Skip to content
2000
Volume 21, Issue 4
  • ISSN: 1573-4137
  • E-ISSN: 1875-6786

Abstract

Background

Heavy metal contamination of food and the environment is a major concern worldwide. Conventional detection techniques like atomic absorption spectroscopy (AAS), inductively coupled plasma-optical emission spectrometry (ICP-OES) and inductively coupled plasma-mass spectrometry (ICP-MS) have limitations including high costs and insufficient sensitivity. Electrochemical sensors based on carbon nanomaterials have emerged as an attractive alternative for rapid, affordable, and ultrasensitive heavy metal analysis.

Methods

This review summarizes recent advances in using carbon nanomaterials like ordered mesoporous carbon, carbon nanotubes, graphene and carbon dots for electrochemical sensing of toxic heavy metals. Synthesis methods, characterization techniques, functionalization strategies and detection mechanisms are discussed.

Results

High surface area, electrical conductivity and electrocatalytic activity of carbon nanomaterials enable preconcentration of metal ions and signal amplification at electrode interfaces. This results in remarkably low detection limits down to parts per trillion levels. Functionalization with metal nanoparticles, molecularly imprinted polymers and other nanocomposites further improves sensor selectivity and sensitivity. These sensors have been applied for the quantitative detection of arsenic, mercury, lead, cadmium, chromium, and other toxic metals in lab samples.

Conclusion

Electrochemical sensors based on carbon nanotubes, graphene, mesoporous carbon, and carbon dots are rapidly emerging as an ultrasensitive, cost-effective alternative to conventional techniques for on-site screening of heavy metal contamination in food and environment. Further validation using real-world samples and integration into portable field testing kits can enable widespread deployment.

Loading

Article metrics loading...

/content/journals/cnano/10.2174/0115734137281774231214054405
2024-01-04
2025-04-25
Loading full text...

Full text loading...

References

  1. NkwunonwoU.C. OdikaP.O. OnyiaN.I. A review of the health implications of heavy metals in food chain in nigeria.Sci. World J.2020202011110.1155/2020/659410932351345
    [Google Scholar]
  2. HanR. ZhouB. HuangY. LuX. LiS. LiN. Bibliometric overview of research trends on heavy metal health risks and impacts in 1989–2018.J. Clean. Prod.202027612324910.1016/j.jclepro.2020.123249
    [Google Scholar]
  3. Kiran BhartiR. SharmaR. Effect of heavy metals: An overview.Mater. Today Proc.20225188088510.1016/j.matpr.2021.06.278
    [Google Scholar]
  4. AliH. KhanE. IlahiI. Environmental chemistry and ecotoxicology of hazardous heavy metals: Environmental persistence, toxicity, and bioaccumulation.J. Chem.2019201911410.1155/2019/6730305
    [Google Scholar]
  5. KaushalS.S. LikensG.E. PaceM.L. ReimerJ.E. MaasC.M. GalellaJ.G. UtzR.M. DuanS. KrygerJ.R. YaculakA.M. BogerW.L. BaileyN.W. HaqS. WoodK.L. WesselB.M. ParkC.E. CollisonD.C. AisinB.Y.I. GedeonT.M. ChaudharyS.K. WidmerJ. BlackwoodC.R. BolsterC.M. DevilbissM.L. GarrisonD.L. HaleviS. KeseG.Q. QuachE.K. RogelioC.M.P. TanM.L. WaldH.J.S. WogloS.A. Freshwater salinization syndrome: From emerging global problem to managing risks.Biogeochemistry2021154225529210.1007/s10533‑021‑00784‑w
    [Google Scholar]
  6. MunirN. JahangeerM. BouyahyaA. El OmariN. GhchimeR. BalahbibA. AboulaghrasS. MahmoodZ. AkramM. Ali ShahS.M. MikolaychikI.N. DerkhoM. RebezovM. VenkidasamyB. ThiruvengadamM. ShariatiM.A. Heavy metal contamination of natural foods is a serious health issue: A review.Sustainability202114116110.3390/su14010161
    [Google Scholar]
  7. SharmaN. SodhiK.K. KumarM. SinghD.K. Heavy metal pollution: Insights into chromium eco-toxicity and recent advancement in its remediation.Environ. Nanotechnol. Monit. Manag.20211510038810.1016/j.enmm.2020.100388
    [Google Scholar]
  8. AhmedS.F. KumarP.S. RozbuM.R. ChowdhuryA.T. NuzhatS. RafaN. MahliaT.M.I. OngH.C. MofijurM. Heavy metal toxicity, sources, and remediation techniques for contaminated water and soil.Environmental Technology & Innovation20222510211410.1016/j.eti.2021.102114
    [Google Scholar]
  9. AfonneO.J. IfedibaE.C. Heavy metals risks in plant foods – need to step up precautionary measures.Curr. Opin. Toxicol.2020221610.1016/j.cotox.2019.12.006
    [Google Scholar]
  10. SuhaniI. SahabS. SrivastavaV. SinghR.P. Impact of cadmium pollution on food safety and human health.Curr. Opin. Toxicol.2021271710.1016/j.cotox.2021.04.004
    [Google Scholar]
  11. MarianaM. Recent advances in activated carbon modification techniques for enhanced heavy metal adsorption.J. Water Process Eng.20214310222110.1016/j.jwpe.2021.102221
    [Google Scholar]
  12. AdnanM. XiaoB. XiaoP. ZhaoP. LiR. BibiS. Research progress on heavy metals pollution in the soil of smelting sites in china.Toxics202210523110.3390/toxics1005023135622644
    [Google Scholar]
  13. QinG. NiuZ. YuJ. LiZ. MaJ. XiangP. Soil heavy metal pollution and food safety in China: Effects, sources and removing technology.Chemosphere202126712920510.1016/j.chemosphere.2020.12920533338709
    [Google Scholar]
  14. WangL. PengX. FuH. HuangC. LiY. LiuZ. Recent advances in the development of electrochemical aptasensors for detection of heavy metals in food.Biosens. Bioelectron.202014711177710.1016/j.bios.2019.11177731634804
    [Google Scholar]
  15. YanZ. YuanH. ZhaoQ. XingL. ZhengX. WangW. ZhaoY. YuY. HuL. YaoW. Recent developments of nanoenzyme-based colorimetric sensors for heavy metal detection and the interaction mechanism.Analyst202014593173318710.1039/D0AN00339E32222739
    [Google Scholar]
  16. VonnieJ.M. RovinaK. MariahA.M.A. ErnaK.H. FeliciaW.X.L. ‘AqilahM.N.N. Trends in nanotechnology techniques for detecting heavy metals in food and contaminated water: A review.Int. J. Environ. Sci. Technol.20232078041807210.1007/s13762‑022‑04487‑z
    [Google Scholar]
  17. GuptaV. KumarD. DwivediA. VishwakarmaU. MalikD.S. ParohaS. MohanN. GuptaN. Heavy metal contamination in river water, sediment, groundwater and human blood, from Kanpur, Uttar Pradesh, India.Environ. Geochem. Health20234551807181810.1007/s10653‑022‑01290‑035674977
    [Google Scholar]
  18. HaraT.O. SinghB. Electrochemical biosensors for detection of pesticides and heavy metal toxicants in water: Recent trends and progress.ACS ES&T Water20211346247810.1021/acsestwater.0c00125
    [Google Scholar]
  19. De AchaN. ElosúaC. CorresJ. ArreguiF. Fluorescent sensors for the detection of heavy metal ions in aqueous media.Sensors201919359910.3390/s1903059930708989
    [Google Scholar]
  20. WangW. XuY. ChengN. XieY. HuangK. XuW. Dual-recognition aptazyme-driven DNA nanomachine for two-in-one electrochemical detection of pesticides and heavy metal ions.Sens. Actuators B Chem.202032112859810.1016/j.snb.2020.128598
    [Google Scholar]
  21. Muhammad-areeS. TeepooS. On-site detection of heavy metals in wastewater using a single paper strip integrated with a smartphone.Anal. Bioanal. Chem.202041261395140510.1007/s00216‑019‑02369‑x31919608
    [Google Scholar]
  22. SivakumarR. LeeN.Y. Recent progress in smartphone-based techniques for food safety and the detection of heavy metal ions in environmental water.Chemosphere202127513009610.1016/j.chemosphere.2021.13009633677270
    [Google Scholar]
  23. MalikL.A. BashirA. QureashiA. PandithA.H. Detection and removal of heavy metal ions: A review.Environ. Chem. Lett.20191741495152110.1007/s10311‑019‑00891‑z
    [Google Scholar]
  24. García-Miranda FerrariA. CarringtonP. Rowley-NealeS.J. BanksC.E. Recent advances in portable heavy metal electrochemical sensing platforms.Environ. Sci. Water Res. Technol.20206102676269010.1039/D0EW00407C
    [Google Scholar]
  25. ZhouJ. LinC. LuQ. JiangJ. Monitoring and management of sunset yellow in sports drinks by electrochemical sensor.J. Food Meas. Charact.20231754843484910.1007/s11694‑023‑02003‑6
    [Google Scholar]
  26. ZhangW. ZhangZ. ZhangZ. LingJ. DingY. Rapid and sensitive determination of histamine based on a fluorescent aptamer probe with analogue on carbonized polymer dots.J. Food Meas. Charact.20231754695470410.1007/s11694‑023‑01912‑w
    [Google Scholar]
  27. ZhuX. LingY. Preparation of cement modified by multi-walled carbon nanotubes and investigation of its piezoelectric property.Alex. Eng. J.20238113013610.1016/j.aej.2023.09.028
    [Google Scholar]
  28. ZhangP. LiuD. Effect of organic carbon coating prepared by hydrothermal method on performance of lithium iron phosphate battery.Alex. Eng. J.2023801710.1016/j.aej.2023.08.054
    [Google Scholar]
  29. LiuX. YaoY. YingY. PingJ. Recent advances in nanomaterial-enabled screen-printed electrochemical sensors for heavy metal detection.Trends Analyt. Chem.201911518720210.1016/j.trac.2019.03.021
    [Google Scholar]
  30. DevarajM. SasikumarY. RajendranS. PonceL.C. Review—metal organic framework based nanomaterials for electrochemical sensing of toxic heavy metal ions: Progress and their prospects.J. Electrochem. Soc.2021168303751310.1149/1945‑7111/abec97
    [Google Scholar]
  31. DingR. CheongY.H. AhamedA. LisakG. Heavy metals detection with paper-based electrochemical sensors.Anal. Chem.20219341880188810.1021/acs.analchem.0c0424733430590
    [Google Scholar]
  32. StortiniA.M. BaldoM.A. MoroG. PoloF. MorettoL.M. Bio- and biomimetic receptors for electrochemical sensing of heavy metal ions.Sensors20202023680010.3390/s2023680033260737
    [Google Scholar]
  33. WangX. QiY. ShenY. YuanY. ZhangL. ZhangC. SunY. A ratiometric electrochemical sensor for simultaneous detection of multiple heavy metal ions based on ferrocene-functionalized metal-organic framework.Sens. Actuators B Chem.202031012775610.1016/j.snb.2020.127756
    [Google Scholar]
  34. Karimi-MalehH. BeitollahiH. Senthil KumarP. TajikS. Mohammadzadeh JahaniP. KarimiF. KaramanC. VasseghianY. BaghayeriM. RouhiJ. ShowP.L. RajendranS. FuL. ZareN. Recent advances in carbon nanomaterials-based electrochemical sensors for food azo dyes detection.Food Chem. Toxicol.202216411296110.1016/j.fct.2022.11296135395340
    [Google Scholar]
  35. Karimi-MalehH. DarabiR. BaghayeriM. KarimiF. FuL. RouhiJ. NiculinaD.E. GündüzE.S. DragoiE.N. Recent developments in carbon nanomaterials-based electrochemical sensors for methyl parathion detection.J. Food Meas. Charact.20231755371538910.1007/s11694‑023‑02050‑z
    [Google Scholar]
  36. LiX. PingJ. YingY. Recent developments in carbon nanomaterial-enabled electrochemical sensors for nitrite detection.Trends Analyt. Chem.201911311210.1016/j.trac.2019.01.008
    [Google Scholar]
  37. ZhangC. DuX. Electrochemical sensors based on carbon nanomaterial used in diagnosing metabolic disease.Front Chem.2020865110.3389/fchem.2020.0065132850664
    [Google Scholar]
  38. PortoL.S. SilvaD.N. de OliveiraA.E.F. PereiraA.C. BorgesK.B. Carbon nanomaterials: Synthesis and applications to development of electrochemical sensors in determination of drugs and compounds of clinical interest.Rev. Anal. Chem.2020383e2019001710.1515/revac‑2019‑0017
    [Google Scholar]
  39. KourR. AryaS. YoungS.J. GuptaV. BandhoriaP. KhoslaA. Review—recent advances in carbon nanomaterials as electrochemical biosensors.J. Electrochem. Soc.2020167303755510.1149/1945‑7111/ab6bc4
    [Google Scholar]
  40. GuiR. GuoH. JinH. Preparation and applications of electrochemical chemosensors based on carbon-nanomaterial-modified molecularly imprinted polymers.Nanoscale Adv.2019193325336310.1039/C9NA00455F36133548
    [Google Scholar]
  41. GaoY. WangQ. JiG. LiA. NiuJ. Doping strategy, properties and application of heteroatom-doped ordered mesoporous carbon.RSC Advances202111105361538310.1039/D0RA08993A35423081
    [Google Scholar]
  42. ZhangJ. ZhangN. TackF.M.G. SatoS. AlessiD.S. OleszczukP. WangH. WangX. WangS. Modification of ordered mesoporous carbon for removal of environmental contaminants from aqueous phase: A review.J. Hazard. Mater.202141812626610.1016/j.jhazmat.2021.12626634130163
    [Google Scholar]
  43. LaiC. LiuS. ZhangC. ZengG. HuangD. QinL. LiuX. YiH. WangR. HuangF. LiB. HuT. Electrochemical aptasensor based on sulfur–nitrogen codoped ordered mesoporous carbon and thymine–Hg 2+ –thymine mismatch structure for Hg 2+ detection.ACS Sens.20183122566257310.1021/acssensors.8b0092630411617
    [Google Scholar]
  44. TangL. XieX. ZhouY. ZengG. TangJ. WuY. LongB. PengB. ZhuJ. A reusable electrochemical biosensor for highly sensitive detection of mercury ions with an anionic intercalator supported on ordered mesoporous carbon/self-doped polyaniline nanofibers platform.Biochem. Eng. J.201711771410.1016/j.bej.2016.09.011
    [Google Scholar]
  45. Abu NayemS.M. Shaheen ShahS. SultanaN. Abdul AzizM. Saleh AhammadA.J. Electrochemical sensing platforms of dihydroxybenzene: Part 2 – nanomaterials excluding carbon nanotubes and graphene.Chem. Rec.20212151073109710.1002/tcr.20210004433855801
    [Google Scholar]
  46. SunT. LiX. JinX. WuZ. ChenX. QiuJ. Function of graphene oxide as the “Nanoquencher” for Hg2+ detection using an exonuclease i-assisted biosensor.Int. J. Mol. Sci.20222311632610.3390/ijms2311632635683005
    [Google Scholar]
  47. BagheriH. AfkhamiA. KhoshsafarH. RezaeiM. ShirzadmehrA. Simultaneous electrochemical determination of heavy metals using a triphenylphosphine/MWCNTs composite carbon ionic liquid electrode.Sens. Actuators B Chem.201318645146010.1016/j.snb.2013.06.051
    [Google Scholar]
  48. XiaY. HuX. LiuY. ZhaoF. ZengB. Molecularly imprinted ratiometric electrochemical sensor based on carbon nanotubes/cuprous oxide nanoparticles/titanium carbide MXene composite for diethylstilbestrol detection.Mikrochim. Acta2022189413710.1007/s00604‑022‑05249‑x35260926
    [Google Scholar]
  49. HanX. MengZ. ZhangH. ZhengJ. Fullerene-based anodic stripping voltammetry for simultaneous determination of Hg(II), Cu(II), Pb(II) and Cd(II) in foodstuff.Mikrochim. Acta2018185527410.1007/s00604‑018‑2803‑929717357
    [Google Scholar]
  50. LeV.T. VasseghianY. DragoiE.N. MoradiM. Mousavi KhaneghahA. A review on graphene-based electrochemical sensor for mycotoxins detection.Food Chem. Toxicol.202114811193110.1016/j.fct.2020.11193133340616
    [Google Scholar]
  51. FuL. MaoS. ChenF. ZhaoS. SuW. LaiG. YuA. LinC.T. Graphene-based electrochemical sensors for antibiotic detection in water, food and soil: A scientometric analysis in CiteSpace (2011–2021).Chemosphere202229713412710.1016/j.chemosphere.2022.13412735240147
    [Google Scholar]
  52. BaghayeriM. AlinezhadH. FayaziM. TarahomiM. Ghanei-MotlaghR. MalekiB. A novel electrochemical sensor based on a glassy carbon electrode modified with dendrimer functionalized magnetic graphene oxide for simultaneous determination of trace Pb(II) and Cd(II).Electrochim. Acta2019312808810.1016/j.electacta.2019.04.180
    [Google Scholar]
  53. ZhaoQ. ChaiY. YuanR. LuoJ. Square wave anodic stripping voltammetry determination of lead based on the Hg(II) immobilized graphene oxide composite film as an enhanced sensing platform.Sens. Actuators B Chem.201317837938410.1016/j.snb.2012.12.114
    [Google Scholar]
  54. SilwanaB. van der HorstC. IwuohaE. SomersetV. Reduced graphene oxide impregnated antimony nanoparticle sensor for electroanalysis of platinum group metals.Electroanalysis20162871597160710.1002/elan.201501071
    [Google Scholar]
  55. KumarS. BhanjanaG. DilbaghiN. KumarR. UmarA. Fabrication and characterization of highly sensitive and selective arsenic sensor based on ultra-thin graphene oxide nanosheets.Sens. Actuators B Chem.2016227293410.1016/j.snb.2015.11.101
    [Google Scholar]
  56. CampuzanoS. Yáñez-SedeñoP. PingarrónJ.M. Carbon dots and graphene quantum dots in electrochemical biosensing.Nanomaterials20199463410.3390/nano904063431010125
    [Google Scholar]
  57. LiL. LiuD. ShiA. YouT. Simultaneous stripping determination of cadmium and lead ions based on the N-doped carbon quantum dots-graphene oxide hybrid.Sens. Actuators B Chem.20182551762177010.1016/j.snb.2017.08.190
    [Google Scholar]
  58. TingS.L. EeS.J. AnanthanarayananA. LeongK.C. ChenP. Graphene quantum dots functionalized gold nanoparticles for sensitive electrochemical detection of heavy metal ions.Electrochim. Acta201517271110.1016/j.electacta.2015.01.026
    [Google Scholar]
  59. SevillaM. FuertesA.B. The production of carbon materials by hydrothermal carbonization of cellulose.Carbon20094792281228910.1016/j.carbon.2009.04.026
    [Google Scholar]
  60. ZouJ. YuQ. GaoY. ChenS. HuangX. HuD. LiuS. LuL.M. Bismuth nanoclusters/porous carbon composite: A facile ratiometric electrochemical sensing platform for Pb 2+ detection with high sensitivity and selectivity.ACS Omega2022711132113810.1021/acsomega.1c0571335036776
    [Google Scholar]
  61. BaragauI.A. PowerN.P. MorganD.J. LoboR.A. RobertsC.S. TitiriciM.M. MiddelkoopV. DiazA. DunnS. KelliciS. Efficient continuous hydrothermal flow synthesis of carbon quantum dots from a targeted biomass precursor for on–off metal ions nanosensing.ACS Sustain. Chem.& Eng.2021962559256910.1021/acssuschemeng.0c08594
    [Google Scholar]
  62. Ortiz-MartínezV.M. Gómez-ComaL. OrtizA. OrtizI. Overview on the use of surfactants for the preparation of porous carbon materials by the sol-gel method: Applications in energy systems.Rev. Chem. Eng.202036777178710.1515/revce‑2018‑0056
    [Google Scholar]
  63. WuD. FuR. SunZ. YuZ. Low-density organic and carbon aerogels from the sol–gel polymerization of phenol with formaldehyde.J. Non-Cryst. Solids200535110-1191592110.1016/j.jnoncrysol.2005.02.008
    [Google Scholar]
  64. ScherdelC. ReichenauerG. Carbon xerogels synthesized via phenol–formaldehyde gels.Microporous Mesoporous Mater.20091261-213314210.1016/j.micromeso.2009.05.033
    [Google Scholar]
  65. MwafyE.A. Eco-friendly approach for the synthesis of MWCNTs from waste tires via chemical vapor deposition.Environ. Nanotechnol. Monit. Manag.20201410034210.1016/j.enmm.2020.100342
    [Google Scholar]
  66. SinghS. PankajA. MishraS. TewariK. Pratap SinghS. Cerium oxide-catalyzed chemical vapor deposition grown carbon nanofibers for electrochemical detection of Pb(II) and Cu(II).J. Environ. Chem. Eng.20197410325010.1016/j.jece.2019.103250
    [Google Scholar]
  67. ZhaoG. PhamT. ChenY. SedkiM. MulchandaniA. Electrochemically decorated gold nanoparticles on CVD graphene ChemFET sensor for the highly sensitive detection of As(III).Microchem. J.202318710837610.1016/j.microc.2022.108376
    [Google Scholar]
  68. ZangJ. GuoC.X. HuF. YuL. LiC.M. Electrochemical detection of ultratrace nitroaromatic explosives using ordered mesoporous carbon.Anal. Chim. Acta2011683218719110.1016/j.aca.2010.10.01921167969
    [Google Scholar]
  69. BalasubramanianP. BalamuruganT.S.T. ChenS.M. ChenT.W. LinP.H. A novel, efficient electrochemical sensor for the detection of isoniazid based on the B/N doped mesoporous carbon modified electrode.Sens. Actuators B Chem.201928361362010.1016/j.snb.2018.12.020
    [Google Scholar]
  70. DongW. RenY. ZhangY. ChenY. ZhangC. BaiZ. MaR. ChenQ. Synthesis of Pb nanowires-Au nanoparticles nanostructure decorated with reduced graphene oxide for electrochemical sensing.Talanta201716560461110.1016/j.talanta.2017.01.01728153305
    [Google Scholar]
  71. ChenF. PeiH. JiaQ. GuoW. ZhangX. GuoR. LiuN. MoZ. Construction of cyclodextrin functionalized nitrogen-doped graphene quantum dot electrochemical sensing interface for recognition of tryptophan isomers.Mater. Chem. Phys.202127312508610.1016/j.matchemphys.2021.125086
    [Google Scholar]
  72. HemmatiM. RajabiM. AsghariA. Magnetic nanoparticle based solid-phase extraction of heavy metal ions: A review on recent advances.Mikrochim. Acta2018185316010.1007/s00604‑018‑2670‑429594695
    [Google Scholar]
  73. GengJ. YinY. LiangQ. ZhuZ. LuoH. Polyethyleneimine cross-linked graphene oxide for removing hazardous hexavalent chromium: Adsorption performance and mechanism.Chem. Eng. J.20193611497151010.1016/j.cej.2018.10.141
    [Google Scholar]
  74. Krishna KumarK. DevendiranM. Senthil KumarP. Sriman NarayananS. Quercetin-rGO based mercury-free electrode for the determination of toxic Cd (II) and Pb (II) ions using DPASV technique.Environ. Res.202120211170710.1016/j.envres.2021.11170734274329
    [Google Scholar]
  75. HuangH. ChenT. LiuX. MaH. Ultrasensitive and simultaneous detection of heavy metal ions based on three-dimensional graphene-carbon nanotubes hybrid electrode materials.Anal. Chim. Acta2014852455410.1016/j.aca.2014.09.01025441878
    [Google Scholar]
  76. XiaoL. WildgooseG.G. ComptonR.G. Sensitive electrochemical detection of arsenic (III) using gold nanoparticle modified carbon nanotubes via anodic stripping voltammetry.Anal. Chim. Acta20086201-2444910.1016/j.aca.2008.05.01518558122
    [Google Scholar]
  77. ZhaoG. LiuK. LinS. LiangJ. GuoX. ZhangZ. Application of a carbon nanotube modified electrode in anodic stripping voltammetry for determination of trace amounts of 6-benzylaminopurine.Mikrochim. Acta2003143425526010.1007/s00604‑003‑0078‑1
    [Google Scholar]
  78. HwangG. HanW. ParkJ. KangS. Determination of trace metals by anodic stripping voltammetry using a bismuth-modified carbon nanotube electrode.Talanta200876230130810.1016/j.talanta.2008.02.03918585281
    [Google Scholar]
  79. GuoX. YunY. ShanovV.N. HalsallH.B. HeinemanW.R. Determination of trace metals by anodic stripping voltammetry using a carbon nanotube tower electrode.Electroanalysis20112351252125910.1002/elan.201000674
    [Google Scholar]
  80. LeeS. BongS. HaJ. KwakM. ParkS.K. PiaoY. Electrochemical deposition of bismuth on activated graphene-nafion composite for anodic stripping voltammetric determination of trace heavy metals.Sens. Actuators B Chem.2015215626910.1016/j.snb.2015.03.032
    [Google Scholar]
  81. ShanJ. LiuY. LiR. WuC. ZhuL. ZhangJ. Indirect electrochemical determination of ciprofloxacin by anodic stripping voltammetry of Cd(II) on graphene-modified electrode.J. Electroanal. Chem.201573812312910.1016/j.jelechem.2014.11.031
    [Google Scholar]
  82. PokpasK. ZbedaS. JahedN. MohamedN. BakerP.G. IwuohaE.I. Electrochemically reduced graphene oxide pencil-graphite in situ plated bismuth-film electrode for the determination of trace metals by anodic stripping voltammetry.Int. J. Electrochem. Sci.20149273675910.1016/S1452‑3981(23)07754‑4
    [Google Scholar]
  83. ShaoX. GuH. WangZ. ChaiX. TianY. ShiG. Highly selective electrochemical strategy for monitoring of cerebral Cu2+ based on a carbon Dot-TPEA hybridized surface.Anal. Chem.201385141842510.1021/ac303113n23214718
    [Google Scholar]
  84. XiaoQ. FengJ. LiJ. FengM. HuangS. A label-free and ultrasensitive electrochemical aptasensor for lead( ii ) using a N,P dual-doped carbon dot–chitosan composite as a signal-enhancing platform and thionine as a signaling molecule.Analyst2018143194764477310.1039/C8AN00994E30209467
    [Google Scholar]
  85. SupchocksoonthornP. Alvior SinoyM.C. de LunaM.D.G. PaoprasertP. Facile fabrication of 17 β -estradiol electrochemical sensor using polyaniline/carbon dot-coated glassy carbon electrode with synergistically enhanced electrochemical stability.Talanta202123512278210.1016/j.talanta.2021.12278234517640
    [Google Scholar]
  86. RoyE. PatraS. MadhuriR. SharmaP.K. Simultaneous determination of heavy metals in biological samples by a multiple-template imprinting technique: An electrochemical study.RSC Advances20144100566905670010.1039/C4RA08875A
    [Google Scholar]
  87. YuL. SunL. ZhangQ. ZhouY. ZhangJ. YangB. XuB. XuQ. Nanomaterials-based ion-imprinted electrochemical sensors for heavy metal ions detection: A review.Biosensors20221212109610.3390/bios1212109636551065
    [Google Scholar]
  88. WangN. LinM. DaiH. MaH. Functionalized gold nanoparticles/reduced graphene oxide nanocomposites for ultrasensitive electrochemical sensing of mercury ions based on thymine–mercury–thymine structure.Biosens. Bioelectron.20167932032610.1016/j.bios.2015.12.05626720921
    [Google Scholar]
  89. JinH. ZhangD. LiuY. WeiM. An electrochemical aptasensor for lead ion detection based on catalytic hairpin assembly and porous carbon supported platinum as signal amplification.RSC Advances202010116647665310.1039/D0RA00022A35495994
    [Google Scholar]
  90. ZhangT. JinH. FangY. GuanJ. MaS. PanY. ZhangM. ZhuH. LiuX. DuM. Detection of trace Cd2+, Pb2+ and Cu2+ ions via porous activated carbon supported palladium nanoparticles modified electrodes using SWASV.Mater. Chem. Phys.201922543344210.1016/j.matchemphys.2019.01.010
    [Google Scholar]
  91. WangW.J. LuX.Y. KongF.Y. LiH.Y. WangZ.X. WangW. A reduced graphene oxide supported Au-Bi bimetallic nanoparticles as an enhanced sensing platform for simultaneous voltammetric determination of Pb (II) and Cd (II).Microchem. J.202217510707810.1016/j.microc.2021.107078
    [Google Scholar]
  92. ZhouN. LiJ. WangS. ZhuangX. NiS. LuanF. WuX. YuS. An electrochemical sensor based on gold and bismuth bimetallic nanoparticles decorated l-cysteine functionalized graphene oxide nanocomposites for sensitive detection of iron ions in water samples.Nanomaterials2021119238610.3390/nano1109238634578702
    [Google Scholar]
  93. AkhtarM. TahirA. ZulfiqarS. HanifF. WarsiM.F. AgboolaP.O. ShakirI. Ternary hybrid of polyaniline-alanine-reduced graphene oxide for electrochemical sensing of heavy metal ions.Synth. Met.202026511641010.1016/j.synthmet.2020.116410
    [Google Scholar]
  94. DaiH. WangN. WangD. MaH. LinM. An electrochemical sensor based on phytic acid functionalized polypyrrole/graphene oxide nanocomposites for simultaneous determination of Cd(II) and Pb(II).Chem. Eng. J.201629915015510.1016/j.cej.2016.04.083
    [Google Scholar]
  95. MachhindraL.A. YenY.K. A highly sensitive electrochemical sensor for Cd2+ detection based on prussian blue-pedot-loaded laser-scribed graphene-modified glassy carbon electrode.Chemosensors202210620910.3390/chemosensors10060209
    [Google Scholar]
  96. ChaiyoS. MehmetiE. ŽagarK. SiangprohW. ChailapakulO. KalcherK. Electrochemical sensors for the simultaneous determination of zinc, cadmium and lead using a Nafion/ionic liquid/graphene composite modified screen-printed carbon electrode.Anal. Chim. Acta2016918263410.1016/j.aca.2016.03.02627046207
    [Google Scholar]
  97. OularbiL. TurmineM. SalihF.E. El RhaziM. Ionic liquid/carbon nanofibers/bismuth particles novel hybrid nanocomposite for voltammetric sensing of heavy metals.J. Environ. Chem. Eng.20208310377410.1016/j.jece.2020.103774
    [Google Scholar]
  98. BagheriH. AfkhamiA. KhoshsafarH. RezaeiM. SabouncheiS.J. SarlakifarM. Simultaneous electrochemical sensing of thallium, lead and mercury using a novel ionic liquid/graphene modified electrode.Anal. Chim. Acta2015870566610.1016/j.aca.2015.03.00425819787
    [Google Scholar]
  99. AfkhamiA. MadrakianT. ShirzadmehrA. TabatabaeeM. BagheriH. New Schiff base-carbon nanotube–nanosilica–ionic liquid as a high performance sensing material of a potentiometric sensor for nanomolar determination of cerium(III) ions.Sens. Actuators B Chem.201217423724410.1016/j.snb.2012.07.116
    [Google Scholar]
  100. MitraS. PurkaitT. PramanikK. MaitiT.K. DeyR.S. Three-dimensional graphene for electrochemical detection of Cadmium in Klebsiella michiganensis to study the influence of Cadmium uptake in rice plant.Mater. Sci. Eng. C201910310980210.1016/j.msec.2019.10980231349442
    [Google Scholar]
  101. PingJ. WangY. WuJ. YingY. Development of an electrochemically reduced graphene oxide modified disposable bismuth film electrode and its application for stripping analysis of heavy metals in milk.Food Chem.2014151657110.1016/j.foodchem.2013.11.02624423503
    [Google Scholar]
  102. HuoD. ZhangY. LiN. MaW. LiuH. XuG. LiZ. YangM. HouC. Three-dimensional graphene/amino-functionalized metal–organic framework for simultaneous electrochemical detection of Cd(II), Pb(II), Cu(II), and Hg(II).Anal. Bioanal. Chem.202241441575158610.1007/s00216‑021‑03779‑634988587
    [Google Scholar]
  103. TeodoroK.B.R. MiglioriniF.L. FacureM.H.M. CorreaD.S. Conductive electrospun nanofibers containing cellulose nanowhiskers and reduced graphene oxide for the electrochemical detection of mercury(II).Carbohydr. Polym.201920774775410.1016/j.carbpol.2018.12.02230600061
    [Google Scholar]
  104. SiY. LiuJ. ChenY. MiaoX. YeF. LiuZ. LiJ. rGO/AuNPs/tetraphenylporphyrin nanoconjugate-based electrochemical sensor for highly sensitive detection of cadmium ions.Anal. Methods201810293631363610.1039/C8AY01020J
    [Google Scholar]
  105. XuY. ZhangW. HuangX. ShiJ. ZouX. LiZ. CuiX. Adsorptive stripping voltammetry determination of hexavalent chromium by a pyridine functionalized gold nanoparticles/three-dimensional graphene electrode.Microchem. J.201914910402210.1016/j.microc.2019.104022
    [Google Scholar]
  106. MishraR.K. NawazM.H. HayatA. NawazM.A.H. SharmaV. MartyJ.L. Electrospinning of graphene-oxide onto screen printed electrodes for heavy metal biosensor.Sens. Actuators B Chem.201724736637310.1016/j.snb.2017.03.059
    [Google Scholar]
  107. ZhaoG. WangH. LiuG. WangZ. ChengJ. Simultaneous determination of trace Cd(II) and Pb(II) based on Bi/Nafion/reduced graphene oxide-gold nanoparticle nanocomposite film-modified glassy carbon electrode by one-step electrodeposition.Ionics201723376777710.1007/s11581‑016‑1843‑6
    [Google Scholar]
/content/journals/cnano/10.2174/0115734137281774231214054405
Loading
/content/journals/cnano/10.2174/0115734137281774231214054405
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Carbon materials; detection; electrochemical sensor; heavy metal; nanocomposite; sensor
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test