Skip to content
2000
Volume 21, Issue 4
  • ISSN: 1573-4137
  • E-ISSN: 1875-6786

Abstract

Background

Rice husk is an important agricultural waste that contains organic mass and bio-silica. Although some rice husks have been used as fuel, animal food, filler for wine fermentation, and fertilizer, the majority are discarded as agricultural waste, which does great harm to the environment. The conversion of rice husk to silicon carbide (SiC)-based materials satisfies the demand for the reutilization of solid wastes.

Methods

The article reviews recent progress and patents on the SiC-based materials from rice husk. The possible development directions of the SiC-based materials from rice husks are also analyzed.

Results

SiC materials with different morphologies, including microscale and nanoscale particles, nanoscale whiskers, and nanowires, can be prepared by high-temperature carbothermal reduction reaction from rice husk at the temperature of 1200-1800°C, reaction time of 0.5-8 h, respectively. SiC-based composites, including SiC nanowires/C, Al/SiC, SiC/SiN, and SiC/AlO can be obtained using rice husk as main source materials at 800-1800°C. SiC-based materials exhibit great application potential in the fields of absorbents, optical devices, mechanical products, photocatalysts, semiconductors, and Li-ion batteries.

Conclusion

The low cost of preparing SiC-based materials from rice husk, combining them with different compositions, and exploring new applications are important research directions in the future.

Loading

Article metrics loading...

/content/journals/cnano/10.2174/0115734137316974240620095136
2024-07-08
2025-04-24
Loading full text...

Full text loading...

References

  1. Aboul-EneinA.A. AwadallahA.E. Production of nanostructured carbon materials using Fe–Mo/MgO catalysts via mild catalytic pyrolysis of polyethylene waste.Chem. Eng. J.201835480281610.1016/j.cej.2018.08.046
    [Google Scholar]
  2. ZhengY. ZhangH. GeS. SongJ. WangJ. ZhangS. Synthesis of carbon nanotube arrays with high aspect ratio via Ni-catalyzed pyrolysis of waste polyethylene.Nanomaterials20188755610.3390/nano807055630037121
    [Google Scholar]
  3. WuC. NahilM.A. MiskolcziN. HuangJ. WilliamsP.T. Processing real-world waste plastics by pyrolysis-reforming for hydrogen and high-value carbon nanotubes.Environ. Sci. Technol.201448181982610.1021/es402488b24283272
    [Google Scholar]
  4. Al-AmsyarS.M. Sulfonated-silica/carbon composites from rice husk as heterogeneous catalysts in fructose conversion: The effect of controlling carbonization temperature of rice husk on its physicochemical properties and catalytic activities.Microporous Mesoporous Mater.202233611189610.1016/j.micromeso.2022.111896
    [Google Scholar]
  5. CostaJ.A.S. ParanhosC.M. Mitigation of silica-rich wastes: An alternative to the synthesis eco-friendly silica-based mesoporous materials.Microporous Mesoporous Mater.202030911057010.1016/j.micromeso.2020.110570
    [Google Scholar]
  6. KumawatA. CharanS. SharmaN. KulriyaP.K. SinghY. VisshwakarmaA.K. MathurS. SrivastavaS. Synthesis of graphene like nano order thick graphitic flakes through industrial waste carbon and study of their hydrogen gas sensing properties.Int. J. Hydrogen Energy20234896381013810610.1016/j.ijhydene.2022.11.280
    [Google Scholar]
  7. ChaitanyaM. ManikandanP. Prem KumarV. ElavenilS. VasugiV. Prediction of self-healing characteristics of GGBS admixed concrete using Artificial Neural Network.J. Phys. Conf. Ser.20201716101201910.1088/1742‑6596/1716/1/012019
    [Google Scholar]
  8. KarthikeyanN.K. ElavenilS. Characterization of nano-structure pyrolytic char for smart and sustainable nanomaterials.Adv. Nano Res.202416536910.12989/anr.2024.16.1.053
    [Google Scholar]
  9. LeeJ. KimD. ShinD. LeeH.G. ParkJ.Y. KimW.J. A new process for minimizing residual silicon and carbon of reaction-bonded silicon carbide via chemical vapor deposition.J. Eur. Ceram. Soc.20214174000400510.1016/j.jeurceramsoc.2021.02.009
    [Google Scholar]
  10. HossainR. SahajwallaV. Molecular recycling: A key approach to tailor the waste recycling for high-value nano silicon carbide.J. Clean. Prod.202131612834410.1016/j.jclepro.2021.128344
    [Google Scholar]
  11. JianJ.X. JokubaviciusV. SyväjärviM. YakimovaR. SunJ. Nanoporous cubic silicon carbide photoanodes for enhanced solar water splitting.ACS Nano20211535502551210.1021/acsnano.1c0025633605135
    [Google Scholar]
  12. ChaoukiJ. EbrahimpourO. DuboisC. Porous SiC ceramic and method for the fabrication thereof.US Patent 2014/0206525A12014
  13. JamalC. OmidE. CharlesD. Porous SiC ceramic and method for the fabrication thereof.WO Patent 2013/026168A12013
  14. PeiL.Z. TangY.H. ZhaoX.Q. ChenY.W. GuoC. Formation mechanism of silicon carbide nanotubes with special morphology.J. Appl. Phys.2006100404610510.1063/1.2335606
    [Google Scholar]
  15. EcheverriaC.A. PahlevaniF. LimS. SahajwallaV. Synthesis and characterization of biomorphic 1D-SiC nanoceramics from novel macroalga precursor material.J. Clean. Prod.202131212780810.1016/j.jclepro.2021.127808
    [Google Scholar]
  16. TaguchiT. YamamotoS. OhbaH. Synthesis and formation mechanism of novel double-thick-walled silicon carbide nanotubes from multiwalled carbon nanotubes.Appl. Surf. Sci.202155114942110.1016/j.apsusc.2021.149421
    [Google Scholar]
  17. ZhouX. GaoQ. YangS. FangY. Carbon nanotube@silicon carbide coaxial heterojunction nanotubes as metal-free photocatalysts for enhanced hydrogen evolution.Chin. J. Catal.2020411627110.1016/S1872‑2067(19)63421‑2
    [Google Scholar]
  18. PeiL.Z. TangY.H. ChenY.W. GuoC. LiX.X. YuanY. ZhangY. Preparation of silicon carbide nanotubes by hydrothermal method.J. Appl. Phys.2006991111430610.1063/1.2202111
    [Google Scholar]
  19. KumarS. KumarD. SinghK. Modification of silicate structural units by K 2 O for enhancing automobile windshield glass properties.J. Phys. Chem. Solids202318111152310.1016/j.jpcs.2023.111523
    [Google Scholar]
  20. KumarS. SinghK. KumarD. SiO 2 /B 2 O 3 glass formers effect on transparency and mechanical properties of soda-lime borosilicate glasses for automobile applications.J. Non-Cryst. Solids202361812253010.1016/j.jnoncrysol.2023.122530
    [Google Scholar]
  21. KumarS. SinghK. KumarD. Asymmetric SiO 2 structural units modification by Li 2 O and their effect on optical and mechanical properties of soda lime silicate glasses.Ceram. Int.20234916263022631210.1016/j.ceramint.2023.05.143
    [Google Scholar]
  22. KumarS. SinghK. KumarD. Optical, structural and mechanical properties of automobile front panel windshield glasses.Silicon202315146229624110.1007/s12633‑023‑02429‑z
    [Google Scholar]
  23. NakamuraS. KimotoT. MatsunamiH. Homoepitaxy of 6H–SiC on nearly on-axis (0 0 0 1) faces by chemical vapor deposition Part I: Effect of C/Si ratio on wide-area homoepitaxy without 3C–SiC inclusions.J. Cryst. Growth20032563-434134610.1016/S0022‑0248(03)01385‑X
    [Google Scholar]
  24. YangK. YangY. LinZ.M. LiJ.T. DuJ.S. Mechanical-activation-assisted combustion synthesis of SiC powders with polytetrafluoroethylene as promoter.Mater. Res. Bull.20074291625163210.1016/j.materresbull.2006.11.037
    [Google Scholar]
  25. LiX. ZhangG. TangK. OstrovskiO. TronstadR. Carbothermal reduction of quartz in methane–hydrogen–argon gas mixture.Metall. Mater. Trans., B, Process Metall. Mater. Proc. Sci.20154652384239310.1007/s11663‑015‑0407‑x
    [Google Scholar]
  26. TongH. YaoZ. LimJ.W. MaoL. ZhangJ. GeT.S. PengY.H. WangC.H. TongY.W. Harvest green energy through energy recovery from waste: A technology review and an assessment of Singapore.Renew. Sustain. Energy Rev.20189816317810.1016/j.rser.2018.09.009
    [Google Scholar]
  27. YaoD. LiH. DaiY. WangC.H. Impact of temperature on the activity of Fe-Ni catalysts for pyrolysis and decomposition processing of plastic waste.Chem. Eng. J.202140812726810.1016/j.cej.2020.127268
    [Google Scholar]
  28. YaoD. WangC.H. Pyrolysis and in-line catalytic decomposition of polypropylene to carbon nanomaterials and hydrogen over Fe- and Ni-based catalysts.Appl. Energy202026511481910.1016/j.apenergy.2020.114819
    [Google Scholar]
  29. ParkK.B. JeongY.S. GuzelciftciB. KimJ.S. Two-stage pyrolysis of polystyrene: Pyrolysis oil as a source of fuels or benzene, toluene, ethylbenzene, and xylenes.Appl. Energy202025911424010.1016/j.apenergy.2019.114240
    [Google Scholar]
  30. YaoD. LiH. MohanB.C. PrabhakarA.K. DaiY. WangC.H. Conversion of waste plastic packings to carbon nanomaterials: Investigation into catalyst material, waste type, and product applications.ACS Sustain. Chem. Eng.20221031125113610.1021/acssuschemeng.1c05945
    [Google Scholar]
  31. NguyenN.T. TranN.T. PhanT.P. NguyenA.T. NguyenM.X.T. NguyenN.N. KoY.H. NguyenD.H. VanT.T.T. HoangD. The extraction of lignocelluloses and silica from rice husk using a single biorefinery process and their characteristics.J. Ind. Eng. Chem.202210815015810.1016/j.jiec.2021.12.032
    [Google Scholar]
  32. DaiW.L. Blendability and processing methodology of an environmental material rice-hush/PVA composite.Mater. Lett.200357203128313610.1016/S0167‑577X(03)00009‑0
    [Google Scholar]
  33. SinghA. KapoorM. Ultrasonic-assited sulfonated biochar derived from rice husk for catalytic hydration of phenylacetylene.ECS Trans.202210716151615510.1149/10701.6151ecst
    [Google Scholar]
  34. AraichimaniP. PrabuK.M. Suresh KumarG. KarunakaranG. SurendhiranS. ShkirM. AliH.E. Synthesis of Fe3O4-decorated SiO2 nanostructure using rice husk as a source by microwave combustion for the development of a magnetically recoverable adsorbent.Ceram. Int.2022487103391034510.1016/j.ceramint.2022.02.001
    [Google Scholar]
  35. PatelM. PrasannaP. Scanning electron microscopic studies of heat-treated Rice Husk.XRay Spectrom.198918626726910.1002/xrs.1300180606
    [Google Scholar]
  36. ChaoukiJ. EbrahimpourO. DoboisC. Porous SiC ceramic and method for the fabrication thereof.US Patent 9919975B22018
  37. AdylovG.T. FaizievS.A. PaizullakhanovM.S. MukhsimovS. NodirmatovÉ. Silicon carbide materials obtained from rice husk.Tech. Phys. Lett.200329322122310.1134/1.1565639
    [Google Scholar]
  38. SoltaniN. BahramiA. Pech-CanulM.I. GonzálezL.A. Review on the physicochemical treatments of rice husk for production of advanced materials.Chem. Eng. J.201526489993510.1016/j.cej.2014.11.056
    [Google Scholar]
  39. DuttaS. SrivastavaS.K. GuptaA.K. Polypyrrole–polyaniline copolymer coated green rice husk ash as an effective adsorbent for the removal of hexavalent chromium from contaminated water.Mater. Adv.2021272431244310.1039/D0MA00862A
    [Google Scholar]
  40. JinH.B. LiJ.T. CaoM.S. AgathopoulosS. Influence of mechanical activation on combustion synthesis of fine silicon carbide (SiC) powder.Powder Technol.2009196222923210.1016/j.powtec.2009.07.016
    [Google Scholar]
  41. PatelM. KareraA. Thermogravimetry of SiC from rice husk.J. Therm. Anal.19893572535253710.1007/BF01911917
    [Google Scholar]
  42. KrishnaraoR.V. MahajanY.R. Formation of SiC whiskers from raw rice husks in argon atmosphere.Ceram. Int.199622535335810.1016/0272‑8842(95)00084‑4
    [Google Scholar]
  43. KrishnaraoR.V. GodkhindiM.M. Studies on the formation of SiC whiskers from pulverized rice husk ashes.Ceram. Int.1992181354210.1016/0272‑8842(92)90059‑M
    [Google Scholar]
  44. AdediranA.A. AlanemeK.K. OladeleI.O. AkinlabiE.T. Structural characterization of silica based carbothermal derivatives of rice husk.Procedia Manuf.20193543644110.1016/j.promfg.2019.05.063
    [Google Scholar]
  45. WuZ. MengZ. YaoC. DengY. ZhangG. WangY. Rice husk derived hierarchical porous carbon with lightweight and efficient microwave absorption.Mater. Chem. Phys.202227512524610.1016/j.matchemphys.2021.125246
    [Google Scholar]
  46. HinmanN.D. WymanC.E. Silicon-containing products.US Patent 7588745B22009
  47. KrishnaraoR.V. GodkhindiM.M. ChakrabortyM. Maximisation of SiC whisker yield during the pyrolysis of burnt rice husks.J. Mater. Sci.19922751227123010.1007/BF01142027
    [Google Scholar]
  48. LeeG.J. CulterI.B. SiC whiskers from rice hulls.Am. Ceram. Soc. Bull.197554195198
    [Google Scholar]
  49. Van TrungT. Effect of arc current on SiC fabrication from rice husk ash and diatomite in electric arc discharge furnace.Vietnam J. Chem.202058673173410.1002/vjch.202000043
    [Google Scholar]
  50. NayakB.B. MohantyB.C. SinghS.K. Synthesis of silicon carbide from rice husk in a dc arc plasma reactor.J. Am. Ceram. Soc.19967951197120010.1111/j.1151‑2916.1996.tb08572.x
    [Google Scholar]
  51. Mas’udahK.W. DiantoroM. FuadA. Synthesis and structural analysis of silicon carbide from silica rice husk and activated carbon using solid-state reaction.J. Phys. Conf. Ser.2018109301203310.1088/1742‑6596/1093/1/012033
    [Google Scholar]
  52. PereiraM.L.G. FigueiraD.S.S. GirolamoB.R. VernilliF. Synthesis of silicon carbide from rice husk.Ceramica20206637925626110.1590/0366‑69132020663792892
    [Google Scholar]
  53. AlweendoS.T. JohnsonO.T. ShongweM.B. KavisheF.P.L. BorodeJ.O. Synthesis, optimization and caracterization of silicon carbide (SiC) from rice husk.Procedia Manuf.20193596296710.1016/j.promfg.2019.06.042
    [Google Scholar]
  54. QadriS.B. FlifletA.W. ImanA. RathB.B. GorzkowskiE.P. Silicon carbide synthesis from agricultural waste.US Patent 9051186B22015
  55. QadriS.B. FlifletA.W. ImanM.A. RathB.B. GorzkowskiE.P. Silicon carbide synthesis from agricultural waste.US Patent 2013/0272947A12013
  56. QadriS.B. FlifletA.W. ImanM.A. RathB.B. GorzkowskiE.P. Silicon carbide synthesis.US Patent 9120679B22015
  57. QadriS.B. FlifletA.W. ImanM.A. RathB.B. GorzkowskiE.P. Silicon carbide synthesis.US Patent 2014/0287907A12014
  58. RobertL. DimitrisK. Materials from rice hull ash.WO Patent 2012/166728A12012
  59. HouY. ChengL. ZhangY. YangY. DengC. YangZ. ChenQ. DuX. ZhengL. SiC nanofiber Mat: A broad-band microwave absorber, and the alignment effect.ACS Appl. Mater. Interfaces2017949430724308010.1021/acsami.7b1363429139298
    [Google Scholar]
  60. ZhangJ. YanM. SunG. LiX. HaoB. LiuK. Theoretical design and preparation of SiC whiskers catalyzed by Fe-oxides on carbon fibers.Ceram. Int.2022488106881069210.1016/j.ceramint.2021.12.283
    [Google Scholar]
  61. CheongsaR. SeoG. Methods of adjusting carbon and silica content in rice hull ash (RHA) byproducts to control carbothermal reduction forming nanostructured silicon carbide, silicon nitride, silicon oxynitride nanocomposites.PCT/US Patent 2022/0428862022
  62. PatelM. KareraA. SiC whiskers from rice husk: Role of catalysts.J. Mater. Sci. Lett.19898895595610.1007/BF01729957
    [Google Scholar]
  63. KrishnaraoR.V. SubrahmanyamJ. Formation of SiC from rice husk silica-carbon black mixture: Effect of rapid heating.Ceram. Int.199622648949210.1016/0272‑8842(95)00124‑7
    [Google Scholar]
  64. TejadaM. VladimirH. GarciaV. FidelM. Method of obtaining silicon carbide from rice hulls.WO Patent 2015/114425A12015
  65. PodeR. Potential applications of rice husk ash waste from rice husk biomass power plant.Renew. Sustain. Energy Rev.2016531468148510.1016/j.rser.2015.09.051
    [Google Scholar]
  66. KrishnaraoR.V. MahajanY.R. KumarT.J. Conversion of raw rice husks to SiC by pyrolysis in nitrogen atmosphere.J. Eur. Ceram. Soc.199818214715210.1016/S0955‑2219(97)00093‑9
    [Google Scholar]
  67. TanakaM. KawabeT. KobuneM. Method of manufacturing crystalline silicon carbide employing acid pretreated rice husks.US Patent 45914921986
  68. ChenJ. KongQ. LiuZ. BiZ. JiaH. SongG. XieL. ZhangS. ChenC.M. High yield silicon carbide whiskers from rice husk ash and graphene: Growth method and thermodynamics.ACS Sustain. Chem. Eng.2019723190271903310.1021/acssuschemeng.9b04728
    [Google Scholar]
  69. ChenJ.P. SongG. LiuZ. KongQ.Q. ZhangS.C. ChenC.M. Preparation of SiC whiskers using graphene and rice husk ash and its photocatalytic property.J. Alloys Compd.202083315507210.1016/j.jallcom.2020.155072
    [Google Scholar]
  70. LiW. HuangQ. GuoH. HouY. Green synthesis and photoluminescence property of β-SiC nanowires from rice husk silica and phenolic resin.Ceram. Int.20184444500450310.1016/j.ceramint.2017.12.015
    [Google Scholar]
  71. LiW. GuoH. A novel and green fabrication of 3C-SiC nanowires from coked rice husk-silicon mixture and their photoluminescence property.Mater. Lett.2018215757810.1016/j.matlet.2017.12.024
    [Google Scholar]
  72. YuM. TemecheE. IndrisS. LaiW. LaineR.M. Silicon carbide (SiC) derived from agricultural waste potentially competitive with silicon anodes.Green Chem.202224104061407010.1039/D2GC00645F
    [Google Scholar]
  73. KrishnaraoR.V. GodkhindiM.M. Effect of Si3N4 additions on the formation of SiC whiskers from rice husks.Ceram. Int.199218318519110.1016/0272‑8842(92)90094‑T
    [Google Scholar]
  74. WengW. YangJ. ZhouJ. GuD. XiaoW. Template-free electrochemical formation of silicon nanotubes from silica.Adv. Sci. (Weinh.)2020717200149210.1002/advs.20200149232995133
    [Google Scholar]
  75. ChenY. WangM. LuS. TuJ. JiaoS. Electrochemical graphitization conversion of CO2 through soluble NaVO3 homogeneous catalyst in carbonate molten salt.Electrochim. Acta202033113546110.1016/j.electacta.2019.135461
    [Google Scholar]
  76. SuJ. GaoB. ChenZ. FuJ. AnW. PengX. ZhangX. WangL. HuoK. ChuP.K. Large-scale synthesis and mechanism of β-SiC nanoparticles from rice husks by low-temperature magnesiothermic reduction.ACS Sustain. Chem. Eng.20164126600660710.1021/acssuschemeng.6b01483
    [Google Scholar]
  77. PangD. WengW. ZhouJ. GuD. XiaoW. Controllable conversion of rice husks to Si/C and SiC/C composites in molten salts.J. Energy Chem.20215510210710.1016/j.jechem.2020.06.072
    [Google Scholar]
  78. ShiJ. LinN. WangY. LiuD. LinH. The application of rice husk-based porous carbon in positive electrodes of lead acid batteries.J. Energy Storage20203010139210.1016/j.est.2020.101392
    [Google Scholar]
  79. BaghelM. KrishnaC.M. SureshS. Development of Al-SiC composite material from rice husk and its parametric assessment.Mater. Res. Express20229101651810.1088/2053‑1591/ac4a2e
    [Google Scholar]
  80. LiuJ. TaoJ. GaoL. HeX. WeiB. GuY. YaoZ. ZhouJ. Morphology-size synergy strategy of SiC@C nanoparticles towards lightweight and efficient microwave absorption.Chem. Eng. J.202243313448410.1016/j.cej.2021.134484
    [Google Scholar]
  81. YangH. YeF. Microtexture, microstructure evolution, and thermal insulation properties of Si 3 N 4 /silica aerogel composites at high temperatures.RSC Advances20221219122261223410.1039/D2RA01336C35481083
    [Google Scholar]
  82. RealC. CórdobaJ.M. AlcaláM.D. Synthesis and characterization of SiC/Si3N4 composites from rice husks.Ceram. Int.20184412146451465110.1016/j.ceramint.2018.05.090
    [Google Scholar]
  83. AlweendoS.T. JohnsonO.T. ShongweB.M. KavisheF.P. BorodeJ.O. Microstuctural and mechanical properties of alumina (Al2O3) matrix composites reinforced with SiC from rice husk by spark plasma sintering.Mater. Res.2020231e2019036310.1590/1980‑5373‑mr‑2019‑0363
    [Google Scholar]
  84. KlineC.R. Suface-etched etched alumina/SiC mini-whisker composite material and uses thereof.US Patent 8426328B22013
  85. ZhangZ. ChengL. KrollP. TanJ. YangW. Cost-effective carbonized waste corrugated boards with surface decorated by SiC@C nanofibers and nanospheres for electromagnetic interference shielding.Appl. Surf. Sci.202259015315110.1016/j.apsusc.2022.153151
    [Google Scholar]
  86. HuangW. LiY. FuQ. ChenM. Fabrication of a novel biochar decorated nano-flower-like MoS2 nanomaterial for the enhanced photodegradation activity of ciprofloxacin: Performance and mechanism.Mater. Res. Bull.202214711165010.1016/j.materresbull.2021.111650
    [Google Scholar]
  87. ZhangL. GuoH. XueR. YueL. LiQ. LiuH. YangW. WangX. YangW. In-situ facile synthesis of flower shaped NiS2@regenerative graphene oxide derived from waste dry battery nano-composites for high-performance supercapacitors.J. Energy Storage20203110163010.1016/j.est.2020.101630
    [Google Scholar]
  88. Younesi-KordkheiliH. PizziA. Nanolignin, a coupling bio-agent for wood-plastic composites.J. Renew. Mater.20231152075208310.32604/jrm.2023.026706
    [Google Scholar]
  89. RamyaA.V. BalachandranM. Valorization of agro-industrial fruit peel waste to fluorescent nanocarbon sensor: Ultrasensitive detection of potentially hazardous tropane alkaloid.Front. Environ. Sci. Eng.20211632710.1007/s11783‑021‑1461‑z
    [Google Scholar]
  90. VuH.T. ArčonI. SouzaD.O. PollastriS. DražićG. VolavšekJ. MaliG. Zabukovec LogarN. Novak TušarN. Insight into the interdependence of Ni and Al in bifunctional Ni/ZSM-5 catalysts at the nanoscale.Nanoscale Adv.20224102321233110.1039/D2NA00102K36133702
    [Google Scholar]
  91. AnumolC.R. SebyA. JoseD. Comparative study of multicomponent reactions on the catalytic efficiency of nano catalyst Ni-Zn-Fe-SiO2 prepared by sol-gel and co-precipitation methods.Mater. Today Proc.2022662057206110.1016/j.matpr.2022.05.492
    [Google Scholar]
  92. MohamedR.M. MkhalidI.A. Characterization and catalytic properties of nano-sized Ag metal catalyst on TiO2–SiO2 synthesized by photo-assisted deposition and impregnation methods.J. Alloys Compd.2010501230130610.1016/j.jallcom.2010.04.092
    [Google Scholar]
  93. ShiotariA. HamadaI. NakaeT. MoriS. OkujimaT. UnoH. SakaguchiH. HamamotoY. MorikawaY. SugimotoY. Manipulable metal catalyst for nanographene synthesis.Nano Lett.202020118339834510.1021/acs.nanolett.0c0351033090808
    [Google Scholar]
  94. Yoshikazu NakayamaY.N. Mei ZhangM.Z. ZhangM. ZhangM. Synthesis of carbon nanochaplets by catalytic thermal chemical vapor deposition.Jpn. J. Appl. Phys.2001405BL49210.1143/JJAP.40.L492
    [Google Scholar]
  95. SunB. ShanF. JiangX. JiJ. WangF. One-pot synthesis of MoS2/In2S3 ultrathin nanoflakes with mesh−shaped structure on indium tin oxide as photocathode for enhanced photo-and electrochemical hydrogen evolution reaction.Appl. Surf. Sci.201843582283110.1016/j.apsusc.2017.11.065
    [Google Scholar]
  96. CaoX.Q. ZhouJ. LiS. QinG.W. Ultra-stable metal nano-catalyst synthesis strategy: A perspective.Rare Met.202039211313010.1007/s12598‑019‑01350‑y
    [Google Scholar]
  97. YueS. CuiC. WeiK. JiangY. BaiZ. MaJ. PatabendigeC.N.K. JiangC. Carbon derived from treated rice husk as fuel for direct carbon fuel cells.Int. J. Energy Res.20224679822983510.1002/er.7854
    [Google Scholar]
  98. GanironT.J. Effects of rice hush as substitute for fine aggregate in concrete mixture.Int J Adv Sci Technol201358294010.14257/ijast.2013.58.03
    [Google Scholar]
  99. HeX. FengL. ZhangZ. HouX. YeX. SongQ. YangY. SuoG. ZhangL. FuQ.G. LiH. High-performance multifunctional carbon-silicon carbide composites with strengthened reduced graphene oxide.ACS Nano20211522880289210.1021/acsnano.0c0892433565861
    [Google Scholar]
  100. OkoroanyanwuU. BhardwajA. EinckV. RibbeA. HuW. RodriguezJ.M. SchmidtW.R. WatkinsJ.J. Rapid preparation and electrochemical energy storage applications of silicon carbide and silicon oxycarbide ceramic/carbon nanocomposites derived via flash photothermal pyrolysis of organosilicon preceramic polymers.Chem. Mater.202133267869410.1021/acs.chemmater.0c04048
    [Google Scholar]
  101. DengX. WuX. ChenH. ZhangY. Advanced synthesis and application of Nano SiC@ β-glucosidase@ Fe 3 O 4 composite.IOP Conf. Ser. Earth Environ. Sci.2021692303210510.1088/1755‑1315/692/3/032105
    [Google Scholar]
  102. SaitoT. IshikawaS. Rice-husk-based silicon-carbide-derived carbon as an electrode material for electric double-layer capacitors.Chem. Lett.201948883283510.1246/cl.190142
    [Google Scholar]
  103. ShtepliukI. IvanovI.G. PliatsikasN. IakimovT. Lara-AvilaS. KimK.H. SedrineN.B. KubatkinS.E. SarakinosK. YakimovaR. Clustering and morphology evolution of gold on nanostructured surfaces of silicon carbide: Implications for catalysis and sensing.ACS Appl. Nano Mater.2021421282129310.1021/acsanm.0c02867
    [Google Scholar]
  104. ZhangB. WangW. TongZ. XuH. LiX. JiH. Design and preparation of hollow SiO2 nanospheres/SiC-based nanocomposite fiber membrane for high temperature thermal insulators.Microporous Mesoporous Mater.202232911155110.1016/j.micromeso.2021.111551
    [Google Scholar]
  105. ChodisettiS.P. MalikV.K. KumarB.V.M. Development of spark plasma sintered conductive SiC–TiB 2 composites for electrical discharge machining applications.Int. J. Appl. Ceram. Technol.20221931367137810.1111/ijac.13940
    [Google Scholar]
  106. GuanY. ZhouY. WangS. ZouR. ZhangJ. FanX. JiaoY. Structured cobalt–manganese oxides on SiC nano-whisker modified SiC foams for catalytic combustion of toluene.Chem. Eng. Res. Des.202217765966910.1016/j.cherd.2021.11.034
    [Google Scholar]
  107. AljundiI.H. BasheerC. BakdashR.S. Rice-husk derived silicon carbide membrance sorbent for oil removal.US Patent 2021/0237003A12021
  108. NageshK. AkashS. AsitS. YogeshK.S. High performance sodium ion battery (SIB) anode material using rice straw and its method of synthesis.WO Patent 2022/153326A12022
  109. QuanJ. LanX. LimG.J.H. HouY. YangY. KhooB.C. Hierarchical SiC fiber aerogel toward microwave attenuation and thermal insulation application.J. Alloys Compd.202291116509710.1016/j.jallcom.2022.165097
    [Google Scholar]
  110. TuciG. LiuY. RossinA. GuoX. PhamC. GiambastianiG. Pham-HuuC. Porous silicon carbide (SiC): A chance for improving catalysts or just another active-phase carrier?Chem. Rev.202112117105591066510.1021/acs.chemrev.1c0026934255488
    [Google Scholar]
  111. WuW.C. ChangH.W. TsaiY.C. Electrocatalytic detection of dopamine in the presence of ascorbic acid and uric acid at silicon carbide coated electrodes.Chem. Commun. (Camb.)201147226458646010.1039/c1cc11162k21552628
    [Google Scholar]
  112. HallajR. SoltaniE. MafakheriS. GhadermaziM. A surface-modified silicon carbide nanoparticles based electrochemical sensor for free interferences determination of caffeine in tea and coffee.Mater. Sci. Eng. B202127411547310.1016/j.mseb.2021.115473
    [Google Scholar]
  113. AzamatJ. Theoretical investigation of the removal of nitrate ions from contaminated aqueous solution using functionalized silicon carbide nanosheets.Comput. Mater. Sci.202118711011810.1016/j.commatsci.2020.110118
    [Google Scholar]
  114. GaoR.L. DuX. MaW.Y. SunB. RuanJ.L. OuyangX. LiH. ChenL. LiuL.Y. OuyangX.P. Radiation tolerance analysis of 4H-SiC PIN diode detectors for neutron irradiation.Sens. Actuators A Phys.202233311324110.1016/j.sna.2021.113241
    [Google Scholar]
  115. ZekentesK. ChoiJ. StambouliV. BanoE. KarkerO. RogdakisK. Progress in SiC nanowire field-effect-transistors for integrated circuits and sensing applications.Microelectron. Eng.202225511170410.1016/j.mee.2021.111704
    [Google Scholar]
/content/journals/cnano/10.2174/0115734137316974240620095136
Loading
/content/journals/cnano/10.2174/0115734137316974240620095136
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): cellulose; corrosion; patents; Rice husk; SiC; SiC-based composites
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test