Google Scholar]
  10. CaiW. WeiJ. LiZ. LiuY. ZhouJ. HanB. Preparation of amino-functionalized magnetic biochar with excellent adsorption performance for Cr(VI) by a mild one-step hydrothermal method from peanut hull.Colloids Surfaces A Physicochem. Eng. Asp.2019563102111
    [Google Scholar]
  11. ArtioliY. Adsorption. Encyclopedia of Ecology, Five-volume Set.Padua, ItalyElsevier Inc.2008606510.1016/B978‑008045405‑4.00252‑4
    [Google Scholar]
  12. AssireyE.A. SirryS.M. BurkaniH.A. IbrahimM.A. Modified Ziziphus spina-christi stones as green route for the removal of heavy metals.Sci. Rep.20201012055710.1038/s41598‑020‑76810‑y 33239668
    [Google Scholar]
  13. BiswasS. BalM. BeheraS. SenT. MeikapB. Process optimization study of Zn2+ adsorption on biochar-alginate composite adsorbent by response surface methodology (RSM).Water201911232510.3390/w11020325
    [Google Scholar]
  14. JúniorO. GurgelL.V. FreitasR.P. Laurent Fr´ed´ericG. Adsorption of Cu (II), Cd(II), and Pb(II) from aqueous single metal solutions by mercerized cellulose and mercerized sugarcane bagasse chemically modified with EDTA dianhydride (EDTAD).Carbohydr. Polym.200977643650
    [Google Scholar]
  15. FröhlichA.C. FolettoE.L. DottoG.L. Preparation and characterization of NiFe2O4/activated carbon composite as potential magnetic adsorbent for removal of ibuprofen and ketoprofen pharmaceuticals from aqueous solutions.J. Clean. Prod.201922982883710.1016/j.jclepro.2019.05.037
    [Google Scholar]
  16. AdegokeK.A. BelloO.S. Dye sequestration using agricultural wastes as adsorbents.Water Resour. Ind.20151282410.1016/j.wri.2015.09.002
    [Google Scholar]
  17. AhmadM.A. AhmedN.A.B. AdegokeK.A. BelloO.S. Sorption studies of methyl red dye removal using lemon grass (Cymbopogon citratus).Chem. Data Collec.20192210024910.1016/j.cdc.2019.100249
    [Google Scholar]
  18. TaoufikN. BoumyaW. AchakM. ChennoukH. DewilR. BarkaN. The state of art on the prediction of efficiency and modeling of the processes of pollutants removal based on machine learning.Sci. Total Environ.2022807Pt 115055410.1016/j.scitotenv.2021.150554 34597573
    [Google Scholar]
  19. AbegundeS.M. IdowuK.S. AdejuwonO.M. Adeyemi-AdejoluT. A review on the influence of chemical modification on the performance of adsorbents.Resour., Environm. Sustainab.2020110000110.1016/j.resenv.2020.100001
    [Google Scholar]
  20. MeenaA.K. RajagopalC. Removal of heavy metal ions from aqueous solutions using chemically (Na2S) treated granular activated carbon as an adsorbent.J. Sci. Ind. Res.201069449453
    [Google Scholar]
  21. TijaniJ.O. BankoleM.T. MurianaM. FalanaI.O. Development of low cost adsorbent from cow horn for the biosorption of Mn (II), Ni (II) and Cd (II) ion from aqueous solution.Res. J. Appl. Sci. Eng. Technol.20147191710.19026/rjaset.7.213
    [Google Scholar]
  22. ZhangH. XueG. ChenH. LiX. Magnetic biochar catalyst derived from biological sludge and ferric sludge using hydrothermal carbonization: Preparation, characterization and its circulation in Fenton process for dyeing wastewater treatment.Chemosphere2018191647110.1016/j.chemosphere.2017.10.026 29031054
    [Google Scholar]
  23. ZhangW. DuoH. LiS. AnY. ChenZ. LiuZ. RenY. WangS. ZhangX. WangX. An overview of the recent advances in functionalization biomass adsorbents for toxic metals removal.Colloid Interface Sci. Commun.20203810030810.1016/j.colcom.2020.100308
    [Google Scholar]
  24. ZhangX. ShenJ. PanS. QianJ. PanB. Metastable zirconium phosphate under nanoconfinement with superior adsorption capability for water treatment.Adv. Funct. Mater.20203012190901410.1002/adfm.201909014 32952492
    [Google Scholar]
  25. AgboolaO.S. BelloO.S. Enhanced adsorption of ciprofloxacin from aqueous solutions using functionalized banana stalk.Biomass Conv. Biorefi.2022125463547810.1007/s13399‑020‑01038‑9
    [Google Scholar]
  26. GopalramK. KapoorA. KumarP.S. SunilA. RangasamyG. MXenes and MXene-based materials for removal and detection of water contaminants: A review.Ind. Eng. Chem. Res.202362176559658310.1021/acs.iecr.3c00595
    [Google Scholar]
  27. ChenB. ChenZ. LvS. A novel magnetic biochar efficiently sorbs organic pollutants and phosphate.Bioresour. Technol.2011102271672310.1016/j.biortech.2010.08.067 20863698
    [Google Scholar]
  28. ChoiJ. WonW. CaparedaS.C. Industrial crops & products the economical production of functionalized Ashe juniper derived-biochar with high hazardous dye removal efficiency.Ind. Crop. Prod.2019137672680
    [Google Scholar]
  29. FagbohungbeM.O. HerbertB.M.J. HurstL. IbetoC.N. LiH. UsmaniS.Q. SempleK.T. The challenges of anaerobic digestion and the role of biochar in optimizing anaerobic digestion.Waste Manag.20176123624910.1016/j.wasman.2016.11.028 27923546
    [Google Scholar]
  30. GhrabS. BenzinaM. LambertS.D. Copper adsorption from wasterwater using bone charcoal.Adv. Mater. Phys. Chem.20177513914710.4236/ampc.2017.75012
    [Google Scholar]
  31. LakshmiD. AkhilD. KartikA. GopinathK.P. ArunJ. BhatnagarA. RinklebeJ. KimW. MuthusamyG. Artificial intelligence (AI) applications in adsorption of heavy metals using modified biochar.Sci. Total Environ.202180114962310.1016/j.scitotenv.2021.149623 34425447
    [Google Scholar]
  32. MohamedN. Sanad, Mohamed Farouz, Mohamed M. ElFaham, recent advancement in NANO cellulose as a biomass-based adsorbent for heavy metal ions removal: a review of a sustainable waste management approach,Adv. Eng. Lett.20232412014210.46793/adeletters.2023.2.4.1
    [Google Scholar]
  33. FuF. WangQ. Removal of heavy metal ions from wastewaters: A review.J. Environ. Manage.201192340741810.1016/j.jenvman.2010.11.011 21138785
    [Google Scholar]
  34. HuangB. LiuG. WangP. ZhaoX. XuH. Effect of nitric acid modification on characteristics and adsorption properties of lignite.Processes20197316710.3390/pr7030167
    [Google Scholar]
  35. KhareP. DilshadU. RoutP.K. YadavV. JainS. Plant refuses driven biochar: Application as metal adsorbent from acidic solutions.Arab. J. Chem.201710S3054S306310.1016/j.arabjc.2013.11.047
    [Google Scholar]
  36. MoJ. YangQ. ZhangN. ZhangW. ZhengY. ZhangZ. A review on agro-industrial waste (AIW) derived adsorbents for water and wastewater treatment.J. Environ. Manage.201822739540510.1016/j.jenvman.2018.08.069 30212686
    [Google Scholar]
  37. GunorubonA.J. ChukwunonsoN. Kinetics, equilibrium and thermodynamics studies of Fe3+ ion removal from aqueous solutions using periwinkle shell activated carbon.Adv. Chem. Eng. Sci.201882496610.4236/aces.2018.82004
    [Google Scholar]
  38. XuL. ZhengX. CuiH. ZhuZ. LiangJ. ZhouJ. Equilibrium, kinetic, and thermodynamic studies on the adsorption of cadmium from aqueous solution by modified biomaterials ash.Bioinorg. Chem. Appl.20172017369560410.1155/2017/3695604 28348509
    [Google Scholar]
  39. ChenC.K. ChenJ.J. NguyenN.T. LeT.T. NguyenN.C. ChangC.T. Specifically designed magnetic biochar from waste wood for arsenic removal.Sustain. Environ. Res.20213112910.1186/s42834‑021‑00100‑z
    [Google Scholar]
  40. HuangL. ChenB. PistolozziM. WuZ. WangJ. Inoculation and alkali coeffect in volatile fatty acids production and microbial community shift in the anaerobic fermentation of waste activated sludge.Bioresour. Technol.2014153879410.1016/j.biortech.2013.11.049 24345567
    [Google Scholar]
  41. LawalO.S. Removal of lead (II) ion from aqueous solutions using black walnut (Juglan nigra) seed husk.Curr. Trends Biomed. Eng. Biosci.20179155575510.19080/CTBEB.2017.09.555755
    [Google Scholar]
  42. LiaoM. YaoY. Applications of artificial intelligence‐based modeling for bioenergy systems: A review.Glob. Change Biol. Bioenergy202113577480210.1111/gcbb.12816
    [Google Scholar]
  43. YanyanL. KurniawanT.A. ZhuM. OuyangT. AvtarR. Dzarfan OthmanM.H. MohammadB.T. AlbadarinA.B. Removal of acetaminophen from synthetic wastewater in a fixed-bed column adsorption using low-cost coconut shell waste pretreated with NaOH, HNO3, ozone, and/or chitosan.J. Environ. Manage.201822636537610.1016/j.jenvman.2018.08.032 30138836
    [Google Scholar]
  44. (a MamisahebeiS. TorabianA. NasseriS. NaddafiK. Removal of arsenic from an aqueous solution by pretreated waste tea fungal biomass.Iran. J. Environ. Health. Sci. Eng.2007428592
    [Google Scholar]
  45. (b MartiniS. RoniK.A. The existing technology and the application of digital artificial intelligent in the wastewater treatment area: A review paper.J. Phys. Conf. Ser.2021185801201310.1088/1742‑6596/1858/1/012013
    [Google Scholar]
  46. ChaiW.S. CheunJ.Y. KumarP.S. MubashirM. MajeedZ. BanatF. HoS.H. ShowP.L. A review on conventional and novel materials towards heavy metal adsorption in wastewater treatment application.J. Clean. Prod.202129612658910.1016/j.jclepro.2021.126589
    [Google Scholar]
  47. HorsfallJ. SpiffA.I. Effect of 2-mercaptoethanoic acid treatment of fluted pumpkin waste (Telfairia occidentalis Hook. f.) on the sorption of Ni2+ ions from aqueous solution.J. Sci. Ind. Res.200564613620
    [Google Scholar]
  48. IslamT. GolamA.H.M. Saenz-aranaR. HernandezC. GuintoT. AhsanA. Alvarado-tenorioB. NoveronJ.C. Removal of methylene blue and tetracycline from water using peanut shell derived adsorbent prepared by sulfuric acid reflux.J. Environ. Chem. Eng.20197102816
    [Google Scholar]
  49. Reyes-LedezmaJ.L. Cristiani-UrbinaE. Morales-BarreraL. Biosorption of Co2+ ions from aqueous solution by K2HPO4-pretreated duckweed Lemna gibba.Processes2020812153210.3390/pr8121532
    [Google Scholar]
  50. LesaoanaM. MlabaR.P.V. MtunziF.M. KlinkM.J. EjidikeP. PakadeV.E. Influence of inorganic acid modification on Cr(VI) adsorption performance and the physicochemical properties of activated carbon.S. Afr. J. Chem. Eng.20192881810.1016/j.sajce.2019.01.001
    [Google Scholar]
  51. WangZ. GuoH. ShenF. YangG. ZhangY. ZengY. WangL. XiaoH. DengS. Biochar produced from oak sawdust by Lanthanum (La)-involved pyrolysis for adsorption of ammonium (NH4(+)), nitrate (NO3(-)), and phosphate (PO4(3-)).Chemosphere201511964665310.1016/j.chemosphere.2014.07.084 25150468
    [Google Scholar]
  52. Wan NgahW.S. HanafiahM.A.K.M. Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: A review.Bioresour. Technol.200899103935394810.1016/j.biortech.2007.06.011 17681755
    [Google Scholar]
  53. ChamarthyS. SeoC.W. MarshallW.E. Adsorption of selected toxic metals by modified peanut shells.J. Chem. Technol. Biotechnol.200176659359710.1002/jctb.418
    [Google Scholar]
  54. GüzelF. SayğılıH. Akkaya SayğılıG. KoyuncuF. YılmazC. Optimal oxidation with nitric acid of biochar derived from pyrolysis of weeds and its application in removal of hazardous dye methylene blue from aqueous solution.J. Clean. Prod.201714426026510.1016/j.jclepro.2017.01.029
    [Google Scholar]
  55. LiR. WangJ.J. ZhouB. AwasthiM.K. AliA. ZhangZ. LahoriA.H. MaharA. Recovery of phosphate from aqueous solution by magnesium oxide decorated magnetic biochar and its potential as phosphate-based fertilizer substitute.Bioresour. Technol.201621520921410.1016/j.biortech.2016.02.125 26995322
    [Google Scholar]
  56. BulgariuL. EscuderoL.B. BelloO.S. IqbalM. NisarJ. AdegokeK.A. AlakhrasF. KornarosM. AnastopoulosI. The utilization of leaf-based adsorbents for dyes removal: A review.J. Mol. Liq.201927672874710.1016/j.molliq.2018.12.001
    [Google Scholar]
  57. ForoutanR. EsmaeiliH. RishehriS.D. SadeghzadehF. MirahmadiS. KosarifardM. RamavandiB. Zinc, nickel, and cobalt ions removal from aqueous solution and plating plant wastewater by modified Aspergillus flavus biomaterials: A dataset.Data Brief201712485492
    [Google Scholar]
  58. ZangoZ.U. RamliA. JumbriK. SambudiN.S. IsiyakaH.A. Abu BakarN.H.H. SaadB. Response surface methodology optimization and kinetics study for anthracene adsorption onto MIL-88(Fe) and NH2-MIL-88(Fe) metal-organic frameworks.IOP Conf. Ser.: Mater. Sci. Eng.2021109201203510.1088/1757‑899X/1092/1/012035
    [Google Scholar]
  59. AnQ. MiaoY. ZhaoB. LiZ. ZhuS. An alkali modified biochar for enhancing Mn2+ adsorption: Performance and chemical mechanism.Mater. Chem. Phys.202024812289510.1016/j.matchemphys.2020.122895
    [Google Scholar]
  60. KongM. HuangL. LiL. ZhangZ. ZhengS. WangM.K. Effects of oxalic and citric acids on three clay minerals after incubation.Appl. Clay Sci.20149920721410.1016/j.clay.2014.06.035
    [Google Scholar]
  61. RenB. JinY. zhaoL. CuiC. SongX. Enhanced Cr(VI) adsorption using chemically modified dormant Aspergillus niger spores: Process and mechanisms.J. Environ. Chem. Eng.202210110695510.1016/j.jece.2021.106955
    [Google Scholar]
  62. MorenoJ.C. GómezR. GiraldoL. Removal of Mn, Fe, Ni and Cu ions from wastewater using cow bone charcoal.Materials20103145246610.3390/ma3010452
    [Google Scholar]
  63. AbbasA. MarianaL.T. PhanA.N. Biomaterials-waste derived graphene quantum dots and their applications.Carbon20181407799
    [Google Scholar]
  64. GasimM.F. ChoongZ.Y. KooP.L. LowS.C. AbdurahmanM.H. HoY.C. MohamadM. SuryawanI.W.K. LimJ.W. OhW-D. Application of biochar as functional material for remediation of organic pollutants in water: An overview.Catalysts202212221010.3390/catal12020210
    [Google Scholar]
  65. RangrazY. HeraviM.M. Recent advances in metal-free heteroatom-doped carbon heterogonous catalysts.RSC Advances20211138237252377810.1039/D1RA03446D 35479780
    [Google Scholar]
  66. ElmorsiR.R. El-WakeelS.T. Shehab El-DeinW.A. LotfyH.R. RashwanW.E. NagahM. ShaabanS.A. SayedA.S.A. El-SherifI.Y. Abou-El-SherbiniK.S. Adsorption of Methylene Blue and Pb2+ by using acid-activated Posidonia oceanica waste.Sci. Rep.201991335610.1038/s41598‑019‑39945‑1 30833622
    [Google Scholar]
  67. LandersJ. GorG.Y. NeimarkA.V. Density functional theory methods for characterization of porous materials.Colloids Surf. A Physicochem. Eng. Asp.201343733210.1016/j.colsurfa.2013.01.007
    [Google Scholar]
  68. DaochalermwongA. ChankaN. SongsriroteK. DittanetP. NiamnuyC. SeubsaiA. Removal of heavy metal ions using modified celluloses prepared from pineapple leaf fiber.ACS Omega20205105285529610.1021/acsomega.9b04326 32201817
    [Google Scholar]
  69. SalmanM. RehmanR. FarooqU. TahirA. MituL. Biosorptive removal of cadmium(II) and copper(II) using microwave-assisted thiourea-modified sorghum bicolor agrowaste.J. Chem.2020202011110.1155/2020/8269643
    [Google Scholar]
  70. Tejada-TovarC. Herrera-BarrosA. Villabona-OrtízA. Assessment of chemically modified lignocellulose waste for the adsorption of Cr (VI).Rev. Fac. Ing.20192954e1029810.19053/01211129.v29.n54.2020.10298
    [Google Scholar]
  71. AshrafiS.D. KamaniH. Soheil ArezomandH. YousefiN. MahviA.H. Optimization and modeling of process variables for adsorption of Basic Blue 41 on NaOH-modified rice husk using response surface methodology.Desalination Water Treat.20165730140511405910.1080/19443994.2015.1060903
    [Google Scholar]
  72. DaiZ. XiongX. ZhuH. XuH. LengP. LiJ. TangC. XuJ. Association of biochar properties with changes in soil bacterial, fungal and fauna communities and nutrient cycling processes.Biochar20213323925410.1007/s42773‑021‑00099‑x
    [Google Scholar]
  73. WuJ. WangT. WangJ. ZhangY. PanW.P. A novel modified method for the efficient removal of Pb and Cd from wastewater by biochar: Enhanced the ion exchange and precipitation capacity.Sci. Total Environ.202175414215010.1016/j.scitotenv.2020.142150 32920404
    [Google Scholar]
  74. NageswaranG. JothiL. JagannathanS. Plasma assisted polymer modifications. Non- Thermal Plasma Technology for Polymeric Materials.Elsevier20199512710.1016/B978‑0‑12‑813152‑7.00004‑4
    [Google Scholar]
  75. GhasemiM. GhoreyshiA.A. YounesiH. KhoshhalS.K. Synthesis of a high characteristics activated carbon from walnut shell for the removal of Cr(VI) and Fe (II) from aqueous solution: single and binary solutes adsorption.Iran. J. Chem. Eng.2015122851
    [Google Scholar]
  76. MoradiM. FazlzadehdavilM. PirsahebM. MansouriY. KhosraviT. SharafiK. Response surface methodology (RSM) and its application for optimization of ammonium ions removal from aqueous solutions by pumice as a natural and low cost adsorbent.Arch. Environ. Prot.2016422334310.1515/aep‑2016‑0018
    [Google Scholar]
  77. SabzehmeidaniM.M. MahnaeeS. GhaediM. HeidariH. RoyV.A.L. Carbon based materials: A review of adsorbents for inorganic and organic compounds.Mater. Adv.20212259862710.1039/D0MA00087F
    [Google Scholar]
  78. McSweenyJ.D. RowellR.M. MinS.H. Effect of citric acid modification of aspen wood on sorption of copper ion.J. Nat. Fibers200631435810.1300/J395v03n01_05
    [Google Scholar]
  79. HahamH. GrinblatJ. SougratiM.T. StievanoL. MargelS. Engineering of iron-based magnetic activated carbon fabrics for environmental remediation.Materials2015874593460710.3390/ma8074593 28793459
    [Google Scholar]
  80. TarasiS. MorsaliA. Fabrication of transparent ultraviolet blocking films using nanocomposites derived from metal-organic frameworks.J. Alloys Compd.202186815899610.1016/j.jallcom.2021.158996
    [Google Scholar]
  81. RepoE. WarchołJ.K. BhatnagarA. MudhooA. SillanpääM. Aminopolycarboxylic acid functionalized adsorbents for heavy metals removal from water.Water Res.201347144812483210.1016/j.watres.2013.06.020 23863393
    [Google Scholar]
  82. AdeniyiA.G. IghaloJ.O. Biosorption of pollutants by plant leaves: An empirical review.J. Environ. Chem. Eng.20197103100
    [Google Scholar]
  83. PurnomoC.W. KesumaE.P. PerdanaI. AzizM. Lithium recovery from spent Li-ion batteries using coconut shell activated carbon.Waste Manag.20187945446110.1016/j.wasman.2018.08.017 30343775
    [Google Scholar]
  84. WongY.J. ArumugasamyS.K. ChungC.H. SelvarajooA. SethuV. Comparative study of artificial neural network (ANN), adaptive neuro-fuzzy inference system (ANFIS) and multiple linear regression (MLR) for modeling of Cu (II) adsorption from aqueous solution using biochar derived from rambutan (Nephelium lappaceum) peel.Environ. Monit. Assess.2020192743910.1007/s10661‑020‑08268‑4 32556670
    [Google Scholar]
  85. WuZ. ChenX. YuanB. FuM.L. A facile foaming-polymerization strategy to prepare 3D MnO2 modified biochar-based porous hydrogels for efficient removal of Cd(II) and Pb(II).Chemosphere202023912474510.1016/j.chemosphere.2019.124745 31521939
    [Google Scholar]
  86. ZhaoL. WuY. HanJ. WangH. LiuD. LuQ. YangY. Density functional theory study on mechanism of mercury removal by CeO2 modified activated carbon.Energies20181111287210.3390/en11112872
    [Google Scholar]
  87. FeiY. HuY.H. Design, synthesis, and performance of adsorbents for heavy metal removal from wastewater: A review.J. Mater. Chem. A Mater. Energy Sustain.20221031047108510.1039/D1TA06612A
    [Google Scholar]
  88. AlamG. IhsanullahI. NaushadM. SillanpääM. Applications of artificial intelligence in water treatment for optimization and automation of adsorption processes: Recent advances and prospects.Chem. Eng. J.202242713001110.1016/j.cej.2021.130011
    [Google Scholar]
  89. KhanZ.H. GaoM. QiuW. SongZ. Mechanism of novel MoS2-modified biochar composites for removal of cadmium (II) from aqueous solutions.Environ. Sci. Pollut. Res. Int.20212826349793498910.1007/s11356‑021‑13199‑9 33661497
    [Google Scholar]
  90. SolomonA. Synthesis, modification, applications and challenges of titanium dioxide nanoparticles.Res. J. Nanosci. Eng.201934102210.22259/2637‑5591.0304003
    [Google Scholar]
  91. Zamora-LedezmaC. Negrete-BolagayD. FigueroaF. Zamora-LedezmaE. NiM. AlexisF. GuerreroV.H. Heavy metal water pollution: A fresh look about hazards, novel and conventional remediation methods.Environmen. Technol. Innov.20212210150410.1016/j.eti.2021.101504
    [Google Scholar]
  92. AhmadM. RajapakshaA.U. LimJ.E. ZhangM. BolanN. MohanD. VithanageM. LeeS.S. OkY.S. Biochar as a sorbent for contaminant management in soil and water: A review.Chemosphere201499193310.1016/j.chemosphere.2013.10.071
    [Google Scholar]
  93. LiM. WeiD. LiuT. LiuY. YanL. WeiQ. DuB. XuW. EDTA functionalized magnetic biochar for Pb(II) removal: Adsorption performance, mechanism and SVM model prediction.Sep. Purif. Technol.2019227115696
    [Google Scholar]
  94. LiuT. LawluvyY. ShiY. IghaloJ.O. HeY. ZhangY. YapP.S. Adsorption of cadmium and lead from aqueous solution using modified biochar: A review.J. Environ. Chem. Eng.202210110650210.1016/j.jece.2021.106502
    [Google Scholar]
  95. NaihiH. BainiR. YakubI. Oil palm biomass-based activated carbons for the removal of cadmium-a review.AIMS Mater. Sci.20218345346810.3934/matersci.2021028
    [Google Scholar]
  96. BelloO.S. AlagbadaT.C. AlaoO.C. OlatundeA.M. Sequestering a non-steroidal anti-inflammatory drug using modified orange peels.Appl. Water Sci.202010717210.1007/s13201‑020‑01254‑8
    [Google Scholar]
  97. LiH. MahyoubS.A.A. LiaoW. XiaS. ZhaoH. GuoM. MaP. Effect of pyrolysis temperature on characteristics and aromatic contaminants adsorption behavior of magnetic biochar derived from pyrolysis oil distillation residue.Bioresour. Technol.2017223202610.1016/j.biortech.2016.10.033 27771526
    [Google Scholar]
  98. NasrM. MahmoudA.E.D. FawzyM. RadwanA. Artificial intelligence modeling of cadmium(II) biosorption using rice straw.Appl. Water Sci.20177282383110.1007/s13201‑015‑0295‑x
    [Google Scholar]
  99. ZhuX. WangX. OkY.S. The application of machine learning methods for prediction of metal sorption onto biochars.J. Hazard. Mater.201937812072710.1016/j.jhazmat.2019.06.004 31202073
    [Google Scholar]
  100. WangZ. ShenD. ShenF. LiT. Phosphate adsorption on lanthanum loaded biochar.Chemosphere20161501710.1016/j.chemosphere.2016.02.004
    [Google Scholar]
  101. PalapaN. TaherT. SiregarP. NormahN. JuleantiN. WijayaA. BadriA. LesbaniA. High structural stability and adsorption capacity of Zn/Al-biochar and Cu/Al-biochar toward adsorption of Cr(VI).J. Ecol. Eng.202122421322310.12911/22998993/134153
    [Google Scholar]
  102. AcelasN.Y. FlórezE. Density functional theory studies of the adsorption of Cr (VI) on Fe-(hydr) oxide: Gibbs free energies and pH effect.J. Phys. Conf. Ser.20191247101205110.1088/1742‑6596/1247/1/012051
    [Google Scholar]
  103. ZhouR. ZhangM. ZhouJ. WangJ. Optimization of biochar preparation from the stem of Eichhornia crassipes using response surface methodology on adsorption of Cd2.Sci. Rep.2019911753810.1038/s41598‑019‑54105‑1 31772278
    [Google Scholar]
  104. SanadM.N. El-DekS.I. EldemerdashU. ElFahamM.M. Study of the adsorptive removal of (Fe+2) and (Ni+2) from water by synthesized magnetite/corn cobs magnetic nanocomposite.Nano Futures20226202500410.1088/2399‑1984/ac6a31
    [Google Scholar]
  105. JoshuaO. Cost of adsorbent preparation and usage in wastewater treatment: A review.Cleaner Chem. Eng.2022310004210.1016/j.clce.2022.100042
    [Google Scholar]
/content/journals/cnano/10.2174/0115734137282899240102085324
Loading
/content/journals/cnano/10.2174/0115734137282899240102085324
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test