Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-4137
  • E-ISSN: 1875-6786

Abstract

Due to the magnificent properties of Silicon Carbide (SiC), such as high saturation drift velocity, large operating temperature, higher cut-off and maximum frequency (f and f), high thermal conductivity and large breakdown voltages (BV), it is desirable for high power electronics. With the latest advancements in semiconductor materials and processing technologies, diverse high-power applications such as inverters, power supplies, power converters and smart electric vehicles are implemented using SiC-based power devices. Especially, SiC MOSFETs are mostly used in high-power applications due to their capability to achieve lower switching loss, higher switching speed and lower ON resistance than the Si-based (Insulated gate bipolar transistor) IGBTs. In this paper, a critical study of SiC MOSFET architectures, emerging dielectric techniques, mobility enhancement methods and irradiation effects are discussed. Moreover, the roadmap of Silicon Carbide power devices is also briefly summarized.

Loading

Article metrics loading...

/content/journals/cnano/10.2174/0115734137268803231120111751
2025-01-01
2024-11-22
Loading full text...

Full text loading...

References

  1. ShuaiZ. ShuaiH. YaruX. YangjunZ. JiangtaoG. YaohengL. GuohuiL. JianqiuL. Junction temperature estimation of a SiC MOSFET module for 800V high-voltage application in electric vehicles.eTrans.2023161723
    [Google Scholar]
  2. LiH. ZhaoS. WangX. DingL. MantoothH.A. Parallel connection of silicon carbide MOSFETs—challenges, mechanism, and solutions.IEEE Trans. Power Electron.20233889731974910.1109/TPEL.2023.3278270
    [Google Scholar]
  3. CostaP. PintoS. SilvaJ.F. A novel analytical formulation of SiC-MOSFET losses to size high-efficiency three-phase inverters.Energies202316281882210.3390/en16020818
    [Google Scholar]
  4. ZhangQ. ZhangP. A junction temperature smoothing control method for sic mosfets based on the gate driving signal delay.IEEE Trans. Ind. Electron.2023911010.1109/TIE.2023.3270530
    [Google Scholar]
  5. FeilM. WaschneckK. ReisingerH. SalmenP. RescherG. AichingerT. GrasserT. On the frequency dependence of the gate switching instability in silicon carbide MOSFETs.Materials Science Forum202310.4028/p‑6g5v7s
    [Google Scholar]
  6. HeY. WangX. ShaoS. ZhangJ. Active gate driver for dynamic current balancing of parallel-connected SiC MOSFETs.IEEE Trans. Power Electron.20233856116612710.1109/TPEL.2023.3243053
    [Google Scholar]
  7. ŞehirliE. Examining the impacts of DM filters to PFC isolated Ćuk converter for DCM operation by comparing Si and SiC MOSFET.Sci. Rep.20231314732473810.1038/s41598‑023‑31965‑2 36959232
    [Google Scholar]
  8. SongY. BhattacharyyaA. KarimA. ShoemakerD. HuangH.L. RoyS. McGrayC. LeachJ.H. HwangJ. KrishnamoorthyS. ChoiS. Ultra-Wide Band Gap Ga2O3-on-SiC MOSFETs.ACS Appl. Mater. Interfaces20231557137714710.1021/acsami.2c21048 36700621
    [Google Scholar]
  9. BaruahR.K. MahajanB.K. ChenY-P. PailyR.P. A junctionless silicon carbide transistor for harsh environment applications.J. Electron. Mater.202150105682569010.1007/s11664‑021‑09087‑0
    [Google Scholar]
  10. BencherifH. DehimiL. PezzimentiF. De MartinoG. Della CorteF.G. Multiobjective optimization of design of 4H-SiC power MOSFETs for specific applications.J. Electron. Mater.20194863871388010.1007/s11664‑019‑07142‑5
    [Google Scholar]
  11. KonishiK. FujitaR. ShimaA. Modeling and evaluation of stacking fault expansion velocity in body diodes of 3.3 kV SiC MOSFET.J. Electron. Mater.20194831704171310.1007/s11664‑018‑06901‑0
    [Google Scholar]
  12. RoccaforteF. FiorenzaP. GrecoG. Lo NigroR. GiannazzoF. IucolanoF. SaggioM. Emerging trends in wide band gap semiconductors (SiC and GaN) technology for power devices.Microelectron. Eng.2018187-188667710.1016/j.mee.2017.11.021
    [Google Scholar]
  13. AjayanJ. NirmalD. RameshR. BhattacharyaS. TayalS. Leo JosephL.M.I. Raju ThoutamL. AjithaD. A critical review of AlGaN/GaN-heterostructure based Schottky diode/HEMT hydrogen (H2) sensors for aerospace and industrial applications.Measurement202118611010010.1016/j.measurement.2021.110100
    [Google Scholar]
  14. ZhangY. ZubairA. LiuZ. XiaoM. PerozekJ. MaY. PalaciosT. GaN FinFETs and trigate devices for power and RF applications: review and perspective.Semicond. Sci. Technol.202136505400110.1088/1361‑6641/abde17
    [Google Scholar]
  15. DingX. ZhouY. ChengJ. A review of gallium nitride power device and its applications in motor drive.CES Trans. Electr. Machines Syst.201931546410.30941/CESTEMS.2019.00008
    [Google Scholar]
  16. GuiH. ChenR. NiuJ. ZhangZ. TolbertL.M. WangF.F. BlalockB.J. CostinettD. ChoiB.B. Review of power electronics components at cryogenic temperatures.IEEE Trans. Power Electron.20203555144515610.1109/TPEL.2019.2944781 32499667
    [Google Scholar]
  17. MaddiH.R. SusannaY. ShengnanZ. TianshiL. LimengS. MinseokK. DiangX. SuvenduN. MarvinH. AnantK. The road to a robust and affordable SiC power MOSFET technology.Energ.2021141216
    [Google Scholar]
  18. NakataniK. YamaguchiY. ToriiT. TsuruM. A review of GaN MMIC power amplifier technologies for millimeter-wave applications.IEICE Trans. Electron.2022E105C43344010.1587/transele.2022MMI0006
    [Google Scholar]
  19. VechalapuK. BhattacharyaS. Van BruntE. RyuS-H. GriderD. PalmourJ.W. Sei-HyungR. DaveG. JohnP. Comparative evaluation of 15-kV SiC MOSFET and 15-kV SiC IGBT for medium-voltage converter under the same dv/dt conditions.IEEE J. Emerg. Sel. Top. Power Electron.20175146948910.1109/JESTPE.2016.2620991
    [Google Scholar]
  20. TaylorA. LuJ. ZhuL. BaiK.H. McAmmondM. BrownA. Comparison of SiC MOSFET‐based and GaN HEMT‐based high‐efficiency high‐power‐density 7.2 kW EV battery chargers.IET Power Electron.201811111849185710.1049/iet‑pel.2017.0467
    [Google Scholar]
  21. AnthonA. ZheZ. AndersenM. Comparison of a state of the art Si IGBT and next generation fast switching devices in a 4 kW boost converter.IEEE Ener Conv Cong and Expos201530033011
    [Google Scholar]
  22. HaoB. PengC. TangX. ZhaoZ. Calculation and analysis of switching losses in IGBT devices based on switching transient processes.J. Power Electr.202222101801181110.1007/s43236‑022‑00477‑z
    [Google Scholar]
  23. ChenJ. CaoL. ZangY. Turn-off over-voltage character of 6500V/600A IGBT module.IEEE Inter. Conf. Elect. Dev. Sol. Stat. Cir.2019221310.1109/EDSSC.2019.8754383
    [Google Scholar]
  24. WuJ. WuY. NingH. WenxingZ. SeikiI. TatsuhikoF. DehongX. Impact of SiC MOSFET on PV InverterIEEE Ener. Con. Cong. Exp.201818531860
    [Google Scholar]
  25. DuM. KongQ. OuyangZ. WeiK. HurleyW.G. KexinW. WilliamG. Strategy for diagnosing the aging of an IGBT module by on-state voltage separation.IEEE Trans. Electron Dev.201966114858486410.1109/TED.2019.2942767
    [Google Scholar]
  26. ZhaoS. ZhaoX. WeiY. ZhaoY. MantoothH.A. A review of switching slew rate control for silicon carbide devices using active gate drivers.IEEE J. Emerg. Sel. Top. Power Electron.2021944096411410.1109/JESTPE.2020.3008344
    [Google Scholar]
  27. WangT. LiZ. ZhaoY. LiL. YangY. XiaZ. RenM. LiW. ZhangJ. A novel 3300 V trench IGBT with P-N-doped polysilicon split gate for low EMI noise.Semicond. Sci. Technol.202237404501110.1088/1361‑6641/ac5465
    [Google Scholar]
  28. LiC. ShengY. JunX. HuaQ. ZhongC. JinY. Research on performance parameter degradation of high voltage and high power IGBT module in power cycling test.J. Phys. Conf. Ser.2022012041
    [Google Scholar]
  29. YinS. GuY. DengS. XinX. DaiG. Comparative investigation of surge current capabilities of Si IGBT and SiC MOSFET for pulsed power application.IEEE Trans. Plasma Sci.20184682979298410.1109/TPS.2018.2849778
    [Google Scholar]
  30. ShuL. ZhangJ. PengF. ChenZ. Active current source IGBT gate drive with closed-loop di/dt and dv/dt control.IEEE Trans. Power Electron.20173253787379610.1109/TPEL.2016.2587340
    [Google Scholar]
  31. GóreckiP. GóreckiK. Measurements and computations of internal temperatures of the IGBT and the diode situated in the common case.Electronics (Basel)202110221010.3390/electronics10020210
    [Google Scholar]
  32. GonzalezJ.O. WuR. JahdiS. AlatiseO. Performance and reliability review of 650 V and 900 V silicon and SiC devices: MOSFETs, cascode JFETs and IGBTs.IEEE Trans. Ind. Electron.20206797375738510.1109/TIE.2019.2945299
    [Google Scholar]
  33. JahdiS. AlatiseO. Ortiz GonzalezJ.A. BonyadiR. RanL. MawbyP. Philip, Mawby. Temperature and switching rate dependence of crosstalk in Si-IGBT and SiC power modules.IEEE Trans. Ind. Electron.201663284986310.1109/TIE.2015.2491880
    [Google Scholar]
  34. ImaizumiM. MiuraN. NaruhisaM. Characteristics of 600, 1200, and 3300 V planar SiC-MOSFETs for energy conversion applications.IEEE Trans. Electron Dev.201562239039510.1109/TED.2014.2358581
    [Google Scholar]
  35. ZhangL. YuanX. WuX. ShiC. ZhangJ. ZhangY. XiboY. XiaojieW. CongcongS. JiahangZ. YongleiZ. Performance evaluation of high-power SiC MOSFET modules in comparison to Si IGBT modules.IEEE Trans. Power Electron.20193421181119610.1109/TPEL.2018.2834345
    [Google Scholar]
  36. YuanX. LairdI. WalderS. Opportunities, challenges, and potential solutions in the application of fast-switching SiC power devices and converters.IEEE Trans. Power Electron.20213643925394510.1109/TPEL.2020.3024862
    [Google Scholar]
  37. KimotoT. WatanabeH. Defect engineering in SiC technology for high-voltage power devices.Appl. Phys. Express2020131212010110.35848/1882‑0786/abc787
    [Google Scholar]
  38. LiX. LiqiZ. SuxuanG. YangL. AlexQ. ZhangB. Understanding switching losses in SiC MOSFET: Toward lossless switching.IEEE Wi Ban Pow Dev and App2015257262
    [Google Scholar]
  39. XingY. DengX. WuH. XuX. LiX. LiX. WenY. An enhanced high frequency performance SiC MOSFET with self-adjusting P-shield region potential.Semicond. Sci. Technol.202237808501910.1088/1361‑6641/ac7d04
    [Google Scholar]
  40. TominagaT. ShiroH. YoheiM. JunichiN. KoutarouK. ShingoT. Superior switching characteristics of SiC-MOSFET embedding SBD.2019 31st Intern Symp on Pow Semi Dev and ICs20192730
    [Google Scholar]
  41. SheX. HuangA.Q. LuciaO. OzpineciB. Review of silicon carbide power devices and their applications.IEEE Trans. Ind. Electron.201764108193820510.1109/TIE.2017.2652401
    [Google Scholar]
  42. GolosovM.A. LozanovV.V. TitovA.T. BaklanovaN.I. Toward understanding the reaction between silicon carbide and iridium in a broad temperature range.J. Am. Ceram. Soc.2021104126653666910.1111/jace.17978
    [Google Scholar]
  43. SungW.A.H. JayantB. A novel 4H-SiC IGBT structure with improved trade-off between short circuit capability and on-state voltage drop.22nd Inter. Symp. Pow. Semic. Dev.2010217220
    [Google Scholar]
  44. YinS. TsengK.J. SimanjorangR. LiuY. PouJ. TsengK. RejekiS. YongL. JosepP. A 50-kW high-frequency and high-efficiency SiC voltage source inverter for more electric aircraft.IEEE Trans. Ind. Electron.201764119124913410.1109/TIE.2017.2696490
    [Google Scholar]
  45. ZhangC. SrdjaS. SrdjanL. YonghanK. EdwardC. EhsanT.A. SiC-based 100 kW high-power-density (34 kW/L) electric vehicle traction inverter.IEEE Ener Conv Cong and Expos20183880388510.1109/ECCE.2018.8558373
    [Google Scholar]
  46. LiX. ZengG. LeiX. The stability, optical properties and solar-thermal conversion performance of SiC-MWCNTs hybrid nanofluids for the direct absorption solar collector (DASC) application.Sol. Energy Mater. Sol. Cells202020611032310.1016/j.solmat.2019.110323
    [Google Scholar]
  47. HusseinA. CastellazziA. WheelerP. ChristianK. Performance benchmark of Si IGBTs vs. SiC MOSFETs in small-scale wind energy conversion systems.IEEE Inter. Pow. Elect. Mot. Cont. Conf.2016963968
    [Google Scholar]
  48. NarayanasamyB. SathyanarayananA.S. LuoF. ChenC. FangL. CaiC. Reflected wave phenomenon in SiC motor drives: Consequences, boundaries, and mitigation.IEEE Trans. Power Electron.20203510106291064210.1109/TPEL.2020.2975217
    [Google Scholar]
  49. HamadaK. NagaoM. AjiokaM. KawaiF. MasaruN. MasakiA. FumiakiK. SiC—Emerging power device technology for next-generation electrically powered environmentally friendly vehicles.IEEE Trans. Electron Dev.201562227828510.1109/TED.2014.2359240
    [Google Scholar]
  50. GallowayK. WitulskiA. SchrimpfR. SternbergA. BallD. JavanainenA. ReedR. SierawskiB. LauensteinJ-M. Failure estimates for SiC power MOSFETs in space electronics.Aerospace201853677110.3390/aerospace5030067
    [Google Scholar]
  51. PuschkarskyK. GrasserT. AichingerT. GustinW. ReisingerH. Review on SiC MOSFETs high-voltage device reliability focusing on threshold voltage instability.IEEE Trans. Electron Dev.201966114604461610.1109/TED.2019.2938262
    [Google Scholar]
  52. LelisA.J. GreenR. HabersatD.B. ElM. Habersat MooroE. Basic mechanisms of threshold-voltage instability and implications for reliability testing of SiC MOSFETs.IEEE Trans. Electron Dev.201562231632310.1109/TED.2014.2356172
    [Google Scholar]
  53. LelisA. GreenR. HabersatD. GoldsmanN. Effect of threshold-voltage instability on SiC DMOSFET reliability.IEEE Intern Integ Reliab Work Fin Rep200857276
    [Google Scholar]
  54. ZhangZ. XiutaoL. A review of WBG and Si devices hybrid applications.Chin. J. Elect. Eng.20212120
    [Google Scholar]
  55. PenslG. FlorinC. ThomasF. MichaelK. SergeyR. FrankS. MichaelS.W. SiC material properties.Inter Jou of Hi Sp Elect and Sys.20051570574510.1142/S0129156405003405
    [Google Scholar]
  56. DongS.M. ChollonG. LabrugèreC. LahayeM. GuetteA. BruneelJ.L. CouziM. NaslainR. JiangD.L. Characterization of nearly stoichiometric SiC ceramic fibres.J. Mater. Sci.200136102371238110.1023/A:1017988827616
    [Google Scholar]
  57. HassanJ.J. MahdiM.A. RamizyA. Abu HassanH. HassanZ. Fabrication and characterization of ZnO nanorods/p-6H-SiC heterojunction LED by microwave-assisted chemical bath deposition.Superlattices Microstruct.201353313810.1016/j.spmi.2012.09.013
    [Google Scholar]
  58. CapanI. 4H-SiC schottky barrier diodes as radiation detectors: A review.Electronics202211453210.3390/electronics11040532
    [Google Scholar]
  59. XiaohongF. DingrongD. YiL. Qi-HuiW. Recent progress in sic nanostructures as anode materials for lithium ion batterie.Curr. Mat. Sci.2023161829
    [Google Scholar]
  60. WuT. JifengC. SaijunM. MichaelJ. 1200 V SiC MOSFETS for high voltage power conversion.IEEE Ener Conv Con and Expos201229212926
    [Google Scholar]
  61. SolerV. CabelloM. BerthouM. MontserratJ. RebolloJ. GodignonP. MihailaA. RoginaM.R. RodriguezA. SebastianJ. High-voltage 4H-SiC power MOSFETs with Boron-doped gate oxide.IEEE Trans. Ind. Electron.201764118962897010.1109/TIE.2017.2723865
    [Google Scholar]
  62. HanK. BaligaB.J. SungW. A novel 1.2 kV 4H-SiC buffered-gate (BG) MOSFET: Analysis and experimental results.IEEE Electron Device Lett.201839224825110.1109/LED.2017.2785771
    [Google Scholar]
  63. HanK. BaligaB.J. Analysis and experimental quantification of 1.2-kV 4H-SiC split-gate octagonal MOSFET.IEEE Electron Device Lett.20194071163116610.1109/LED.2019.2917637
    [Google Scholar]
  64. AibaR. MatsuiK. BabaM. HaradaS. YanoH. IwamuroN. Demonstration of superior electrical characteristics for 1.2 kV SiC Schottky barrier diode-wall integrated trench MOSFET with higher Schottky barrier height metal.IEEE Electron Device Lett.202041121810181310.1109/LED.2020.3031598
    [Google Scholar]
  65. NiW. WangX. XuM. LiM. FengC. XiaoH. JiangL. LiW. WangQ. Comparative Study of SiC Planar MOSFETs With Different p-Body Designs.IEEE Trans. Electron Dev.20206731071107610.1109/TED.2020.2966775
    [Google Scholar]
  66. NiZ. LyuX. YadavO.P. SinghB.N. ZhengS. CaoD. PrakashO. BrijN. ShengZ. Overview of real-time lifetime prediction and extension for SiC power converters.IEEE Trans. Power Electron.20203587765779410.1109/TPEL.2019.2962503
    [Google Scholar]
  67. VudumulaP. KotamrajuS. Design and optimization of SiC super-junction MOSFET using vertical variation doping profile.IEEE Trans. Electron Dev.20196631402140810.1109/TED.2019.2894650
    [Google Scholar]
  68. SongQ. ShuaiY. GuannanT. ChaoH. YimengZ. 4H-SiC trench MOSFET with L-shaped gate.IEEE Elect. Dev. Let.201637463466
    [Google Scholar]
  69. SongQ. TangX. TianR. ZhangY. GuoT. TangG. YangS. YuanH. HeY. Investigation of the novel 4H SiC trench MOSFET with non-uniform doping floating islands.Superlattices Microstruct.201699626610.1016/j.spmi.2016.05.032
    [Google Scholar]
  70. HanK. BaligaB.J. 1.2-kV 4H-SiC SenseFET with monolithically integrated sensing resistor.IEEE Electron Device Lett.202041343744010.1109/LED.2020.2964773
    [Google Scholar]
  71. SabuiG. ShenZ.J. Analytical calculation of breakdown voltage for dielectric RESURF power devices.IEEE Electron Device Lett.201738676777010.1109/LED.2017.2690964
    [Google Scholar]
  72. RamamurthyR.P. IslamN. SampathM. MorisetteD.T. CooperJ.A. The tri-gate MOSFET: A new vertical power transistor in 4H-SiC.IEEE Electron Device Lett.2021421909310.1109/LED.2020.3040239
    [Google Scholar]
  73. WangY. XuW. HanG. YouT. MuF. HuH. LiuY. ZhangX. HuangH. SugaT. OuX. MaX. HaoY. Channel properties of Ga2O3-on-SiC MOSFETs.IEEE Trans. Electron Dev.20216831185118910.1109/TED.2021.3051135
    [Google Scholar]
  74. LiuS. TongX. WeiJ. SunW. Single-pulse avalanche failure investigations of Si-SJ-mosfet and SiC-mosfet by step-control infrared thermography method.IEEE Trans. Power Electron.20203555180518910.1109/TPEL.2019.2946792
    [Google Scholar]
  75. YeH. HaldarP. Optimization of the porous-silicon-based superjunction power MOSFET.IEEE Trans. Electron Dev.20085582246225110.1109/TED.2008.926280
    [Google Scholar]
  76. WangY. HeheG. XiaoleJ. GenquanH. JiandongY. YanL. HaodongH. XinO. XiaohuaM. YueH. First demonstration of RESURF and superjunction ß-Ga2O3 MOSFETs with p-NiO/n-Ga2O3 junctions.IEEE Inter Elect Dev Meet.202136610
    [Google Scholar]
  77. WataruI.O. SatoshiA. ShigeoK. MasaruI. TsuneoO. 600V semi-superconjunction MOSFET.Intern. Sym. Pow. Semicon. Dev. ICs.20034548
    [Google Scholar]
  78. MatochaK. Challenges in SiC power MOSFET design.Solid-State Electron.200852101631163510.1016/j.sse.2008.06.034
    [Google Scholar]
  79. MinamisawaR. BartolfH. Simulations and fabrication of novel 4H-SiC nano trench MOSFET devices.Project A9 7.201313
    [Google Scholar]
  80. FuruhashiM. TomohisaS. KuroiwaT. YamakawaS. Practical applications of SiC-MOSFETs and further developments.Semicond. Sci. Technol.201631303400310.1088/0268‑1242/31/3/034003
    [Google Scholar]
  81. WeiJ. LiuS. YangL. TangL. LouR. LiT. FangJ. LiS. ZhangC. SunW. SiyangL. LanlanY. LizhiT. RongchengL. TingL. JiongF. ShengL. ChiZ. WeifengS. Investigations on the degradations of double-trench SiC power MOSFETs under repetitive avalanche stress.IEEE Trans. Electron Dev.201966154655210.1109/TED.2018.2875080
    [Google Scholar]
  82. SungW. Jayant BaligaB. HuangA.Q. Area-efficient bevel-edge termination techniques for SiC high-voltage devices.IEEE Trans. Electron Dev.20166341630163610.1109/TED.2016.2532602
    [Google Scholar]
  83. SungW. BaligaB.J. A comparative study 4500-V edge termination techniques for SiC devices.IEEE Trans. Electron Dev.20176441647165210.1109/TED.2017.2664051
    [Google Scholar]
  84. JiangJ.Y. TuC-X. HuJ-W. ChaoD-S. HuangC-F. 3.3 kV class 4 H-SiC double-implanted MOSFET with excellent radiation hardness against gamma rays using counter-doped junction termination extension.IEEE Electron Device Lett.202142572773010.1109/LED.2021.3067039
    [Google Scholar]
  85. KhosaR.Y. ChenJ.T. WintersM. PálssonK. KarhuR. HassanJ. RorsmanN. SveinbjӧrnssonE.Ö. Electrical characterization of high k-dielectrics for 4H-SiC MIS devices.Mater. Sci. Semicond. Process.201998555810.1016/j.mssp.2019.03.025
    [Google Scholar]
  86. ZhaoP. Rusli LokB.K. LaiF.K. TinC.C. ZhaoJ.H. YarR.M. Investigation of Ta2O5/SiO2/4H-SiC MIS capacitors.Microelectron. Eng.2006831586010.1016/j.mee.2005.10.025
    [Google Scholar]
  87. KhosaR.Y. ThorsteinssonM. WintersN. RorsmanR.K. HassanJ. SveinbjörnssonO. Electrical characterization of amorphous Al2O3 dielectric films on n-type 4H-SiC.AIP Adv.2018025304
    [Google Scholar]
  88. NawazM. On the evaluation of gate dielectrics for 4H-SiC based power MOSFETs.Act and Pas Elect Comp2015112
    [Google Scholar]
  89. YangX. LeeB. MisraV. Investigation of lanthanum silicate conditions on 4H-SiC MOSFET characteristics.IEEE Trans. Electron Dev.201562113781378510.1109/TED.2015.2480047
    [Google Scholar]
  90. Pavan Kumar ReddyV. KotamrajuS. SivaK. Improved device characteristics obtained in 4H-SiC MOSFET using high-k dielectric stack with ultrathin SiO2-AlN as interfacial layers.Mater. Sci. Semicond. Process.201880243010.1016/j.mssp.2018.02.012
    [Google Scholar]
  91. HuangL. LiuY. PengX. OnozawaY. TsujiT. FujishimaN. SinJ.K.O. Static performance and threshold voltage stability improvement of Al2O3/LaAlO3/SiO2 gate-stack for SiC power MOSFETs.IEEE Trans. Electron Dev.202269269069510.1109/TED.2021.3138378
    [Google Scholar]
  92. WangQ. ChengX. ZhengL. ShenL. ZhangD. GuZ. QianR. CaoD. YuY. Influence of LaSiOx passivation interlayer on band alignment between PEALD-Al2O3 and 4H-SiC determined by X-ray photoelectron spectroscopy.Appl. Surf. Sci.20184281610.1016/j.apsusc.2017.09.099
    [Google Scholar]
  93. WangZ. ZhangZ. shaoC. RobertsonJ. LiuS. GuoY. Tuning the high-κ oxide (HfO2, ZrO2)/4H-SiC interface properties with a SiO2 interlayer for power device applications.Appl. Surf. Sci.202052714684310.1016/j.apsusc.2020.146843
    [Google Scholar]
  94. LinnarssonM.K. HallénA. KhartsevS. SuvanamS.S. UsmanM. Interface between Al2O3 and 4H-SiC investigated by time-of-flight medium energy ion scattering.J. Phys. D Appl. Phys.2017504949511110.1088/1361‑6463/aa9431
    [Google Scholar]
  95. RobertsonJ. WallaceR.M. High-K materials and metal gates for CMOS applications.Mater. Sci. Eng. Rep.20158814110.1016/j.mser.2014.11.001
    [Google Scholar]
  96. WangY. JiaR. LiC. ZhangY. Electric properties of La2O3/SiO2/4H-SiC MOS capacitors with different annealing temperatures.AIP Adv.20155808716610.1063/1.4929720
    [Google Scholar]
  97. TannerC.M. ChoiJ. ChangJ.P. Electronic structure and band alignment at the HfO2⁄4H-SiC interface.J. Appl. Phys.2007101303410810.1063/1.2432402
    [Google Scholar]
  98. CheongK.Y. MoonJ.H. KimH.J. BahngW. KimN-K. Current conduction mechanisms in atomic-layer-deposited HfO2/nitrided SiO2 stacked gate on 4H silicon carbide.J. Appl. Phys.2008103808411310.1063/1.2908870
    [Google Scholar]
  99. WolborskiM. RoothM. BakowskiM. HallénA. Characterization of HfO2 films deposited on 4H-SiC by atomic layer deposition.J. Appl. Phys.20071011212410510.1063/1.2734956
    [Google Scholar]
  100. HuangL. YongL. ChaoX. YixiaoD. XinP. YuichiO. TakashiT. NaotoF. JohnnyS. Characterization of Al2O3/LaAlO3/SiO2 gate stack on 4H-SiC after post-deposition annealing.IEEE Trans. Electron Dev.2021682133213710.1109/TED.2021.3056024
    [Google Scholar]
  101. hinthavaliM. OzpineciB. TolbertL. High-temperature and high frequency performance evaluation of 4H-SiC unipolar power devices.Proc. App. Pow. Elect. Conf.2005322328
    [Google Scholar]
  102. (a ZhuP. WangL. RuanG. Temperature effects on performance of SiC power transistors (SiC JFET and SiC MOSFET).Proc. EPE’15 Ener Conv Cong and Exp2015449454
    [Google Scholar]
  103. (b LelisA.J. HabersatD. GreenR. OgunniyiA. GurfinkelM. SuehleJ. GoldsmanN. Time dependence of bias-stressinduced SiC MOSFET threshold voltage instability measurements.IEEE Trans. Electron Dev.20085581835184010.1109/TED.2008.926672
    [Google Scholar]
  104. GurfinkelM. XiongH.D. CheungK.P. SuehleJ.S. BernsteinJ.B. ShapiraY. LelisA.J. HabersatD. GoldsmanN. Characterization of transient gate oxide trapping in SiC MOSFETs using fast I–V techniques.IEEE Trans. Electron Dev.20085582004201210.1109/TED.2008.926626
    [Google Scholar]
  105. ChenZ. BoroyevichD. BurgosR. Characterization and modeling of 1.2 kV, 20 A SiC MOSFETs.Proc. Ener Conv Cong.200914801487
    [Google Scholar]
  106. HullB. DasM. HusnaF. 20 A, 1200 V 4H-SiC DMOSFETs for energy conversion systemsProc. Ener Conv Con and Exp200911211910.1109/ECCE.2009.5316036
    [Google Scholar]
  107. DiMarinoC. ChenZ. DanilovicM. High-temperature characterization and comparison of 1.2 kV SiC power MOSFETs.Proc. Ener Conv Cong and Expos20133235324210.1109/ECCE.2013.6647125
    [Google Scholar]
  108. ChenZ. YaoY. BoroyevichD. NgoK.D.T. MattavelliP. RajashekaraK. A 1200-V, 60-A SiC MOSFET multichip phase-leg module for high-temperature, high-frequency applications.IEEE Trans. Power Electron.20142952307232010.1109/TPEL.2013.2283245
    [Google Scholar]
  109. OthmanD. BerkaniM. LefebvreS. Comparison study on performances and robustness between SiC MOSFET & JFET devices – abilities for aeronautics application, Microelect.Rel.20125218591864
    [Google Scholar]
  110. TakaoK. HaradaS. ShinoheT. Performance evaluation of all SiC power converters for realizing high power density of 50W/cm3.Proc. Int Pow Elect Conf.201021282134
    [Google Scholar]
  111. GonzalezJ.O. AlatiseO. HuJ. RanL. MawbyP.A. An investigation of temperature sensitive electrical parameters for SiC power MOSFETs.IEEE Trans. Power Electron.201732107954796610.1109/TPEL.2016.2631447
    [Google Scholar]
  112. ChenZ. YaoY. BoroyevichD. NgoK.D.T. MattavelliP. RajashekaraK. 1200-V, 60-A SiC MOSFET multichip phase-leg module for high-temperature, high-frequency applications.IEEE Trans. Power Electron.20142952307232010.1109/TPEL.2013.2283245
    [Google Scholar]
  113. SeverinoA. PilusoN. di StefanoM.A. CordianoF. CamalleriM. ArenaG. Study of the Post-Oxidation-Annealing (POA) process on deposited high-temperature oxide (HTO) layers as gate dielectric in SiC MOSFET.Mater. Sci. Forum201996345645910.4028/www.scientific.net/MSF.963.456
    [Google Scholar]
  114. NanenY. KatoM. SudaJ. KimotoT. Effects of nitridation on 4H-SiC MOSFETs fabricated on various crystal faces.IEEE Trans. Electron Dev.20136031260126210.1109/TED.2012.2236333
    [Google Scholar]
  115. NoguchiM. WatanabeT. WatanabeH. KitaK. MiuraN. Comparative study of hall effect mobility in inversion layer of 4H-SiC MOSFETs with nitrided and phosphorus-doped gate oxides.IEEE Trans. Electron Dev.202168126321632910.1109/TED.2021.3125284
    [Google Scholar]
  116. PetersD. SchörnerR. FriedrichsP. StephaniD. SiC Power MOSFETs-status, trends and challenges.Mater. Sci. Forum2006527-5291255126010.4028/www.scientific.net/MSF.527‑529.1255
    [Google Scholar]
  117. ModicA. Gang Liu AhyiA.C. Yuming Zhou Pingye Xu HamiltonM.C. WilliamsJ.R. FeldmanL.C. DharS. High channel mobility 4H-SiC MOSFETs by antimony counter-doping.IEEE Electron Device Lett.201435989489610.1109/LED.2014.2336592
    [Google Scholar]
  118. ThomasS. SharmaY. CrouchM. FisherC. PerezT. JenningsM. MawbyP. Enhanced field effect mobility on 4H-SiC by oxidation at 1500 C. IEEE J.Elect. Dev. Soc.20142114117
    [Google Scholar]
  119. YangX. LeeB. MisraV. High mobility 4H-SiC lateral MOSFETs using lanthanum silicate and atomic layer deposited SiO2.IEEE Electron Device Lett.201536431231410.1109/LED.2015.2399891
    [Google Scholar]
  120. FeiC. BaiS. WangQ. HuangR. HeZ. LiuH. LiuQ. Influences of pre-oxidation nitrogen implantation and post-oxidation annealing on channel mobility of 4H-SiC MOSFETs.J. Cryst. Growth202053112533810.1016/j.jcrysgro.2019.125338
    [Google Scholar]
  121. ChungG.Y. TinC.C. WilliamsJ.R. McDonaldK. ChananaR.K. WellerR.A. PantelidesS.T. FeldmanL.C. HollandO.W. DasM.K. PalmourJ.W. Improved inversion channel mobility for 4H-SiC MOSFETs following high temperature anneals in nitric oxide.IEEE Electron Device Lett.200122417617810.1109/55.915604
    [Google Scholar]
  122. TachikiK. KanekoM. KimotoT. Mobility improvement of 4H-SiC (0001) MOSFETs by a three-step process of H2 etching, SiO2 deposition, and interface nitridation.Appl. Phys. Express202114303100110.35848/1882‑0786/abdcd9
    [Google Scholar]
  123. NakazawaS. TakafumiO. JunS. TakashiN. TsunenobuK. Interface properties of 4H-SiC (1120) and (1100) MOS structures annealed in NO.IEEE Trans. Electron Dev.20146230931510.1109/TED.2014.2352117
    [Google Scholar]
  124. SolerV. MariaC. JosepM. JoseR. JoseM. 4.5 kV SiC MOSFET with boron doped gate dielectric.28th Inter Sym on Pow Semicon Dev and ICs2016283286
    [Google Scholar]
  125. SveinbjornssonE. FredrikA. HalldorO. GudjonG. DimitarD. ThomasR. RikJ. Sodium enhanced oxidation of Si-face 4H-SiC: A method to remove near interface traps.Mat. Sci. Forum2007556487492
    [Google Scholar]
  126. XiangyuY. BongmookL. VeenaM. Improvement of threshold voltage reliability of 4H-SiC MOSFETs with lanthanum silicate by high temperature forming gas anneal.IEEE Elect. Dev. Lett.201739244247
    [Google Scholar]
  127. UrrestiJ. ArithS. OlsenN. O’NeillW. Design and analysis of high mobility enhancement-mode 4H-SiC MOSFETs using a thin-SiO 2/Al2O3 gate-stack.IEEE Trans. Electron Dev.2019661710171610.1109/TED.2019.2901310
    [Google Scholar]
  128. ZhengY. Isaacs-SmithT. AhyiA.C. DharS. Ahyi; Dhar. 4H-SiC MOSFETs with borosilicate glass gate dielectric and antimony counter-doping.IEEE Electron Device Lett.201738101433143610.1109/LED.2017.2743002
    [Google Scholar]
  129. WaskiewiczR.J. AndersM.A. LenahanP.M. LelisA.J. Ionizing radiation effects in 4H-SiC nMOSFETs studied with electrically detected magnetic resonance.IEEE Trans. Nucl. Sci.201764119720310.1109/TNS.2016.2622159
    [Google Scholar]
  130. HuD. ZhangJ. JiaY. WuY. PengL. TangY. Impact of different gate biases on irradiation and annealing responses of SiC MOSFETs.IEEE Trans. Electron Dev.20186593719372410.1109/TED.2018.2858289
    [Google Scholar]
  131. TakeshiO. MasahitoY. HisayoshiI. YasushiA. γ-Ray irradiation effects on 6H-SiC MOSFET.Mater. Sci. Eng. B199962480484
    [Google Scholar]
  132. AkturkA. McGarrityJ.M. PotbhareS. GoldsmanN. Radiation effects in commercial 1200 V 24 a silicon carbide power MOSFETs.IEEE Trans. Nucl. Sci.20125963258326410.1109/TNS.2012.2223763
    [Google Scholar]
  133. AlexandruM. FlorentinM. ConstantA. SchmidtB. MichelP. GodignonP. 5 MeV proton and 15 MeV electron radiation effects study on 4H-SiC nMOSFET electrical parameters.IEEE Trans. Nucl. Sci.20146141732173810.1109/TNS.2014.2316372
    [Google Scholar]
  134. AbbateC. BusattoG. TedescoD. SanseverinoA. VelardiF. WyssJ. Gate damages induced in SiC power MOSFETs during heavy-ion irradiation—part II.IEEE Trans. Electron Dev.201966104243425010.1109/TED.2019.2931078
    [Google Scholar]
  135. MartinellaC. StarkR. ZiemannT. AliaR.G. KadiY. GrossnerU. JavanainenA. Current transport mechanism for heavy-ion degraded SiC MOSFETs.IEEE Trans. Nucl. Sci.20196671702170910.1109/TNS.2019.2907669
    [Google Scholar]
  136. PengC. LeiZ. ZhangZ. ChenY. HeY. YaoB. EnY. Influence of drain bias and flux on heavy ion-induced leakage currents in SiC power MOSFETs.IEEE Trans. Nucl. Sci.20226951037104310.1109/TNS.2022.3166521
    [Google Scholar]
  137. YueS. ChenZ. ZhangZ. HongZ. ZhuT. PengC. ZhengX. LeiZ. Synergistic effect of electrical stress and neutron irradiation on silicon carbide power MOSFETs.IEEE Trans. Electron Dev.20226963341334610.1109/TED.2022.3170539
    [Google Scholar]
  138. ZhouX. PangH. JiaY. HuD. WuY. ZhangS. LiY. LiX. WangL. FangX. ZhaoY. Gate oxide damage of SiC MOSFETs induced by heavy-ion strike.IEEE Trans. Electron Dev.20216884010401510.1109/TED.2021.3091951
    [Google Scholar]
  139. MartinellaC. AliaR.G. StarkR. CoronettiA. CazzanigaC. KastriotouM. KadiY. GaillardR. GrossnerU. JavanainenA. Impact of terrestrial neutrons on the reliability of SiC VD-MOSFET technologies.IEEE Trans. Nucl. Sci.202168563464110.1109/TNS.2021.3065122
    [Google Scholar]
  140. CiappaM. PocaterraM. On the use of soft gamma radiation to characterize the pre-breakdown carrier multiplication in SiC power MOSFETs and its correlation to the TCR failure rate as measured by neutron irradiation.Microelectron. Reliab.202011411383810.1016/j.microrel.2020.113838
    [Google Scholar]
  141. BusattoG. Di PasqualeA. MarcianoD. PalazzoS. SanseverinoA. VelardiF. Physical mechanisms for gate damage induced by heavy ions in SiC power MOSFET.Microelectron. Reliab.202011411390310.1016/j.microrel.2020.113903
    [Google Scholar]
  142. LebedevA.A. KozlovskiV.V. LevinshteinM.E. IvanovA.E. Strel’chukA.M. ZubovA.V. FursinL. Impact of 0.9 MeV electron irradiation on main properties of high voltage vertical power 4H-SiC MOSFETs.Radiat. Phys. Chem.202017710920010.1016/j.radphyschem.2020.109200
    [Google Scholar]
  143. LiD. ZhangY. TangX. HeY. SongQ. ZhangY. Effects of 5 MeV proton irradiation on 1200 V 4H-SiC VDMOSFETs on-state characteristics.IEEE Access2020810450310451010.1109/ACCESS.2020.2999642
    [Google Scholar]
  144. NiskanenK. TouboulA.D. GermanicusR.C. MichezA. JavanainenA. WrobelF. BochJ. PougetV. SaigneF. Impact of electrical stress and neutron irradiation on reliability of silicon carbide power MOSFET.IEEE Trans. Nucl. Sci.20206771365137310.1109/TNS.2020.2983599
    [Google Scholar]
/content/journals/cnano/10.2174/0115734137268803231120111751
Loading
/content/journals/cnano/10.2174/0115734137268803231120111751
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): high power device; power electronics; Si; Si-IGBT; SiC; SiC MOSFET
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test