Skip to content
2000
Volume 21, Issue 4
  • ISSN: 1573-4137
  • E-ISSN: 1875-6786

Abstract

Cancer, claiming approximately 10 million lives annually, remains a leading cause of global mortality. Conventional cancer treatments, notably chemotherapy and radiotherapy, often entail adverse effects, such as cytotoxicity and the development of resistance, posing significant challenges in cancer management. While natural products have historically served medicinal purposes for various ailments, their recent prominence in combating cancer-related manifestations has surged. Utilizing natural products either alone as antineoplastic agents or in conjunction with conventional chemotherapies presents a promising approach to mitigate these adverse effects. The appeal of natural products lies in their accessibility, versatility, reduced cytotoxic potential, and capacity to counteract drug resistance. Various natural sources offer a diverse range of bioactive compounds capable of influencing various cancer types, modulating signaling pathways, and altering the cancer microenvironment. Notably, many bioactive compounds impact crucial cellular processes like metastasis, angiogenesis, metabolism, proliferation, and viability by targeting specific signaling pathways, particularly those involved in cellular apoptosis.

Consequently, the modulation of these factors by natural products significantly affects cancer cell behavior. This comprehensive review explores the application of the promising phytoconstituents as anti-cancer agents across prevalent cancer types, including liver, lung, bladder, breast, leukemia, and colon cancer. In addition, it explores the anti-cancer properties of natural compounds, focusing on their mechanisms and effectiveness against diverse cancers, aiming to improve cancer management.

Loading

Article metrics loading...

/content/journals/cnano/10.2174/0115734137294302240625045852
2024-07-10
2025-07-13
Loading full text...

Full text loading...

References

  1. World Health Organization (WHO)Cancer.Available From: https://www.who.int/news-room/fact-sheets/detail/cancer
  2. FerlayJ. ColombetM. SoerjomataramI. ParkinD.M. PiñerosM. ZnaorA. BrayF. Cancer statistics for the year 2020: An overview.Int. J. Cancer2021149477878910.1002/ijc.3358833818764
    [Google Scholar]
  3. ChhikaraB.S. ParangK. Global Cancer Statistics 2022: The trends projection analysis.Chemical Biology Letters2023101451451
    [Google Scholar]
  4. BrayF. FerlayJ. SoerjomataramI. SiegelR.L. TorreL.A. JemalA. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.201868639442410.3322/caac.2149230207593
    [Google Scholar]
  5. SiegelR.L. MillerK.D. Goding SauerA. FedewaS.A. ButterlyL.F. AndersonJ.C. CercekA. SmithR.A. JemalA. Colorectal cancer statistics, 2020.CA Cancer J. Clin.202070314516410.3322/caac.2160132133645
    [Google Scholar]
  6. SharmaA.N. DewanganH.K. UpadhyayP.K. Comprehensive review on herbal medicine: Emphasis on current therapy and role of phytoconstituents for cancer treatment.Chem. Biodivers.2024213e20230146810.1002/cbdv.20230146838206170
    [Google Scholar]
  7. SeyfriedT.N. Cancer as a mitochondrial metabolic disease.Front. Cell Dev. Biol.201534310.3389/fcell.2015.0004326217661
    [Google Scholar]
  8. JemalA. SiegelR. XuJ. WardE. Cancer Statistics, 2010.CA Cancer J. Clin.201060527730010.3322/caac.2007320610543
    [Google Scholar]
  9. SiegelR.L. MillerK.D. FuchsH.E. JemalA. Cancer statistics, 2022.CA Cancer J. Clin.202272173310.3322/caac.2170835020204
    [Google Scholar]
  10. NurgaliK. JagoeR.T. AbaloR. Editorial: Adverse effects of cancer chemotherapy: Anything new to improve tolerance and reduce sequelae?Front. Pharmacol.2018924510.3389/fphar.2018.0024529623040
    [Google Scholar]
  11. RoeH. LennanE. Role of nurses in the assessment and management of chemotherapy-related side effects in cancer patients.Nursing20142014103115
    [Google Scholar]
  12. PerrettC.M. WalkerS.L. O’DonovanP. WarwickJ. HarwoodC.A. KarranP. McGregorJ.M. Azathioprine treatment photosensitizes human skin to ultraviolet A radiation.Br. J. Dermatol.2008159119820410.1111/j.1365‑2133.2008.08610.x18489587
    [Google Scholar]
  13. SodeifianG. RazmimaneshF. Saadati ArdestaniN. SajadianS.A. Experimental data and thermodynamic modeling of solubility of Azathioprine, as an immunosuppressive and anti-cancer drug, in supercritical carbon dioxide.J. Mol. Liq.202029911217910.1016/j.molliq.2019.112179
    [Google Scholar]
  14. SodeifianG. GarlapatiC. RoshanghiasA. Experimental solubility and modeling of Crizotinib (anti-cancer medication) in supercritical carbon dioxide.Sci. Rep.20221211749410.1038/s41598‑022‑22366‑y36261497
    [Google Scholar]
  15. FramptonJ.E. Crizotinib: A review of its use in the treatment of anaplastic lymphoma kinase-positive, advanced non-small cell lung cancer.Drugs201373182031205110.1007/s40265‑013‑0142‑z24288180
    [Google Scholar]
  16. SodeifianG. Surya AlwiR. RazmimaneshF. AbadianM. Solubility of Dasatinib monohydrate (anticancer drug) in supercritical CO2: Experimental and thermodynamic modeling.J. Mol. Liq.202234611789910.1016/j.molliq.2021.117899
    [Google Scholar]
  17. BahmanF. PittalàV. HaiderM. GreishK. Enhanced anticancer activity of nanoformulation of dasatinib against triple-negative breast cancer.J. Pers. Med.202111655910.3390/jpm1106055934204015
    [Google Scholar]
  18. SodeifianG. SajadianS.A. Solubility measurement and preparation of nanoparticles of an anticancer drug (Letrozole) using rapid expansion of supercritical solutions with solid cosolvent (RESS-SC).J. Supercrit. Fluids201813323925210.1016/j.supflu.2017.10.015
    [Google Scholar]
  19. LongB.J. JelovacD. HandrattaV. ThiantanawatA. MacPhersonN. RagazJ. GoloubevaO.G. BrodieA.M. Therapeutic strategies using the aromatase inhibitor letrozole and tamoxifen in a breast cancer model.J. Natl. Cancer Inst.200496645646510.1093/jnci/djh07615026471
    [Google Scholar]
  20. BurgerJ.A. TedeschiA. BarrP.M. RobakT. OwenC. GhiaP. BaireyO. HillmenP. BartlettN.L. LiJ. SimpsonD. GrosickiS. DevereuxS. McCarthyH. CoutreS. QuachH. GaidanoG. MaslyakZ. StevensD.A. JanssensA. OffnerF. MayerJ. O’DwyerM. HellmannA. SchuhA. SiddiqiT. PolliackA. TamC.S. SuriD. ChengM. ClowF. StylesL. JamesD.F. KippsT.J. Ibrutinib as initial therapy for patients with chronic lymphocytic leukemia.N. Engl. J. Med.2015373252425243710.1056/NEJMoa150938826639149
    [Google Scholar]
  21. SodeifianG. NasriL. RazmimaneshF. Arbab NooshabadiM. Solubility of ibrutinib in supercritical carbon dioxide (Sc-CO2): Data correlation and thermodynamic analysis.J. Chem. Thermodyn.202318210705010.1016/j.jct.2023.107050
    [Google Scholar]
  22. SodeifianG. HsiehC.M. TabibzadehA. WangH.C. Arbab NooshabadiM. Solubility of palbociclib in supercritical carbon dioxide from experimental measurement and Peng–Robinson equation of state.Sci. Rep.2023131217210.1038/s41598‑023‑29228‑136750582
    [Google Scholar]
  23. EttlJ. HarbeckN. The safety and efficacy of palbociclib in the treatment of metastatic breast cancer.Expert Rev. Anticancer Ther.201717866166810.1080/14737140.2017.134750628649895
    [Google Scholar]
  24. SodeifianG. AlwiR.S. RazmimaneshF. RoshanghiasA. Solubility of pazopanib hydrochloride (PZH, anticancer drug) in supercritical CO2: Experimental and thermodynamic modeling.J. Supercrit. Fluids202219010575910.1016/j.supflu.2022.105759
    [Google Scholar]
  25. RiniB. Al-MarrawiM.Y. Pazopanib for the treatment of renal cancer.Expert Opin. Pharmacother.20111271171118910.1517/14656566.2011.57120621470066
    [Google Scholar]
  26. AlshahraniS.M. AlshetailiA.S. AlalaiweA. AlsulaysB.B. AnwerM.K. Al-ShdefatR. ImamF. ShakeelF. Anticancer efficacy of self-nanoemulsifying drug delivery system of sunitinib malate.AAPS PharmSciTech201819112313310.1208/s12249‑017‑0826‑x28620763
    [Google Scholar]
  27. SodeifianG. RazmimaneshF. SajadianS.A. Prediction of solubility of sunitinib malate (an anti-cancer drug) in supercritical carbon dioxide (SC–CO2): Experimental correlations and thermodynamic modeling.J. Mol. Liq.202029711174010.1016/j.molliq.2019.111740
    [Google Scholar]
  28. Di DesideroT. FioravantiA. OrlandiP. CanuB. GianniniR. BorrelliN. ManS. XuP. FontaniniG. BasoloF. KerbelR.S. FranciaG. DanesiR. BocciG. Antiproliferative and proapoptotic activity of sunitinib on endothelial and anaplastic thyroid cancer cells via inhibition of Akt and ERK1/2 phosphorylation and by down-regulation of cyclin-D1.J. Clin. Endocrinol. Metab.2013989E1465E147310.1210/jc.2013‑136423969186
    [Google Scholar]
  29. YangY. SunM. YaoW. WangF. LiX. WangW. LiJ. GaoZ. QiuL. YouR. YangC. BaQ. WangH. Compound kushen injection relieves tumor-associated macrophage-mediated immunosuppression through TNFR1 and sensitizes hepatocellular carcinoma to sorafenib.J. Immunother. Cancer202081e00031710.1136/jitc‑2019‑00031732179631
    [Google Scholar]
  30. SodeifianG. RazmimaneshF. SajadianS.A. HazaveieS.M. Experimental data and thermodynamic modeling of solubility of Sorafenib tosylate, as an anti-cancer drug, in supercritical carbon dioxide: Evaluation of Wong-Sandler mixing rule.J. Chem. Thermodyn.202014210599810.1016/j.jct.2019.105998
    [Google Scholar]
  31. MousaA.B. Sorafenib in the treatment of advanced hepatocellular carcinoma.Saudi J. Gastroenterol.2008141404210.4103/1319‑3767.3780819568496
    [Google Scholar]
  32. HazaveieS.M. SodeifianG. SajadianS.A. Measurement and thermodynamic modeling of solubility of Tamsulosin drug (anti cancer and anti-prostatic tumor activity) in supercritical carbon dioxide.J. Supercrit. Fluids202016310487510.1016/j.supflu.2020.104875
    [Google Scholar]
  33. RoehrbornC.G. AndrioleG.L. WilsonT.H. CastroR. RittmasterR.S. Effect of dutasteride on prostate biopsy rates and the diagnosis of prostate cancer in men with lower urinary tract symptoms and enlarged prostates in the Combination of Avodart and Tamsulosin trial.Eur. Urol.201159224424910.1016/j.eururo.2010.10.04021093145
    [Google Scholar]
  34. DrăgănescuM. CarmocanC. Hormone therapy in breast cancer.Chirurgia (Bucur.)2017112441341710.21614/chirurgia.112.4.41328862117
    [Google Scholar]
  35. PeddieN. AgnewS. CrawfordM. DixonD. MacPhersonI. FlemingL. The impact of medication side effects on adherence and persistence to hormone therapy in breast cancer survivors: A qualitative systematic review and thematic synthesis.Breast20215814715910.1016/j.breast.2021.05.00534049260
    [Google Scholar]
  36. LieblC.M. KutschanS. DörflerJ. KäsmannL. HübnerJ. Systematic review about complementary medical hyperthermia in oncology.Clin. Exp. Med.202222451956510.1007/s10238‑022‑00846‑935767077
    [Google Scholar]
  37. HoteitM. OneissiZ. RedaR. WakimF. ZaidanA. FarranM. Abi-KhalilE. El-SibaiM. Cancer immunotherapy: A comprehensive appraisal of its modes of application (Review).Oncol. Lett.202122365510.3892/ol.2021.1291634386077
    [Google Scholar]
  38. CanjkoI. PerićL. FlamJ. Kovač-BarićM. KotromanovićD. PušeljićN. Šambić-PencM. Short review of immunotherapy toxicity.Libri Oncologici Croatian J Oncol2021492-311812310.20471/LO.2021.49.02‑03.17
    [Google Scholar]
  39. StiegelisH.E. RanchorA.V. SandermanR. Psychological functioning in cancer patients treated with radiotherapy.Patient Educ. Couns.200452213114110.1016/S0738‑3991(03)00021‑115132517
    [Google Scholar]
  40. HuangM. LuJ.J. DingJ. Natural products in cancer therapy: Past, present and future.Nat. Prod. Bioprospect.202111151310.1007/s13659‑020‑00293‑733389713
    [Google Scholar]
  41. YuanL. CaiY. ZhangL. LiuS. LiP. LiX. Promoting Apoptosis, a promising way to treat breast cancer with natural products: A comprehensive review.Front. Pharmacol.20221280166210.3389/fphar.2021.80166235153757
    [Google Scholar]
  42. FeherM. SchmidtJ.M. Property distributions: Differences between drugs, natural products, and molecules from combinatorial chemistry.J. Chem. Inf. Comput. Sci.200343121822710.1021/ci020046712546556
    [Google Scholar]
  43. SodeifianG. SajadianS.A. Saadati ArdestaniN. Supercritical fluid extraction of omega-3 from Dracocephalum kotschyi seed oil: Process optimization and oil properties.J. Supercrit. Fluids201711913914910.1016/j.supflu.2016.08.019
    [Google Scholar]
  44. SodeifianG. GhorbandoostS. SajadianS.A. Saadati ArdestaniN. Extraction of oil from Pistacia khinjuk using supercritical carbon dioxide: Experimental and modeling.J. Supercrit. Fluids201611026527410.1016/j.supflu.2015.12.004
    [Google Scholar]
  45. PratheeshkumarP. SreekalaC. ZhangZ. BudhrajaA. DingS. SonY.-O. WangX. HitronA. Hyun-JungK. WangL. Cancer prevention with promising natural products: Mechanisms of action and molecular targets.Anti-Cancer Agents Med Chem2012121011591184
    [Google Scholar]
  46. DasA.P. AgarwalS.M. Recent advances in the area of plant-based anti-cancer drug discovery using computational approaches.Mol. Divers.20242890192536670282
    [Google Scholar]
  47. ElhadaryA.A. El-ZeinA. TalaatM. El-AragiG. El-AmawyA. Studying the effect of the dielectric barrier discharge non-thermal plasma on colon cancer cell line.Int J Thin Film Sci Technol202110316116810.18576/ijtfst/100305
    [Google Scholar]
  48. MohanrajK. BalasubramanianD. JhansiN. SaravanabhavanM. ChandrasekaranJ. Structural, optical, luminescence and morphological properties of rod shaped CdO biotemplate synthesized by via hen egg-albumen extract for anti-cervical cancer application.Int. J. Thin. Film. Sci. Technol.201871112310.18576/ijtfst/070103
    [Google Scholar]
  49. KashyapD. TuliH.S. YererM.B. SharmaA. SakK. SrivastavaS. PandeyA. GargV.K. SethiG. BishayeeA. Natural product-based nanoformulations for cancer therapy: Opportunities and challenges.Semin. Cancer Biol.20216952310.1016/j.semcancer.2019.08.01431421264
    [Google Scholar]
  50. DuttaS. MahalanobishS. SahaS. GhoshS. SilP.C. Natural products: An upcoming therapeutic approach to cancer.Food Chem. Toxicol.201912824025510.1016/j.fct.2019.04.01230991130
    [Google Scholar]
  51. AtiaI. SalemM.L. ElkholyA. ElmashadW. AliG.A.M. In-silico analysis of protein receptors contributing to SARS-CoV-2 high infectivity.Inform. Sci. Lett.2021103561570
    [Google Scholar]
  52. ChenD. DouQ.P. Tea polyphenols and their roles in cancer prevention and chemotherapy.Int. J. Mol. Sci.2008971196120610.3390/ijms907119619325799
    [Google Scholar]
  53. NewmanD.J. CraggG.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019.J. Nat. Prod.202083377080310.1021/acs.jnatprod.9b0128532162523
    [Google Scholar]
  54. HuangD.D. ShiG. JiangY. YaoC. ZhuC. A review on the potential of Resveratrol in prevention and therapy of diabetes and diabetic complications.Biomed. Pharmacother.202012510976710.1016/j.biopha.2019.10976732058210
    [Google Scholar]
  55. GaoF. DengG. LiuW. ZhouK. LiM. Resveratrol suppresses human hepatocellular carcinoma via targeting HGF-c-Met signaling pathway.Oncol. Rep.20173721203121110.3892/or.2017.534728075467
    [Google Scholar]
  56. Di PascoliM. DivíM. Rodríguez-VilarruplaA. RosadoE. Gracia-SanchoJ. VilasecaM. BoschJ. García-PagánJ.C. Resveratrol improves intrahepatic endothelial dysfunction and reduces hepatic fibrosis and portal pressure in cirrhotic rats.J. Hepatol.201358590491010.1016/j.jhep.2012.12.01223262250
    [Google Scholar]
  57. CatalognaG. MoracaF. D’AntonaL. DattiloV. PerrottiG. LupiaA. CostaG. OrtusoF. IulianoR. TrapassoF. AmatoR. AlcaroS. PerrottiN. Review about the multi-target profile of resveratrol and its implication in the SGK1 inhibition.Eur. J. Med. Chem.201918311167510.1016/j.ejmech.2019.11167531539779
    [Google Scholar]
  58. MukherjeeS. DudleyJ.I. DasD.K. Dose-dependency of resveratrol in providing health benefits.Dose Response201084dose-response.010.2203/dose‑response.09‑015.Mukherjee21191486
    [Google Scholar]
  59. Tomé-CarneiroJ. GonzálvezM. LarrosaM. Yáñez-GascónM.J. García-AlmagroF.J. Ruiz-RosJ.A. Tomás-BarberánF.A. García-ConesaM.T. EspínJ.C. Grape resveratrol increases serum adiponectin and downregulates inflammatory genes in peripheral blood mononuclear cells: A triple-blind, placebo-controlled, one-year clinical trial in patients with stable coronary artery disease.Cardiovasc. Drugs Ther.2013271374810.1007/s10557‑012‑6427‑823224687
    [Google Scholar]
  60. ZhaoH. GuoY. LiS. HanR. YingJ. ZhuH. WangY. YinL. HanY. SunL. WangZ. LinQ. BiX. JiaoY. JiaH. ZhaoJ. HuangZ. LiZ. ZhouJ. SongW. MengK. CaiJ. A novel anti-cancer agent Icaritin suppresses hepatocellular carcinoma initiation and malignant growth through the IL-6/Jak2/Stat3 pathway.Oncotarget2015631319273194310.18632/oncotarget.557826376676
    [Google Scholar]
  61. FanY. JiangT. Pulmonary emphysema.Airway Stenting in Interventional RadiologyChamSpringer2019279287
    [Google Scholar]
  62. FanY. LiS. DingX. YueJ. JiangJ. ZhaoH. HaoR. QiuW. LiuK. LiY. WangS. ZhengL. YeB. MengK. XuB. First-in-class immune-modulating small molecule Icaritin in advanced hepatocellular carcinoma: Preliminary results of safety, durable survival and immune biomarkers.BMC Cancer201919127910.1186/s12885‑019‑5471‑130922248
    [Google Scholar]
  63. LuoX.Y. WuK.M. HeX.X. Advances in drug development for hepatocellular carcinoma: Clinical trials and potential therapeutic targets.J. Exp. Clin. Cancer Res.202140117210.1186/s13046‑021‑01968‑w34006331
    [Google Scholar]
  64. BaillyC. Molecular and cellular basis of the anticancer activity of the prenylated flavonoid icaritin in hepatocellular carcinoma.Chem. Biol. Interact.202032510912410.1016/j.cbi.2020.10912432437694
    [Google Scholar]
  65. PolachiN. BaiG. LiT. ChuY. WangX. LiS. GuN. WuJ. LiW. ZhangY. ZhouS. SunH. LiuC. Modulatory effects of silibinin in various cell signaling pathways against liver disorders and cancer – A comprehensive review.Eur. J. Med. Chem.201612357759510.1016/j.ejmech.2016.07.07027517806
    [Google Scholar]
  66. Bosch-BarreraJ. QueraltB. MenendezJ.A. Targeting STAT3 with silibinin to improve cancer therapeutics.Cancer Treat. Rev.201758616910.1016/j.ctrv.2017.06.00328686955
    [Google Scholar]
  67. SiegelA.B. NarayanR. RodriguezR. GoyalA. JacobsonJ.S. KellyK. LadasE. LunghoferP.J. HansenR.J. GustafsonD.L. FlaigT.W. TsaiW.Y. WuD.P. LeeV. GreenleeH. A phase I dose-finding study of silybin phosphatidylcholine (milk thistle) in patients with advanced hepatocellular carcinoma.Integr. Cancer Ther.2014131465310.1177/153473541349079823757319
    [Google Scholar]
  68. OuQ. WengY. WangS. ZhaoY. ZhangF. ZhouJ. WuX. Silybin alleviates hepatic steatosis and fibrosis in NASH mice by inhibiting oxidative stress and involvement with the Nf-κB pathway.Dig. Dis. Sci.201863123398340810.1007/s10620‑018‑5268‑030191499
    [Google Scholar]
  69. ShouJ.W. ShawP.C. Berberine reduces lipid accumulation in obesity via mediating transcriptional function of PPARδ.Int. J. Mol. Sci.202324141160010.3390/ijms24141160037511356
    [Google Scholar]
  70. KongW. WeiJ. AbidiP. LinM. InabaS. LiC. WangY. WangZ. SiS. PanH. WangS. WuJ. WangY. LiZ. LiuJ. JiangJ.D. Berberine is a novel cholesterol-lowering drug working through a unique mechanism distinct from statins.Nat. Med.200410121344135110.1038/nm113515531889
    [Google Scholar]
  71. WangJ. ZhaoJ. YanC. XiC. WuC. ZhaoJ. LiF. DingY. ZhangR. QiS. LiX. LiuC. HouW. ChenH. WangY. WuD. ChenK. JiangH. HuangH. LiuH. Identification and evaluation of a lipid-lowering small compound in preclinical models and in a Phase I trial.Cell Metab.2022345667680.e610.1016/j.cmet.2022.03.00635427476
    [Google Scholar]
  72. LuoY. TianG. ZhuangZ. ChenJ. YouN. ZhuoL. LiangB. SongY. ZangS. LiuJ. YangJ. GeW. ShiJ. Berberine prevents non-alcoholic steatohepatitis-derived hepatocellular carcinoma by inhibiting inflammation and angiogenesis in mice.Am. J. Transl. Res.20191152668268231217846
    [Google Scholar]
  73. ZhuX. BianH. WangL. SunX. XuX. YanH. XiaM. ChangX. LuY. LiY. XiaP. LiX. GaoX. Berberine attenuates nonalcoholic hepatic steatosis through the AMPK-SREBP-1c-SCD1 pathway.Free Radic. Biol. Med.201914119220410.1016/j.freeradbiomed.2019.06.01931226399
    [Google Scholar]
  74. YanH.M. XiaM.F. WangY. ChangX.X. YaoX.Z. RaoS.X. ZengM.S. TuY.F. FengR. JiaW.P. LiuJ. DengW. JiangJ.D. GaoX. Efficacy of berberine in patients with non-alcoholic fatty liver disease.PLoS One2015108e013417210.1371/journal.pone.013417226252777
    [Google Scholar]
  75. RoohbakhshA. IranshahyM. IranshahiM. Glycyrrhetinic acid and its derivatives: Anti-cancer and cancer chemopreventive properties, mechanisms of action and structure-cytotoxic activity relationship.Curr. Med. Chem.201623549851710.2174/092986732366616011212225626758798
    [Google Scholar]
  76. CaoM. GaoY. ZhanM. QiuN. PiaoY. ZhouZ. ShenY. Glycyrrhizin acid and glycyrrhetinic acid modified polyethyleneimine for targeted DNA delivery to hepatocellular carcinoma.Int. J. Mol. Sci.20192020507410.3390/ijms2020507431614879
    [Google Scholar]
  77. KorenagaM. HidakaI. NishinaS. SakaiA. ShinozakiA. GondoT. FurutaniT. KawanoH. SakaidaI. HinoK. A glycyrrhizin-containing preparation reduces hepatic steatosis induced by hepatitis C virus protein and iron in mice.Liver Int.201131455256010.1111/j.1478‑3231.2011.02469.x21382166
    [Google Scholar]
  78. YanT. WangH. CaoL. WangQ. TakahashiS. YagaiT. LiG. KrauszK.W. WangG. GonzalezF.J. HaoH. Glycyrrhizin alleviates nonalcoholic steatohepatitis via modulating bile acids and meta-inflammation.Drug Metab. Dispos.20184691310131910.1124/dmd.118.08200829959134
    [Google Scholar]
  79. PikorL.A. RamnarineV.R. LamS. LamW.L. Genetic alterations defining NSCLC subtypes and their therapeutic implications.Lung Cancer201382217918910.1016/j.lungcan.2013.07.02524011633
    [Google Scholar]
  80. HowingtonJ.A. BlumM.G. ChangA.C. BalekianA.A. MurthyS.C. Treatment of stage I and II non-small cell lung cancer: Diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines.Chest20131435Suppl.e278Se313S10.1378/chest.12‑235923649443
    [Google Scholar]
  81. KovácsA. VasasA. HohmannJ. Natural phenanthrenes and their biological activity.Phytochemistry20086951084111010.1016/j.phytochem.2007.12.00518243254
    [Google Scholar]
  82. TóthB. HohmannJ. VasasA. Phenanthrenes: A promising group of plant secondary metabolites.J. Nat. Prod.201881366167810.1021/acs.jnatprod.7b0061929280630
    [Google Scholar]
  83. TungsukruthaiS. SritularakB. ChanvorachoteP. Cycloartobiloxanthone inhibits migration and invasion of lung cancer cells.Anticancer Res.201737116311631929061814
    [Google Scholar]
  84. WeeP. WangZ. Epidermal growth factor receptor cell proliferation signaling pathways.Cancers (Basel)2017955210.3390/cancers905005228513565
    [Google Scholar]
  85. MittalV. Epithelial mesenchymal transition in aggressive lung cancers.Adv. Exp. Med. Biol.20168903756
    [Google Scholar]
  86. LohC.Y. ChaiJ. TangT. WongW. SethiG. ShanmugamM. ChongP. LooiC. The E-cadherin and N-cadherin switch in epithelial-to-mesenchymal transition: Signaling, therapeutic implications, and challenges.Cells2019810111810.3390/cells810111831547193
    [Google Scholar]
  87. NonpanyaN. PrakhongcheepO. PetsriK. JitjaichamC. TungsukruthaiS. SritularakB. ChanvorachoteP. Ephemeranthol A suppresses epithelial to mesenchymal transition and FAK-Akt signaling in lung cancer cells.Anticancer Res.20204094989499910.21873/anticanres.1450232878787
    [Google Scholar]
  88. PeiX. XiaoJ. WeiG. ZhangY. LinF. XiongZ. LuL. WangX. PangG. JiangY. JiangL. Oenothein B inhibits human non-small cell lung cancer A549 cell proliferation by ROS-mediated PI3K/Akt/NF-κB signaling pathway.Chem. Biol. Interact.201929811212010.1016/j.cbi.2018.09.02130452899
    [Google Scholar]
  89. LiJ. WangS. YinJ. PanL. Geraniin induces apoptotic cell death in human lung adenocarcinoma A549 cells in vitro and in vivo .Can. J. Physiol. Pharmacol.201391121016102410.1139/cjpp‑2013‑014024289071
    [Google Scholar]
  90. KoH. Geraniin inhibits TGF-β1-induced epithelial–mesenchymal transition and suppresses A549 lung cancer migration, invasion and anoikis resistance.Bioorg. Med. Chem. Lett.201525173529353410.1016/j.bmcl.2015.06.09326169124
    [Google Scholar]
  91. SunW. YuJ. GaoH. WuX. WangS. HouY. LuJ.J. ChenX. Inhibition of lung cancer by 2-methoxy-6-acetyl-7-methyljuglone through induction of necroptosis by targeting receptor-interacting protein 1.Antioxid. Redox Signal.20193129310810.1089/ars.2017.737630556404
    [Google Scholar]
  92. SunW. BaoJ. LinW. GaoH. ZhaoW. ZhangQ. LeungC.H. MaD.L. LuJ. ChenX. 2-Methoxy-6-acetyl-7-methyljuglone (MAM), a natural naphthoquinone, induces NO-dependent apoptosis and necroptosis by H 2 O 2 -dependent JNK activation in cancer cells.Free Radic. Biol. Med.201692617710.1016/j.freeradbiomed.2016.01.01426802903
    [Google Scholar]
  93. YuJ. ZhongB. ZhaoL. HouY. AiN. LuJ.J. GeW. ChenX. Fighting drug-resistant lung cancer by induction of NAD(P)H:quinone oxidoreductase 1 (NQO1)-mediated ferroptosis.Drug Resist. Updat.20237010097710.1016/j.drup.2023.10097737321064
    [Google Scholar]
  94. LiuX. ZhangY. GaoH. HouY. LuJ. FengY. XuQ. LiuB. ChenX. Induction of an MLKL mediated non-canonical necroptosis through reactive oxygen species by tanshinol A in lung cancer cells.Biochem. Pharmacol.202017111368410.1016/j.bcp.2019.11368431678492
    [Google Scholar]
  95. ConradM. AngeliJ.P.F. VandenabeeleP. StockwellB.R. Regulated necrosis: Disease relevance and therapeutic opportunities.Nat. Rev. Drug Discov.201615534836610.1038/nrd.2015.626775689
    [Google Scholar]
  96. PasparakisM. VandenabeeleP. Necroptosis and its role in inflammation.Nature2015517753431132010.1038/nature1419125592536
    [Google Scholar]
  97. ZhangY. ChenX. GueydanC. HanJ. Plasma membrane changes during programmed cell deaths.Cell Res.201828192110.1038/cr.2017.13329076500
    [Google Scholar]
  98. ChoiY. KimJ. LeeK. ChoiY.J. YeB.R. KimM.S. KoS.G. LeeS.H. KangD.H. HeoS.J. Tuberatolide B suppresses cancer progression by promoting ROS-mediated inhibition of STAT3 signaling.Mar. Drugs20171535510.3390/md1503005528245605
    [Google Scholar]
  99. XiangY. ChenX. WangW. ZhaiL. SunX. FengJ. DuanT. ZhangM. PanT. YanL. JinT. GaoQ. WenC. MaW. LiuW. WangD. WuQ. XieT. SuiX. Natural product erianin inhibits bladder cancer cell growth by inducing ferroptosis via NRF2 inactivation.Front. Pharmacol.20211277550610.3389/fphar.2021.77550634776986
    [Google Scholar]
  100. CeciC. LacalP. TentoriL. De MartinoM. MianoR. GrazianiG. Experimental evidence of the antitumor, antimetastatic and antiangiogenic activity of ellagic acid.Nutrients20181011175610.3390/nu1011175630441769
    [Google Scholar]
  101. Monteiro-ReisS. LoboJ. HenriqueR. JerónimoC. Epigenetic mechanisms influencing epithelial to mesenchymal transition in bladder cancer.Int. J. Mol. Sci.201920229710.3390/ijms2002029730642115
    [Google Scholar]
  102. Dell’AgliM. ParapiniS. BasilicoN. VerottaL. TaramelliD. BerryC. BosisioE. In vitro studies on the mechanism of action of two compounds with antiplasmodial activity: Ellagic acid and 3,4,5-trimethoxyphenyl(6′-O-aalloyl)-beta-D-glucopyranoside.Planta Med.200369216216410.1055/s‑2003‑3770612624824
    [Google Scholar]
  103. LiF. SunY. JiaJ. YangC. TangX. JinB. WangK. GuoP. MaZ. ChenY. WangX. ChangL. HeD. ZengJ. Silibinin attenuates TGF‑β1‑induced migration and invasion via EMT suppression and is associated with COX‑2 downregulation in bladder transitional cell carcinoma.Oncol. Rep.20184063543355010.3892/or.2018.672830272315
    [Google Scholar]
  104. WuK. NingZ. ZengJ. FanJ. ZhouJ. ZhangT. ZhangL. ChenY. GaoY. WangB. GuoP. LiL. WangX. HeD. Silibinin inhibits β-catenin/ZEB1 signaling and suppresses bladder cancer metastasis via dual-blocking epithelial–mesenchymal transition and stemness.Cell. Signal.201325122625263310.1016/j.cellsig.2013.08.02824012496
    [Google Scholar]
  105. ChengA.L. HsuC.H. LinJ.K. HsuM.M. HoY.F. ShenT.S. KoJ.Y. LinJ.T. LinB.R. Ming-ShiangW. YuH.S. JeeS.H. ChenG.S. ChenT.M. ChenC.A. LaiM.K. PuY.S. PanM.H. WangY.J. TsaiC.C. HsiehC.Y. Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions.Anticancer Res.2001214B2895290011712783
    [Google Scholar]
  106. ChengD. harmacokinetics, pharmacodynamics, and PKPD modeling of curcumin in regulating antioxidant and epigenetic gene expression in healthy human volunteers.Mol. Pharmaceut.201916518811889
    [Google Scholar]
  107. BoseS. PandaA.K. MukherjeeS. SaG. Curcumin and tumor immune-editing: Resurrecting the immune system.Cell Div.2015101610.1186/s13008‑015‑0012‑z26464579
    [Google Scholar]
  108. ChengD. LiW. WangL. LinT. PoianiG. WassefA. HudlikarR. OndarP. BrunettiL. KongA.N. Pharmacokinetics, pharmacodynamics, and PKPD modeling of curcumin in regulating antioxidant and epigenetic gene expression in healthy human volunteers.Mol. Pharm.20191651881188910.1021/acs.molpharmaceut.8b0124630860383
    [Google Scholar]
  109. LiuH.S. KeC.S. ChengH.C. HuangC.Y.F. SuC.L. Curcumin-induced mitotic spindle defect and cell cycle arrest in human bladder cancer cells occurs partly through inhibition of aurora A.Mol. Pharmacol.201180463864610.1124/mol.111.07251221757545
    [Google Scholar]
  110. ShiJ. ZhangX. ShiT. LiH. Antitumor effects of curcumin in human bladder cancer in vitro. Oncol. Lett.20171411157116110.3892/ol.2017.620528693289
    [Google Scholar]
  111. MittalR.D. JaiswalP.K. GoelA. Survivin: A molecular biomarker in cancer.Indian J. Med. Res.2015141438939710.4103/0971‑5916.15925026112839
    [Google Scholar]
  112. ChadalapakaG. JutooruI. ChintharlapalliS. PapineniS. SmithR.III LiX. SafeS. Curcumin decreases specificity protein expression in bladder cancer cells.Cancer Res.200868135345535410.1158/0008‑5472.CAN‑07‑680518593936
    [Google Scholar]
  113. ZhangL. YangG. ZhangR. DongL. ChenH. BoJ. XueW. HuangY. Curcumin inhibits cell proliferation and motility via suppression of TROP2 in bladder cancer cells.Int. J. Oncol.201853251552610.3892/ijo.2018.442329901071
    [Google Scholar]
  114. ManiJ. ValloS. RakelS. AntoniettiP. GesslerF. BlahetaR. BartschG. MichaelisM. CinatlJ. HaferkampA. KögelD. Chemoresistance is associated with increased cytoprotective autophagy and diminished apoptosis in bladder cancer cells treated with the BH3 mimetic (−)-Gossypol (AT-101).BMC Cancer201515122410.1186/s12885‑015‑1239‑425885284
    [Google Scholar]
  115. LiaoF. LiuL. LuoE. HuJ. Curcumin enhances anti-tumor immune response in tongue squamous cell carcinoma.Arch. Oral Biol.201892323710.1016/j.archoralbio.2018.04.01529751146
    [Google Scholar]
  116. XuB. YuL. ZhaoL-Z. Curcumin up regulates T helper 1 cells in patients with colon cancer.Am. J. Transl. Res.2017941866187528469791
    [Google Scholar]
  117. KiskovaT. KubatkaP. BüsselbergD. KassayovaM. The plant-derived compound resveratrol in brain cancer: A review.Biomolecules202010116110.3390/biom1001016131963897
    [Google Scholar]
  118. ZhouD.D. LuoM. HuangS.Y. SaimaitiA. ShangA. GanR.Y. LiH.B. Effects and mechanisms of resveratrol on aging and age-related diseases.Oxid. Med. Cell. Longev.2021202111510.1155/2021/993221834336123
    [Google Scholar]
  119. ChenX. SongX. ZhaoX. ZhangY. WangY. JiaR. ZouY. LiL. YinZ. Insights into the anti-inflammatory and antiviral mechanisms of resveratrol.Mediators Inflamm20222022713875610.1155/2022/7138756
    [Google Scholar]
  120. ChupraditS. BokovD. ZamanianM.Y. HeidariM. HakimizadehE. Hepatoprotective and therapeutic effects of resveratrol: A focus on anti‐inflammatory and antioxidative activities.Fundam. Clin. Pharmacol.202236346848510.1111/fcp.1274634935193
    [Google Scholar]
  121. GalR. DeresL. TothK. HalmosiR. HabonT. The effect of resveratrol on the cardiovascular system from molecular mechanisms to clinical results.Int. J. Mol. Sci.202122181015210.3390/ijms22181015234576315
    [Google Scholar]
  122. IslamF. NafadyM.H. IslamM.R. SahaS. RashidS. AkterA. Or-RashidM.H. AkhtarM.F. PerveenA. Md AshrafG. RahmanM.H. Hussein SweilamS. Resveratrol and neuroprotection: An insight into prospective therapeutic approaches against Alzheimer’s disease from bench to bedside.Mol. Neurobiol.20225974384440410.1007/s12035‑022‑02859‑735545730
    [Google Scholar]
  123. RenB. KwahM.X.Y. LiuC. MaZ. ShanmugamM.K. DingL. XiangX. HoP.C.L. WangL. OngP.S. GohB.C. Resveratrol for cancer therapy: Challenges and future perspectives.Cancer Lett.2021515637210.1016/j.canlet.2021.05.00134052324
    [Google Scholar]
  124. YangY. LiC. LiH. WuM. RenC. ZhenY. MaX. DiaoY. MaX. DengS. LiuJ. ShuX. Differential sensitivities of bladder cancer cell lines to resveratol are unrelated to its metabolic profile.Oncotarget2017825402894030410.18632/oncotarget.1504128178690
    [Google Scholar]
  125. ThorntonT.M. RinconM. Non-classical p38 map kinase functions: Cell cycle checkpoints and survival.Int. J. Biol. Sci.200951445210.7150/ijbs.5.4419159010
    [Google Scholar]
  126. NitulescuG. Van De VenterM. NitulescuG. UngurianuA. JuzenasP. PengQ. OlaruO. GrădinaruD. TsatsakisA. TsoukalasD. SpandidosD. MarginaD. The Akt pathway in oncology therapy and beyond (Review).Int. J. Oncol.20185362319233110.3892/ijo.2018.459730334567
    [Google Scholar]
  127. LinX. WuG. HuoW.Q. ZhangY. JinF.S. Resveratrol induces apoptosis associated with mitochondrial dysfunction in bladder carcinoma cells.Int. J. Urol.201219875776410.1111/j.1442‑2042.2012.03024.x22607368
    [Google Scholar]
  128. WuM.L. LiH. YuL.J. ChenX.Y. KongQ.Y. SongX. ShuX.H. LiuJ. Short-term resveratrol exposure causes in vitro and in vivo growth inhibition and apoptosis of bladder cancer cells.PLoS One201492e8980610.1371/journal.pone.008980624587049
    [Google Scholar]
  129. SantoniM. ContiA. PivaF. MassariF. CiccareseC. BurattiniL. ChengL. Lopez-BeltranA. ScarpelliM. SantiniD. TortoraG. CascinuS. MontironiR. Role of STAT3 pathway in genitourinary tumors.Future Sci. OA201513FSO1510.4155/fso.15.1328031890
    [Google Scholar]
  130. ShuY. RenL. XieB. LiangZ. ChenJ. MiR-204 enhances mitochondrial apoptosis in doxorubicin-treated prostate cancer cells by targeting SIRT1/p53 pathway.Oncotarget2017857973139732210.18632/oncotarget.2196029228612
    [Google Scholar]
  131. TaoJ. LuQ. WuD. LiP. XuB. QingW. WangM. ZhangZ. ZhangW. microRNA-21 modulates cell proliferation and sensitivity to doxorubicin in bladder cancer cells.Oncol. Rep.20112561721172921468550
    [Google Scholar]
  132. ZhouC. DingJ. WuY. Resveratrol induces apoptosis of bladder cancer cells via miR-21 regulation of the Akt/Bcl-2 signaling pathway.Mol. Med. Rep.2014941467147310.3892/mmr.2014.195024535223
    [Google Scholar]
  133. MoonS.K. KimH.M. LeeY.C. KimC.H. Disialoganglioside (GD3) synthase gene expression suppresses vascular smooth muscle cell responses via the inhibition of ERK1/2 phosphorylation, cell cycle progression, and matrix metalloproteinase-9 expression.J. Biol. Chem.200427932330633307010.1074/jbc.M31346220015175338
    [Google Scholar]
  134. LatruffeN. MenzelM. DelmasD. BuchetR. LançonA. Compared binding properties between resveratrol and other polyphenols to plasmatic albumin: Consequences for the health protecting effect of dietary plant microcomponents.Molecules20141911170661707710.3390/molecules19111706625347454
    [Google Scholar]
  135. SenthilkumarK. ArunkumarR. ElumalaiP. SharmilaG. GunadhariniD.N. BanudeviS. KrishnamoorthyG. BensonC.S. ArunakaranJ. Quercetin inhibits invasion, migration and signalling molecules involved in cell survival and proliferation of prostate cancer cell line (PC‐3).Cell Biochem. Funct.2011292879510.1002/cbf.172521308698
    [Google Scholar]
  136. SuQ. PengM. ZhangY. XuW. DarkoK.O. TaoT. HuangY. TaoX. YangX. Quercetin induces bladder cancer cells apoptosis by activation of AMPK signaling pathway.Am. J. Cancer Res.20166249850827186419
    [Google Scholar]
  137. KimY. KimW.J. ChaE.J. Quercetin-induced growth inhibition in human bladder cancer cells is associated with an increase in Ca2+-activated K+ channels.Korean J. Physiol. Pharmacol.201115527928310.4196/kjpp.2011.15.5.27922128260
    [Google Scholar]
  138. TsaiT.F. HwangT.I-S. LinJ-F. ChenH-E. YangS-C. LinY-C. ChouK-Y. ChouK-Y. Suppression of quercetin-induced autophagy enhances cytotoxicity through elevating apoptotic cell death in human bladder cancer cells.Urol. Sci.2019302586610.4103/UROS.UROS_22_18
    [Google Scholar]
  139. MaL. FeugangJ.M. KonarskiP. WangJ. LuJ. FuS. MaB. TianB. ZouC. WangZ. Growth inhibitory effects of quercetin on bladder cancer cell.Front. Biosci.20061112275228510.2741/197016720314
    [Google Scholar]
  140. RockenbachL. BavarescoL. FariasP.F. CappellariA.R. BarriosC.H. MorroneF.B. BattastiniA.M.O. Alterations in the extracellular catabolism of nucleotides are involved in the antiproliferative effect of quercetin in human bladder cancer T24 cells.Urol Oncol201331712041110.1016/j.urolonc.2011.10.009
    [Google Scholar]
  141. OršolićN. KaračI. SirovinaD. KukoljM. KunštićM. GajskiG. Garaj-VrhovacV. ŠtajcarD. Chemotherapeutic potential of quercetin on human bladder cancer cells.J. Environ. Sci. Health Part A Tox. Hazard. Subst. Environ. Eng.201651977678110.1080/10934529.2016.117046527149655
    [Google Scholar]
  142. WangW. WuY. ChenS. LiuX. HeJ. WangS. LuW. TangY. HuangJ. Shikonin is a novel and selective IMPDH2 inhibitor that target triple‐negative breast cancer.Phytother. Res.202135146347610.1002/ptr.682532779300
    [Google Scholar]
  143. Ou-YangF. TsaiI.H. TangJ.Y. YenC.Y. ChengY.B. FarooqiA.A. ChenS.R. YuS.Y. KaoJ.K. ChangH.W. Antiproliferation for breast cancer cells by ethyl acetate extract of Nepenthes thorellii x (ventricosa x maxima).Int. J. Mol. Sci.20192013323810.3390/ijms2013323831266224
    [Google Scholar]
  144. NguyenM.H. NguyenD.T. NguyenP.T.M. Apoptosis induction by α-mangostin-loaded nanoparticles in human cervical carcinoma cells.Z. Naturforsch. C J. Biosci.2020755-614515110.1515/znc‑2020‑000132286252
    [Google Scholar]
  145. ZhangK.-j. GuQ.-l. YangK. MingX.-j. WangJ.-x. Anticarcinogenic effects of α-mangostin: A review.Planta Med.2017833-04188202
    [Google Scholar]
  146. AlamM. RashidS. FatimaK. AdnanM. ShafieA. AkhtarM.S. GanieA.H. EldinS.M. IslamA. KhanI. HassanM.I. Biochemical features and therapeutic potential of α-Mangostin: Mechanism of action, medicinal values, and health benefits.Biomed. Pharmacother.202316311471010.1016/j.biopha.2023.11471037141737
    [Google Scholar]
  147. KhanP. QueenA. MohammadT. Smita KhanN.S. HafeezZ.B. HassanM.I. AliS. Identification of α-Mangostin as a Potential Inhibitor of Microtubule Affinity Regulating Kinase 4.J. Nat. Prod.20198282252226110.1021/acs.jnatprod.9b0037231343173
    [Google Scholar]
  148. ZhangY. WangS. QianW. JiD. WangQ. ZhangZ. WangS. JiB. FuZ. SunY. uc.338 targets p21 and cyclin D1 via PI3K/AKT pathway activation to promote cell proliferation in colorectal cancer.Oncol. Rep.20184021119112810.3892/or.2018.648029901203
    [Google Scholar]
  149. ZhuX. LiJ. NingH. YuanZ. ZhongY. WuS. ZengJ.Z. α-Mangostin induces apoptosis and inhibits metastasis of breast cancer cells via regulating RXRα-AKT signaling pathway.Front. Pharmacol.20211273965810.3389/fphar.2021.73965834539418
    [Google Scholar]
  150. FarhanM. Green tea catechins: Nature’s way of preventing and treating cancer.Int. J. Mol. Sci.202223181071310.3390/ijms23181071336142616
    [Google Scholar]
  151. SinghB.N. ShankarS. SrivastavaR.K. Green tea catechin, epigallocatechin-3-gallate (EGCG): Mechanisms, perspectives and clinical applications.Biochem. Pharmacol.201182121807182110.1016/j.bcp.2011.07.09321827739
    [Google Scholar]
  152. YuM. LiuZ. LiuY. ZhouX. SunF. LiuY. LiL. HuaS. ZhaoY. GaoH. ZhuZ. NaM. ZhangQ. YangR. ZhangJ. YaoY. ChenX. PTP 1B markedly promotes breast cancer progression and is regulated by miR‐193a‐3p.FEBS J.201928661136115310.1111/febs.1472430548198
    [Google Scholar]
  153. Kuban-JankowskaA. KostrzewaT. MusialC. BaroneG. Lo-BoscoG. Lo-CelsoF. Gorska-PonikowskaM. Green tea catechins induce inhibition of PTP1B phosphatase in breast cancer cells with potent anti-cancer properties: In vitro assay, molecular docking, and dynamics studies.Antioxidants2020912120810.3390/antiox912120833266280
    [Google Scholar]
  154. GuzmánE.A. PittsT.P. WinderP.L. WrightA.E. The marine natural product furospinulosin 1 induces apoptosis in MDA-MB-231 triple negative breast cancer cell spheroids, but not in cells grown traditionally with longer treatment.Mar. Drugs202119524910.3390/md1905024933924764
    [Google Scholar]
  155. LeeM.W. HurH. ChangK.C. LeeT.S. KaK.H. JankovskyL. Introduction to distribution and ecology of sterile conks of Inonotus obliquus.Mycobiology200836419920210.4489/MYCO.2008.36.4.19923997626
    [Google Scholar]
  156. TizianaM. StefanoG. AlessioF. RosaS. DonatellaG. AnnalisaD. Mushrooms integrative treatment with inonotus obliquus and ganoderma lucidum in a triple negative breast cancer patient: A case report.World J. Breast Cancer Res.202020201017
    [Google Scholar]
  157. MeijerA.J. CodognoP. Autophagy: Regulation by energy sensing.Curr. Biol.2011216R227R22910.1016/j.cub.2011.02.00721419990
    [Google Scholar]
  158. JungC.H. RoS.H. CaoJ. OttoN.M. KimD.H. mTOR regulation of autophagy.FEBS Lett.201058471287129510.1016/j.febslet.2010.01.01720083114
    [Google Scholar]
  159. LeeM.G. KwonY.S. NamK.S. KimS.Y. HwangI.H. KimS. JangH. Chaga mushroom extract induces autophagy via the AMPK-mTOR signaling pathway in breast cancer cells.J. Ethnopharmacol.202127411408110.1016/j.jep.2021.11408133798660
    [Google Scholar]
  160. SalimiA. PourahmadJ. Role of natural compounds in prevention and treatment of chronic lymphocytic leukemia. Polyphenols: Prevention and Treatment of Human Disease2nd ed.Cambridge, MassachusettsAcademic Press2018195203
    [Google Scholar]
  161. RafiqS. RazaM.H. YounasM. NaeemF. AdeebR. IqbalJ. AnwarP. SajidU. ManzoorH.M. Molecular targets of curcumin and future therapeutic role in leukemia.J. Biosci. Med. (Irvine)201864335010.4236/jbm.2018.64003
    [Google Scholar]
  162. ZhangH-M. ZhaoL. LiH. XuH. ChenW-W. TaoL. Research progress on the anticarcinogenic actions and mechanisms of ellagic acid.Cancer Biol. Med.20141129210025009751
    [Google Scholar]
  163. KimH.R. ParkC.G. JungJ.Y. Acacetin (5,7-dihydroxy-4′-methoxyflavone) exhibits in vitro and in vivo anticancer activity through the suppression of NF-κB/Akt signaling in prostate cancer cells.Int. J. Mol. Med.201433231732410.3892/ijmm.2013.157124285354
    [Google Scholar]
  164. RussoM. MilitoA. SpagnuoloC. CarboneV. RosénA. MinasiP. LauriaF. RussoG.L. CK2 and PI3K are direct molecular targets of quercetin in chronic lymphocytic leukaemia.Oncotarget2017826425714258710.18632/oncotarget.1724628489572
    [Google Scholar]
  165. RuibinJ. BoJ. DanyingW. ChihongZ. JianguoF. LinhuiG. Therapy effects of wogonin on ovarian cancer cells.Biomed Res Int20172017938151310.1155/2017/9381513
    [Google Scholar]
  166. LiY. PuR. ZhouL. WangD. LiX. ffects of a chlorogenic acid-containing herbal medicine (LASNB) on colon cancer.Evid. Based Complement Alternat. Med.202120219923467
    [Google Scholar]
  167. HuangT. XiaoY. YiL. LiL. WangM. TianC. MaH. HeK. WangY. HanB. YeX. LiX. Coptisine from Rhizoma Coptidis suppresses HCT-116 cells-related tumor growth in vitro and in vivo.Sci. Rep.2017713852410.1038/srep3852428165459
    [Google Scholar]
  168. JiL. ShenW. ZhangF. QianJ. JiangJ. WengL. TanJ. LiL. ChenY. ChengH. SunD. Worenine reverses the Warburg effect and inhibits colon cancer cell growth by negatively regulating HIF-1α.Cell. Mol. Biol. Lett.20212611910.1186/s11658‑021‑00263‑y34006215
    [Google Scholar]
  169. PatraK.C. WangQ. BhaskarP.T. MillerL. WangZ. WheatonW. ChandelN. LaaksoM. MullerW.J. AllenE.L. JhaA.K. SmolenG.A. ClasquinM.F. RobeyR.B. HayN. Hexokinase 2 is required for tumor initiation and maintenance and its systemic deletion is therapeutic in mouse models of cancer.Cancer Cell201324221322810.1016/j.ccr.2013.06.01423911236
    [Google Scholar]
  170. FengW. XueT. HuangS. ShiQ. TangC. CuiG. YangG. GongH. GuoH. HIF-1α promotes the migration and invasion of hepatocellular carcinoma cells via the IL-8–NF-κB axis.Cell. Mol. Biol. Lett.20182312610.1186/s11658‑018‑0077‑129881400
    [Google Scholar]
  171. KasdaglyM. RadhakrishnanS. ReddivariL. VeeramachaneniD.N.R. VanamalaJ. Colon carcinogenesis: Influence of Western diet-induced obesity and targeting stem cells using dietary bioactive compounds.Nutrition20143011-121242125610.1016/j.nut.2014.02.01625280404
    [Google Scholar]
  172. GuoL. ChenX. HuY. YuZ. WangD. LiuJ. Curcumin inhibits proliferation and induces apoptosis of human colorectal cancer cells by activating the mitochondria apoptotic pathway.Phytother. Res.201327342243010.1002/ptr.473122628241
    [Google Scholar]
  173. Van NongH. HungL.X. ThangP.N. ChinhV.D. VuL.V. DungP.T. Van TrungT. NgaP.T. Fabrication and vibration characterization of curcumin extracted from turmeric (Curcuma longa) rhizomes of the northern Vietnam.Springerplus201651114710.1186/s40064‑016‑2812‑227504245
    [Google Scholar]
  174. ZhouD.Y. ZhangK. ConneyA.H. DingN. CuiX.X. WangH. VeranoM. ZhaoS. FanY.X. ZhengX. DuZ.Y. Synthesis and evaluation of curcumin-related compounds containing benzyl piperidone for their effects on human cancer cells.Chem. Pharm. Bull. (Tokyo)201361111149115510.1248/cpb.c13‑0050723985704
    [Google Scholar]
  175. DimasK. TsimplouliC. HouchenC. PantazisP. SakellaridisN. TsangarisG.T. AnastasiadouE. RamanujamR.P. An ethanol extract of Hawaiian turmeric: Extensive in vitro anticancer activity against human colon cancer cells.Altern. Ther. Health Med.201521Suppl. 2465426308760
    [Google Scholar]
  176. LiM. YueG.G.L. LuoL. TsuiS.K.W. FungK.P. NgS.S.M. LauC.B.S. Turmeric is therapeutic in vivo on patient-derived colorectal cancer xenografts: Inhibition of growth, metastasis, and tumor recurrence.Front. Oncol.20211057482710.3389/fonc.2020.57482733552955
    [Google Scholar]
  177. BaurJ.A. SinclairD.A. Therapeutic potential of resveratrol: The in vivo evidence.Nat. Rev. Drug Discov.20065649350610.1038/nrd206016732220
    [Google Scholar]
  178. AggarwalB.B. BhardwajA. AggarwalR.S. SeeramN.P. ShishodiaS. TakadaY. Role of resveratrol in prevention and therapy of cancer: Preclinical and clinical studies.Anticancer Res.2004245A2783284015517885
    [Google Scholar]
  179. Peter GuengerichF. ChunY.J. KimD. GillamE.M.J. ShimadaT. Cytochrome P450 1B1: A target for inhibition in anticarcinogenesis strategies.Mutat. Res.2003523-52417318210.1016/S0027‑5107(02)00333‑012628515
    [Google Scholar]
  180. HarikumarK.B. AggarwalB.B. Resveratrol: A multitargeted agent for age-associated chronic diseases.Cell Cycle2008781020103510.4161/cc.7.8.574018414053
    [Google Scholar]
  181. KunduJ.K. ShinY.K. SurhY.J. Resveratrol modulates phorbol ester-induced pro-inflammatory signal transduction pathways in mouse skin in vivo: NF-κB and AP-1 as prime targets.Biochem. Pharmacol.200672111506151510.1016/j.bcp.2006.08.00516999939
    [Google Scholar]
  182. BeckA. GoetschL. DumontetC. CorvaïaN. Strategies and challenges for the next generation of antibody–drug conjugates.Nat. Rev. Drug Discov.201716531533710.1038/nrd.2016.26828303026
    [Google Scholar]
  183. Abdollahpour-AlitappehM. LotfiniaM. GharibiT. MardanehJ. FarhadihosseinabadiB. LarkiP. FaghfourianB. SepehrK.S. Abbaszadeh-GoudarziK. Abbaszadeh-GoudarziG. JohariB. ZaliM.R. BagheriN. Antibody–drug conjugates (ADCs) for cancer therapy: Strategies, challenges, and successes.J. Cell. Physiol.201923455628564210.1002/jcp.2741930478951
    [Google Scholar]
  184. YaghoubiS. KarimiM.H. LotfiniaM. GharibiT. Mahi-BirjandM. KaviE. HosseiniF. Sineh SepehrK. KhatamiM. BagheriN. Abdollahpour-AlitappehM. Potential drugs used in the antibody–drug conjugate (ADC) architecture for cancer therapy.J. Cell. Physiol.20202351316410.1002/jcp.2896731215038
    [Google Scholar]
  185. DiamantisN. BanerjiU. Antibody-drug conjugates—an emerging class of cancer treatment.Br. J. Cancer2016114436236710.1038/bjc.2015.43526742008
    [Google Scholar]
  186. PettitG.R. KamanoY. HeraldC.L. FujiiY. KizuH. BoydM.R. BoettnerF.E. DoubekD.L. SchmidtJ.M. ChapuisJ.C. MichelC. Isolation of dolastatins 10–15 from the marine mollusc.Tetrahedron199349419151917010.1016/0040‑4020(93)80003‑C
    [Google Scholar]
  187. SenterP.D. SieversE.L. The discovery and development of brentuximab vedotin for use in relapsed Hodgkin lymphoma and systemic anaplastic large cell lymphoma.Nat. Biotechnol.201230763163710.1038/nbt.228922781692
    [Google Scholar]
  188. PullenC.B. SchmitzP. HoffmannD. MeurerK. BoettcherT. von BambergD. PereiraA.M. de Castro FrançaS. HauserM. GeertsemaH. van WykA. MahmudT. FlossH.G. LeistnerE. Occurrence and non-detectability of maytansinoids in individual plants of the genera Maytenus and Putterlickia.Phytochemistry200362337738710.1016/S0031‑9422(02)00550‑212620351
    [Google Scholar]
  189. Lewis PhillipsG.D. LiG. DuggerD.L. CrockerL.M. ParsonsK.L. MaiE. BlättlerW.A. LambertJ.M. ChariR.V.J. LutzR.J. WongW.L.T. JacobsonF.S. KoeppenH. SchwallR.H. Kenkare-MitraS.R. SpencerS.D. SliwkowskiM.X. Targeting HER2-positive breast cancer with trastuzumab-DM1, an antibody-cytotoxic drug conjugate.Cancer Res.200868229280929010.1158/0008‑5472.CAN‑08‑177619010901
    [Google Scholar]
  190. GébleuxR. CasiG. Antibody-drug conjugates: Current status and future perspectives.Pharmacol. Ther.2016167485910.1016/j.pharmthera.2016.07.01227492898
    [Google Scholar]
  191. RicartA.D. Antibody-drug conjugates of calicheamicin derivative: Gemtuzumab ozogamicin and inotuzumab ozogamicin.Clin. Cancer Res.201117206417642710.1158/1078‑0432.CCR‑11‑048622003069
    [Google Scholar]
  192. LiJ.Y. PerryS.R. Muniz-MedinaV. WangX. WetzelL.K. RebelattoM.C. HinrichsM.J.M. BezabehB.Z. FlemingR.L. DimasiN. FengH. ToaderD. YuanA.Q. XuL. LinJ. GaoC. WuH. DixitR. OsbournJ.K. CoatsS.R. A biparatopic HER2-targeting antibody-drug conjugate induces tumor regression in primary models refractory to or ineligible for HER2-targeted therapy.Cancer Cell201629111712910.1016/j.ccell.2015.12.00826766593
    [Google Scholar]
  193. GhawanmehA.A. AliG.A.M. AlgarniH. SarkarS.M. ChongK.F. Graphene oxide-based hydrogels as a nanocarrier for anticancer drug delivery.Nano Res.201912597399010.1007/s12274‑019‑2300‑4
    [Google Scholar]
  194. NabavifardS. JaliliS. RahmatiF. VasseghianY. AliG.A.M. AgarwalS. GuptaV.K. Application of dendrimer/gold nanoparticles in cancer therapy: A review.J. Inorg. Organomet. Polym. Mater.202030114231424410.1007/s10904‑020‑01705‑4
    [Google Scholar]
  195. NandiD. SharmaA. PrabhakarP.K. Nanoparticle-assisted therapeutic strategies for effective cancer management.Curr. Nanosci.2020161425010.2174/1573413715666190206151757
    [Google Scholar]
  196. KolekarT.V. BandgarS.S. YadavH.M. ShirguppikarS.S. ShindeM.A. MagaladV.T. Studies on cancer cell cytotoxicity, antimicrobial activity of sol-gel synthesized willemite for biomedical applications.Curr. Nanosci.201713546947510.2174/1573413713666170405162412
    [Google Scholar]
  197. NarayananE. Exosomes as drug delivery vehicles for cancer treatment.Curr. Nanosci.2020161152610.2174/1573413715666190219112422
    [Google Scholar]
  198. LiC. WangZ. LeiH. ZhangD. Recent progress in nanotechnology-based drug carriers for resveratrol delivery.Drug Deliv.2023301217420610.1080/10717544.2023.217420636852655
    [Google Scholar]
  199. SadhukhanP. KunduM. ChatterjeeS. GhoshN. MannaP. DasJ. SilP.C. Targeted delivery of quercetin via pH-responsive zinc oxide nanoparticles for breast cancer therapy.Mater. Sci. Eng. C201910012914010.1016/j.msec.2019.02.09630948047
    [Google Scholar]
  200. HajipourH. HamishehkarH. Rahmati-yamchiM. ShanehbandiD. Nazari Soltan AhmadS. HasaniA. Enhanced anti-cancer capability of ellagic acid using solid lipid nanoparticles (SLNs).Int. J. Cancer Manag.2018111e940210.5812/ijcm.9402
    [Google Scholar]
  201. SlichenmyerW.J. RowinskyE.K. DonehowerR.C. KaufmannS.H. The current status of camptothecin analogues as antitumor agents.J. Natl. Cancer Inst.199385427129110.1093/jnci/85.4.2718381186
    [Google Scholar]
  202. ThakurA. SiduR.K. ZouH. AlamM.K. YangM. LeeY. Inhibition of Glioma Cells’ proliferation by doxorubicin-loaded exosomes via microfluidics.Int. J. Nanomedicine2020158331834310.2147/IJN.S26395633149579
    [Google Scholar]
/content/journals/cnano/10.2174/0115734137294302240625045852
Loading
/content/journals/cnano/10.2174/0115734137294302240625045852
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test