Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-4137
  • E-ISSN: 1875-6786

Abstract

In this paper, the interface polariton (IP), the confined (CF) modes in nanostructures made with wide bandgap semiconductors, as well as their contributions to the carrier scattering mechanism have been investigated. An asymmetric quantum well (AQW) made with ZnSe/CdSe/ZnS has been studied. More specifically, the dielectric continuum (DC) model has been employed to describe both the IP and the CF modes. Additionally, the Fermi golden rule has been used to estimate the electron transition rate within the asymmetric structure. Our numerical results show that the scattering rate for an electron which is localized at the bottom of the first subband above the well and drops within the quantum well, is characterized by regular peaks with an almost linear increase as the size of the QW increases. The emerge peaks are related to two different physical characteristics of the AQW system. These peaks are related to electron resonances and the threshold phonon emission (both CF and IP) called phonon resonances. The scattering rate of an electron which is localized at the bottom of the second subband above the well and makes transitions to all possible states within the quantum well gives only rise to phonon resonances. The research highlights the importance of the CF and IP modes on transition rates and their dependence on both the size of the quantum well and the asymmetry of the barrier materials.

PACS: 68.65.Fg, 74.25.Kc, 63.22.−m, 63.22.+m

Loading

Article metrics loading...

/content/journals/cnano/10.2174/0115734137269114231121072631
2025-01-01
2024-11-26
Loading full text...

Full text loading...

References

  1. (a GargoubiH. GuilletT. JaziriS. BaltiJ. GuizalB. Polariton condensation threshold investigation through the numerical resolution of the generalized Gross-Pitaevskii equation.Phys. Rev. E201694404331010.1103/PhysRevE.94.043310
    [Google Scholar]
  2. (b TikhonovaO.V. VoroninaE.N. Transfer of correlations from photons to electron excitations and currents induced in semiconductor quantum wells by non-classical twisted light.J. Phys: Condens. Matter.202234065302
    [Google Scholar]
  3. (c AlekseevP.S. KipaM.S. PerelV.I. YassievichI. Cascade theory of electron capture in quantum wells.J. Exp. Theor. Phys.2008106806818
    [Google Scholar]
  4. (d IorshI V KibisO V Optically induced Kondo effect in semiconductor quantum wells.J Phys Condens Matter.2021334910.1088/1361‑648X/ac28c2
    [Google Scholar]
  5. TsaiC.L. WuW.C. Effects of asymmetric quantum wells on the structural and optical properties of InGaN-Based light-emitting diodes.Materials2014753758377110.3390/ma7053758 28788647
    [Google Scholar]
  6. LiuZ. WangJ. YuH. ZhouX. ChenW. LiZ. WangW. DingY. PanJ. Asymmetric quantum well broadband thyristor laser.J. Semicond.2017381111400610.1088/1674‑4926/38/11/114006
    [Google Scholar]
  7. ZhangC. MinC. ZhaoB. Optical absorption coefficients in asymmetric quantum well.Phys. Lett. A20193833412598310.1016/j.physleta.2019.125983
    [Google Scholar]
  8. GuliyevB. KerimliG. BashirovN. Fermi energy and electron thermopower in quantum films of an asymmetric profile.Zhongguo Wuli Xuekan20195911011610.1016/j.cjph.2019.02.021
    [Google Scholar]
  9. ZhangL. Dispersions of quasi-confined optical phonon modes and their electron–phonon interactions in an asymmetric wurtzite AlxGa1−xN/GaN/AlyGa1−yN quantum well. Superlattices Microstructures, 2006, 40, 144-154. Li, Z; Jun-Jie, S Vibration spectra of quasi-confined optical phonon modes in an asymmetric wurtzite AlxGa1−xN/GaN/AlyGa1−yN Quantum Well.Commum. Theor. Phys.200747349
    [Google Scholar]
  10. TianS.C. WanR.G. WangL.J. ShuS.L. LuH.Y. ZhangX. TongC.Z. XiaoM. WangL.J. Parity-time symmetry in coherent asymmetric double quantum wells.Sci. Rep.201991260710.1038/s41598‑019‑39085‑6 30796302
    [Google Scholar]
  11. MajchrowskiK. PaśkoW. TralleI. Photo-galvanic effect in asymmetric quantum wells.J. Phys. Conf. Ser.201021301203310.1088/1742‑6596/213/1/012033
    [Google Scholar]
  12. GorbatsevichA. A. KapaevV. V. YuV. Asymmetric nanostructures in a magnetic field.JETP Lett.199357580585
    [Google Scholar]
  13. RosencherE. BoisP. Model system for optical nonlinearities: Asymmetric quantum wells.Phys. Rev. B Condens. Matter19914420113151132710.1103/PhysRevB.44.11315 9999255
    [Google Scholar]
  14. ArulmozhiR. PeterA.J. LeeC.W. Optical absorption in a CdS/CdSe/CdS asymmetric quantum well.Chem. Phys. Lett.202074213712910.1016/j.cplett.2020.137129
    [Google Scholar]
  15. YangL. LiY. WangY. XuS. HaoY. Asymmetric quantum-well structures for AlGaN/GaN/AlGaN resonant tunneling diodes.J. Appl. Phys.20161191616450110.1063/1.4948331
    [Google Scholar]
  16. DmitriV. MekisI. GotzingerS. KornowskiA. BensonO. WellerH. CdSe/CdS/ZnS and CdSe/ZnSe/ZnS core−shell−shell nanocrystals.J. Phys. Chem. B20041081882618831
    [Google Scholar]
  17. LuY.F. CaoX.A. Blue and green electroluminescence from CdSe nanocrystal quantum-dot-quantum-wells.Appl. Phys. Lett.20141052020310110.1063/1.4902109
    [Google Scholar]
  18. EldridgeP.S. LeylandW.J.H. LagoudakisP.G. HarleyR.T. PhillipsR.T. WinklerR. HeniniM. TaylorD. Rashba spin-splitting of electrons in asymmetric quantum wells.Phys. Rev. B Condens. Matter Mater. Phys.201082404531710.1103/PhysRevB.82.045317
    [Google Scholar]
  19. GeJ.P. XuS. ZhuangJ. WangX. PengQ. LiY.D. Synthesis of CdSe, ZnSe, and ZnxCd1-xSe nanocrystals and their silica sheathed core/shell structures.Inorg. Chem.200645134922492710.1021/ic051598k 16780313
    [Google Scholar]
  20. ČapekR.K. LambertK. DorfsD. SmetP.F. PoelmanD. EychmüllerA. HensZ. Synthesis of extremely small cdse and bright blue luminescent CdSe/ZnS nanoparticles by a prefocused hot-injection approach.Chem. Mater.20092181743174910.1021/cm900248b
    [Google Scholar]
  21. JainM. II-VI Semiconductor Compounds.World Scientific Publishing1993
    [Google Scholar]
  22. AggarwalV. RameshC. TyagiP. GautamS. SharmaA. HusaleS. KumarM.S. KushvahaS.S. Controlled epitaxial growth of GaN nanostructures on sapphire (11–20) using laser molecular beam epitaxy for photodetector applications.Mater. Sci. Semicond. Process.202112510563110.1016/j.mssp.2020.105631
    [Google Scholar]
  23. (a TaghizadehA. LeffersU. PedersenT.G. ThygesenK.S. A library of ab initio Raman spectra for automated identification of 2D materials.Nat. Commun.2020111301110.1038/s41467‑020‑16529‑6
    [Google Scholar]
  24. (b WagnerV. GeurtsJ. Raman and modulation spectroscopy at II-VI semiconductor interfaces.Phys. Status Solidi, A Appl. Res.20011841293910.1002/1521‑396X(200103)184:1<29::AID‑PSSA29>3.0.CO;2‑L
    [Google Scholar]
  25. (c WattM. SmartA.P. FoadM.A. WilkinsonC.D.W. ArnotH.E.G. TorresC.M.S. Raman scattering of III-V and II-VI semiconductor microstructures.Light Scattering in Semiconductor Structures and Superlattices199124725510.1007/978‑1‑4899‑3695‑0_17
    [Google Scholar]
  26. (d EunsoonO. ParksC. MiotkowskiI. SciaccaM.D. MayurA.J. RamdasA.K. Optical properties of Mg-based II-VI ternaries and quaternaries: Cd1 − x Mgx Te and Cd1 − x − y Mgx MnyTe.Phys. Rev. B Condens. Matter1993481504010.1103/PhysRevB.48.15040 10008035
    [Google Scholar]
  27. (a CarlesR. MlayahA. LandaG. KusnetsovO.A. OrlovL.K. VdovinV.I. MilvidskiiM.G. AronzonB.A. Raman scattering in Ge-Ge1-xSix superlattice.Superlattices Microstruct.199313110911410.1006/spmi.1993.1022
    [Google Scholar]
  28. (b TangH. ZhuB. HuangK. Raman scattering in a superlattice under an electric field.Phys. Rev. B Condens. Matter19904253082308610.1103/PhysRevB.42.3082 9995804
    [Google Scholar]
  29. (c RenS.F. ChangY.C. ChuH. Theory of nonresonant Raman scattering of GaAs/AlAs superlattices.Phys. Rev. B Condens. Matter19934731489149910.1103/PhysRevB.47.1489 10006164
    [Google Scholar]
  30. (a ŁepkowskiS.P. MajewskiJ.A. JurczakG. Nonlinear elasticity in III-N compounds: Ab initio calculations.Phys. Rev. B Condens. Matter Mater. Phys.2005722424520110.1103/PhysRevB.72.245201
    [Google Scholar]
  31. (b AmandaJ. Hyeon-DeukK. PrezhdoO.V. Time-domain ab initio modeling of excitation dynamics in quantum dots.Coord. Chem. Rev.2014263–264161181
    [Google Scholar]
  32. (a ZegaT.J. HanbickiA.T. ErwinS.C. ŽutićI. KioseoglouG. LiC.H. JonkerB.T. StroudR.M. Determination of interface atomic structure and its impact on spin transport using Z -Contrast microscopy and density-functional theory.Phys. Rev. Lett.2006961919610110.1103/PhysRevLett.96.196101
    [Google Scholar]
  33. (b DebJ. PaulD. SarkarU. Density functional theory investigation of nonlinear optical properties of T-Graphene quantum dots.J. Phys. Chem. A202012471312132010.1021/acs.jpca.9b10241 31978308
    [Google Scholar]
  34. (a SurisR.A. LavallardP. Calculated defect states in semiconductor superlattices within a tight-binding model.Phys. Rev. B Condens. Matter199450128875887710.1103/PhysRevB.50.8875 9974915
    [Google Scholar]
  35. (b JaskólskiW. ZielińskiM. BryantG.W. AizpuruaJ. Strain effects on the electronic structure of strongly coupled self-assembled InAs ⁄ GaAs quantum dots: Tight-binding approach.Phys. Rev. B Condens. Matter Mater. Phys.2006741919533910.1103/PhysRevB.74.195339
    [Google Scholar]
  36. (a RastelliA. StuflerS. SchliwaA. SongmuangR. ManzanoC. CostantiniG. KernK. ZrennerA. BimbergD. SchmidtO.G. Hierarchical self-assembly of GaAs/AlGaAs quantum dots.Phys. Rev. Lett.2004921616610410.1103/PhysRevLett.92.166104 15169246
    [Google Scholar]
  37. (b GladysiewiczM. KudrawiecR. WartakM.S. 8-band and 14-band kp modeling of electronic band structure and material gain in Ga(In)AsBi quantum wells grown on GaAs and InP substrates.J. Appl. Phys.2015118505570210.1063/1.4927922
    [Google Scholar]
  38. (a RaduA. DuqueC.A. Neural network approaches for solving Schrödinger equation in arbitrary quantum wells.Sci. Rep.2022122535
    [Google Scholar]
  39. (b AltaiskyM.V. ZolnikovaN.N. KaputkinaN.E. KrylovV.A. LozovikY.E. DattaniN.S. Towards a feasible implementation of quantum neural networks using quantum dots.Appl. Phys. Lett.2016108103108
    [Google Scholar]
  40. (a VilhelmsenL.B. HammerB. A genetic algorithm for first principles global structure optimization of supported nano structures.J. Chem. Phys.2014141404471110.1063/1.4886337 25084941
    [Google Scholar]
  41. (b GargH. A hybrid PSO-GA algorithm for constrained optimization problems.Appl. Math. Comput.2016274292305
    [Google Scholar]
  42. (c VenkatramanS. YenG.G. A generic framework for constrained optimization using genetic algorithms.IEEE Trans. Evol. Comput.20059424435
    [Google Scholar]
  43. WilliamsonA.J. GrossmanJ.C. HoodR.Q. PuzderA. GalliG. Quantum Monte Carlo calculations of nanostructure optical gaps: Application to silicon quantum dots.Phys. Rev. Lett.2002891919680310.1103/PhysRevLett.89.196803
    [Google Scholar]
  44. FuchsR. KliewerK.L. Optical modes of vibration in an ionic crystal slab.Phys. Rev.19651406AA2076A208810.1103/PhysRev.140.A2076
    [Google Scholar]
  45. KliewerK.L. FuchsR. Optical modes of vibration in an ionic crystal slab including retardation. I. nonradiative region.Phys. Rev.1966144249550310.1103/PhysRev.144.495
    [Google Scholar]
  46. MoriN. AndoT. Electron – optical-phonon interaction in single and double heterostructures.Phys. Rev. B Condens. Matter19894096175618810.1103/PhysRevB.40.6175 9992686
    [Google Scholar]
  47. StavrouV.N. BabikerM. BennettC.R. Influences of asymmetric quantum wells on electron-phonon interactions.J. Phys. Condens. Matter200113306489649810.1088/0953‑8984/13/30/304
    [Google Scholar]
  48. RidleyB.K. Electrons and Phonons in Semiconductor (Cambridge University Press, 1996). Quantum processes in semiconductors. RidleyB.K. OxfordClarendon Press1996
    [Google Scholar]
  49. MahanG.D. Many-Particle Physics (Plenum Press, New York, 1990). Polarons in Ionic Crystals and Polar Semiconductors. MahanG.D. DevreeseJ.T. North-Holland, Amsterdam1990
    [Google Scholar]
  50. (a RidleyB.K. Space-charge-mediated capture of electrons and holes in a quantum well.Phys. Rev. B Condens. Matter19945031717172410.1103/PhysRevB.50.1717 9976361
    [Google Scholar]
  51. (b ConstantinouN.C. RidleyB.K. Interaction of electrons with the confined LO phonons of a free-standing GaAs quantum wire.Phys. Rev. B Condens. Matter19904115106221062610.1103/PhysRevB.41.10622 9993470
    [Google Scholar]
/content/journals/cnano/10.2174/0115734137269114231121072631
Loading
/content/journals/cnano/10.2174/0115734137269114231121072631
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test