Skip to content
2000
Volume 21, Issue 2
  • ISSN: 1573-4137
  • E-ISSN: 1875-6786

Abstract

Background

An important antioxidant, ascorbic acid, must be detected in several industrial samples collected from food, pharmaceuticals, and water treatment plants. Herein, we reported a method to produce a bimetallic copper-silver (Cu-Ag) nanocomposite and used it in the development of very sensitive and selective electrochemical sensor for the detection of ascorbic acid.

Methods

A simple chemistry concept was used during the synthesis process to reduce the cost while minimizing the use of dangerous chemicals and minimizing the environmental impact. The leaves extract effectively reduced the copper and silver ions, resulting in the creation of an extremely stable and evenly distributed Cu-Ag nanocomposite.

Results

As-prepared bimetallic Cu-Ag nanocomposite exhibited outstanding electrochemical activity against ascorbic acid oxidation. The nanocomposite was examined using field emission scanning electron microscopy (FE-SEM), energy dispersive spectroscopy (EDS), elemental mapping (EMap) and X-ray diffraction analysis (XRD) to ascertain its composition, structure, and stability. Using cyclic voltammetry (CV), the electrochemical performance of the nanocomposite and also the detection of ascorbic acid were carried out. The bimetallic Cu-Ag nanocomposite also exhibited better long-term stability and fouling resistance, making it appropriate for use in real-world applications and complex sample matrices.

Conclusion

The bimetallic Cu-Ag nanocomposite coated electrode was used to detect the concentration of ascorbic acid by amperometry. As a result, this study offered a simple chemical method for creating a bimetallic copper-silver nanocomposite with superior electrochemical qualities for the accurate detection of ascorbic acid.

Loading

Article metrics loading...

/content/journals/cnano/10.2174/0115734137281377240103062220
2024-01-26
2025-01-08
Loading full text...

Full text loading...

References

  1. DosedělM. JirkovskýE. MacákováK. KrčmováL. JavorskáL. PourováJ. MercoliniL. RemiãoF. NovákováL. Vitamin C-sources, physiological role, kinetics, deficiency, use, toxicity, and determination.Nutrients2021132615
    [Google Scholar]
  2. VitaleS.G. FioreM. La RosaV.L. RapisardaA.M.C. MazzaG. ParatoreM. CommodariE. CarusoS. Liposomal ferric pyrophosphate and ascorbic acid supplementation in pregnant women with iron deficiency anaemia: haematochemical, obstetric, neonatal and psychological outcomes in a prospective observational study.Int. J. Food Sci. Nutr.202273222122910.1080/09637486.2021.1950129 34238093
    [Google Scholar]
  3. GurungR. BaralS. ParajuliS. DhamiD. GhimireS. A comparative study on ascorbic acid concentration, total phenol, and flavonoid content in citrus species grown in a different region of Western Nepal.Int. J. Food Sci.202220221710.1155/2022/3012623 36578433
    [Google Scholar]
  4. LlorénsI. BorrellJ. BorrellS. Effects of insulin, glucagon and adrenocorticotrophin on the levels of corticosteroids, noradrenaline, adrenaline and ascorbic acid in the adrenal glands of cats.Horm. Res.19734632133010.1159/000178320 4359684
    [Google Scholar]
  5. BaiR. ChangY. SaleemA. WuF. TianL. ZhangS. LiY. MaS. DongT. GuoT. JiangY. YouY. LuW.J. JiangH.F. LanF. Ascorbic acid can promote the generation and expansion of neuroepithelial-like stem cells derived from hiPS/ES cells under chemically defined conditions through promoting collagen synthesis.Stem Cell Res. Ther.20211214810.1186/s13287‑020‑02115‑6 33422132
    [Google Scholar]
  6. Lee; Cho, Y. Effect of ascorbic acid, silicon and iron on collagen synthesis in the human dermal fibroblast cell(HS27).FASEB J.200822S267267210.1096/fasebj.22.2_supplement.672
    [Google Scholar]
  7. JinW. JiangL. Measurement of ascorbic acid in single human neutrophils by capillary zone electrophoresis with electrochemical detection.Electrophoresis200223152471247610.1002/1522‑2683(200208)23:15<2471:AID‑ELPS2471>3.0.CO;2‑1 12210205
    [Google Scholar]
  8. ScioliM.G. ConiglioneF. GreggiC. EvangelistaL. FiorelliE. SavinoL. FerlosioA. PiccirilliE. GasbarraE. IundusiR. TarantinoU. OrlandiA. Ascorbic acid reduces Ropivacaine-induced myotoxicity in cultured human osteoporotic skeletal muscle cells.BMC Musculoskelet. Disord.202324157610.1186/s12891‑023‑06702‑5 37454045
    [Google Scholar]
  9. Fager FerrariM. ZetterbergE. RossingM. Manon-JensenT. PehrssonM. KarsdalM.A. LykkesfeldtJ. LeinoeE. Collagen remodelling and plasma ascorbic acid levels in patients suspected of inherited bleeding disorders harbouring germline variants in collagen‐related genes.Haemophilia2021271e69e7710.1111/hae.14195 33161638
    [Google Scholar]
  10. GaoQ. WanJ. ChenX. MoX. SunY. ZouJ. NieJ. ZhangY. A novel strategy for sensitive and rapid detection of ascorbic acid via the Tyndall effect of cobalt hydroxide nanoflakes.RSC Advances20211162393063931010.1039/D1RA07702C 35492454
    [Google Scholar]
  11. PirabbasiE. ShaharS. ManafZ.A. RajabN.F. ManapR.A. Efficacy of ascorbic acid (vitamin C) and/N-Acetylcysteine (NAC) supplementation on nutritional and antioxidant status of male chronic obstructive pulmonary disease (COPD) patients.J. Nutr. Sci. Vitaminol. (Tokyo)2016621546110.3177/jnsv.62.54 27117852
    [Google Scholar]
  12. YogeswaranU. ChenS.M. A review on the electrochemical sensors and biosensors composed of nanowires as sensing material.Sensors (Basel)20088129031310.3390/s8010290 27879709
    [Google Scholar]
  13. ErdoğduG. Voltammetric detection of Ascorbic Acid at organic conducting polymers electrodes and flow injection analysis Energy Environ.Focus202375459
    [Google Scholar]
  14. GolomazovaT.A. SheferE.P. ProkhvatilovaS.S. AntonovaN.P. Quantitative determination of ascorbic acid in herbal medicinal products by HPLC.Bull. Sci. Cent. Expert Eval. Med. Prod.2023132184194
    [Google Scholar]
  15. BehrensW.A. MadèreR. A highly sensitive high-performance liquid chromatography method for the estimation of ascorbic and dehydroascorbic acid in tissues, biological fluids, and foods.Anal. Biochem.1987165110210710.1016/0003‑2697(87)90206‑5 3688424
    [Google Scholar]
  16. PisoschiA.M. PopA. SerbanA.I. FafaneataC. Electrochemical methods for ascorbic acid determination.Electrochim. Acta201412144346010.1016/j.electacta.2013.12.127
    [Google Scholar]
  17. SyafitriN. MunirM.A. ApriliaV. EmeldaE. Determination of ascorbic acid concentration in Myrtaceae using the iodometric titration method J.Jurnal Pena Sains2023101283310.21107/jps.v10i1.19161
    [Google Scholar]
  18. MuslimR. FazeliF. AminiI. AzizkhaniV. An overview of recent advances in the detection of ascorbic acid by electrochemical techniques.J. Electrochem. Sci. Eng.2022121081109810.5599/jese.1561
    [Google Scholar]
  19. pichaimuthu, K.; Keerthi, M.; Chen, S.M.; Chen, T.W.; Su, C. Silver nanoparticles decorated on graphene oxide sheets for electrochemical detection of ascorbic acid(AA) in human urine sample.Int. J. Electrochem. Sci.20181387859786910.20964/2018.08.16
    [Google Scholar]
  20. ChangA.Y. DuttaG. SiddiquiS. ArumugamP.U. Surface fouling of ultrananocrystalline Diamond microelectrodes during dopamine detection: Improving lifetime via electrochemical cycling.ACS Chem. Neurosci.201910131332210.1021/acschemneuro.8b00257 30285418
    [Google Scholar]
  21. DharaK. DebiprosadR.M. Review on nanomaterials-enabled electrochemical sensors for ascorbic acid detection.Anal. Biochem.201958611341510.1016/j.ab.2019.113415 31479632
    [Google Scholar]
  22. HarishV. TewariD. GaurM. YadavA.B. SwaroopS. BechelanyM. BarhoumA. Review on nanoparticles and nanostructured materials: Bioimaging, biosensing, drug delivery, tissue engineering, antimicrobial, and Agro-food applications.Nanomaterials (Basel)202212345710.3390/nano12030457 35159802
    [Google Scholar]
  23. GaoC. LyuF. YinY. Encapsulated metal nanoparticles for catalysis.Chem. Rev.2021121283488110.1021/acs.chemrev.0c00237 32585087
    [Google Scholar]
  24. BhardwajB. SinghP. KumarA. KumarS. BudhwarV. Eco-friendly greener synthesis of nanoparticles.Adv. Pharm. Bull.202010456657610.34172/apb.2020.067 33072534
    [Google Scholar]
  25. MuruganN. PrakashM. JayakumarM. SundaramurthyA. SundramoorthyA.K. Green synthesis of fluorescent carbon quantum dots from Eleusine coracana and their application as a fluorescence ‘turn-off’ sensor probe for selective detection of Cu2+.Appl. Surf. Sci.201947646848010.1016/j.apsusc.2019.01.090
    [Google Scholar]
  26. SadakO. SundramoorthyA.K. GunasekaranS. Facile and green synthesis of highly conducting graphene paper.Carbon2018138108117
    [Google Scholar]
  27. SridharanG. BabuK.L. GanapathyD. AtchudanR. AryaS. SundramoorthyA.K. Determination of nicotine in human saliva using electrochemical sensor modified with green synthesized silver nanoparticles using phyllanthus reticulatus fruit extract.Crystals (Basel)202313458910.3390/cryst13040589
    [Google Scholar]
  28. JadounS. ArifR. JangidN.K. MeenaR.K. Green synthesis of nanoparticles using plant extracts: a review.Environ. Chem. Lett.202119135537410.1007/s10311‑020‑01074‑x
    [Google Scholar]
  29. KhanF. ShariqM. AsifM. SiddiquiM.A. MalanP. AhmadF. Green nanotechnology: Plant-mediated nanoparticle synthesis and application.Nanomaterials (Basel)202212467310.3390/nano12040673 35215000
    [Google Scholar]
  30. RameshA.V. DeviD.R. BattuG. BasavaiahK. A Facile plant mediated synthesis of silver nanoparticles using an aqueous leaf extract of Ficus hispida Linn. f. for catalytic, antioxidant and antibacterial applications.S. Afr. J. Chem. Eng.201826253410.1016/j.sajce.2018.07.001
    [Google Scholar]
  31. MohammedA. BalajiK. KalaichelvanP.T. VenkatesanR. Fungal based synthesis of silver nanoparticles—An effect of temperature on the size of particles.Colloids Surf. B Biointerfaces200974112312610.1016/j.colsurfb.2009.07.002 19674875
    [Google Scholar]
  32. GhoreishiS.M. BehpourM. KhayatkashaniM. Green synthesis of silver and gold nanoparticles using Rosa damascena and its primary application in electrochemistry.Physica E20114419710410.1016/j.physe.2011.07.008
    [Google Scholar]
  33. LozaK. HeggenM. EppleM. Synthesis, structure, properties, and applications of bimetallic nanoparticles of noble metals.Adv. Funct. Mater.20203021190926010.1002/adfm.201909260
    [Google Scholar]
  34. ShanmugarajK. MangalarajaR.V. CamposC.H. UdayabhaskarR. SinghD.P. VivasL. ThirumuruganA. Al-SehemiA.G. Díaz de LeónJ.N. AliW. Cu-Ni bimetallic nanoparticles anchored on halloysite nanotubes for the environmental remediation.Surf. Interfaces20234110325710.1016/j.surfin.2023.103257
    [Google Scholar]
  35. VivekS. PreethiS. KumarT.H.V. SundramoorthyA.K. BabuK.S. Oxidation studies on mono (Cu, Ni) and bimetallic (Cu–Ni) nanoparticles and its impact on catalytic activity.J. Alloys Compd.202081615260810.1016/j.jallcom.2019.152608
    [Google Scholar]
  36. PuY. ChenS. YangY. MaoX. Copper-based biological alloys and nanocomposites for enzymatic catalysis and sensing applications.Nanoscale20231528118011181210.1039/D3NR01638B 37417923
    [Google Scholar]
  37. ChenJ-J. TanJ-B. LiC-F. GuL-F. LuX-F. LiG-R. General synthesis of ultrafine cu-based alloy nanoparticles anchored on porous N-doped carbon nanofibers for enhanced electrocatalytic performance J. Phys. Chem. C Nanomater.Interfaces20201241303613044
    [Google Scholar]
  38. XuL. WangY.Y. HuangJ. ChenC.Y. WangZ.X. XieH. Silver nanoparticles: Synthesis, medical applications and biosafety.Theranostics202010208996903110.7150/thno.45413 32802176
    [Google Scholar]
  39. Xin LeeK. ShameliK. MiyakeM. KuwanoN. Bt Ahmad KhairudinN.B. Bt MohamadS.E. YewY.P. Green synthesis of gold nanoparticles using aqueous extract of Garcinia mangostana fruit peels.J. Nanomater.201620161710.1155/2016/8489094
    [Google Scholar]
  40. SeethapathyV. SudarsanP. PandeyA.K. PandiyanA. KumarT.H.V. SanjeeviK. SundramoorthyA.K. Krishna MoorthyS.B. Synergistic effect of bimetallic Cu:Ni nanoparticles for the efficient catalytic conversion of 4-nitrophenol.New J. Chem.20194373180318710.1039/C8NJ05649H
    [Google Scholar]
  41. RavalN. MaheshwariR. KalyaneD. Youngren-OrtizS.R. ChouguleM.B. TekadeR.K. Importance of Physicochemical Characterization of Nanoparticles in Pharmaceutical Product Development Basic Fundamentals of Drug Delivery. TekadeR.K. Academic Press2019369400
    [Google Scholar]
  42. MageshV. SundramoorthyA.K. GanapathyD. AtchudanR. AryaS. AlshgariR.A. AljuwayidA.M. Palladium hydroxide (Pearlman’s catalyst) doped MXene (Ti3C2Tx) composite modified electrode for selective detection of nicotine in human sweat.Biosensors (Basel)20221315410.3390/bios13010054 36671889
    [Google Scholar]
  43. DebutA. VizueteK. PazmiñoK. CalderónJ. GallegosC. GaonaV. Effect of visual cognition on the measurement of particle size using ImageJ software Current.Mater. Sci.202114141154
    [Google Scholar]
  44. AhmedS. AhmadM. SwamiB.L. IkramS. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise.J. Adv. Res.201671172810.1016/j.jare.2015.02.007 26843966
    [Google Scholar]
  45. HayatK. AliS. UllahS. FuY. HussainM. Green synthesized silver and copper nanoparticles induced changes in biomass parameters, secondary metabolites production, and antioxidant activity in callus cultures of Artemisia absinthium L.Green Processing and Synthesis2021101617210.1515/gps‑2021‑0010
    [Google Scholar]
  46. AliA. AlSalhiM.S. AtifM. AnsariA.A. IsrarM.Q. SadafJ.R. AhmedE. NurO. WillanderM. Potentiometric urea biosensor utilizing nanobiocomposite of chitosan-iron oxide magnetic nanoparticles.J. Phys. Conf. Ser.201341401202410.1088/1742‑6596/414/1/012024
    [Google Scholar]
  47. YangH. RenY. WangT. WangC. Preparation and antibacterial activities of Ag/Ag +/Ag3+ nanoparticle composites made by pomegranate (Punica granatum) rind extract.Results Phys.2016629930410.1016/j.rinp.2016.05.012
    [Google Scholar]
  48. ParkH. LeeS. JoM. ParkS. KwonK. ShobanaM.K. ChoeH. Nanowire-like copper oxide grown on porous copper, a promising anode material for lithium-ion battery J.Journal of the Korean Ceramic Society201754543844210.4191/kcers.2017.54.5.07
    [Google Scholar]
  49. YangK. YanZ. MaL. DuY. PengB. FengJ. A facile one-step synthesis of cuprous oxide/silver nanocomposites as efficient electrode-modifying materials for nonenzyme hydrogen peroxide sensor.Nanomaterials (Basel)20199452310.3390/nano9040523 30987101
    [Google Scholar]
  50. GokulkumarK. SundramoorthyA.K. WangS-F. HarikrishnanA. High-performance electrochemical sensor based on yttrium sulfide nanoparticles decorated carbon nitride heterostructure for highly sensitive detection of antimicrobial drug in biological samples.J. Electrochem. Soc.2021168077516
    [Google Scholar]
  51. MageshV. KothariV.S. GanapathyD. AtchudanR. AryaS. NallaswamyD. SundramoorthyA.K. Using Sparfloxacin-Capped Gold Nanoparticles to Modify a Screen-Printed Carbon Electrode Sensor for Ethanol Determination.Sensors (Basel)20232319820110.3390/s23198201 37837031
    [Google Scholar]
  52. GaiP. ZhangH. ZhangY. LiuW. ZhuG. ZhangX. ChenJ. Simultaneous electrochemical detection of ascorbic acid, dopamine and uric acid based on nitrogen doped porous carbon nanopolyhedra.J. Mater. Chem. B Mater. Biol. Med.20131212742274910.1039/c3tb20215a 32260980
    [Google Scholar]
  53. ZhangX. ZhangY.C. MaL.X. One-pot facile fabrication of graphene-zinc oxide composite and its enhanced sensitivity for simultaneous electrochemical detection of ascorbic acid, dopamine and uric acid.Sens. Actuators B Chem.201622748849610.1016/j.snb.2015.12.073
    [Google Scholar]
  54. YanJ. LiuS. ZhangZ. HeG. ZhouP. LiangH. TianL. ZhouX. JiangH. Simultaneous electrochemical detection of ascorbic acid, dopamine and uric acid based on graphene anchored with Pd–Pt nanoparticles.Colloids Surf. B Biointerfaces201311139239710.1016/j.colsurfb.2013.06.030 23850748
    [Google Scholar]
  55. LiQ. HuoC. YiK. ZhouL. SuL. HouX. Preparation of flake hexagonal BN and its application in electrochemical detection of ascorbic acid, dopamine and uric acid.Sens. Actuators B Chem.201826034635610.1016/j.snb.2017.12.208
    [Google Scholar]
  56. ManivelP. DhakshnamoorthyM. BalamuruganA. PonpandianN. MangalarajD. ViswanathanC. Conducting polyaniline-graphene oxide fibrous nanocomposites: preparation, characterization and simultaneous electrochemical detection of ascorbic acid, dopamine and uric acid.RSC Advances20133341442810.1039/c3ra42322k
    [Google Scholar]
  57. WangC. DuJ. WangH. ZouC. JiangF. YangP. DuY. A facile electrochemical sensor based on reduced graphene oxide and Au nanoplates modified glassy carbon electrode for simultaneous detection of ascorbic acid, dopamine and uric acid.Sens. Actuators B Chem.201420430230910.1016/j.snb.2014.07.077
    [Google Scholar]
  58. dos SantosP.L. KaticV. ToledoK.C.F. BonacinJ.A. Photochemical one-pot synthesis of reduced graphene oxide/Prussian blue nanocomposite for simultaneous electrochemical detection of ascorbic acid, dopamine, and uric acid.Sens. Actuators B Chem.20182552437244710.1016/j.snb.2017.09.036
    [Google Scholar]
  59. MazzaraF. PatellaB. AielloG. O’RiordanA. TorinoC. VilasiA. InguantaR. Electrochemical detection of uric acid and ascorbic acid using r-GO/NPs based sensors.Electrochim. Acta202138813865210.1016/j.electacta.2021.138652
    [Google Scholar]
  60. Prasad AryalK. Kyung JeongH. Electrochemical detection of ascorbic acid with chemically functionalized carbon nanofiber/β-cyclodextrin composite.Chem. Phys. Lett.202075713788110.1016/j.cplett.2020.137881
    [Google Scholar]
  61. ZhangH. LiuS. Electrochemical sensors based on nitrogen-doped reduced graphene oxide for the simultaneous detection of ascorbic acid, dopamine and uric acid.J. Alloys Compd.202084215587310.1016/j.jallcom.2020.155873
    [Google Scholar]
  62. DodevskaT. HadzhievD. ShterevI. A review on electrochemical microsensors for ascorbic acid detection: Clinical, pharmaceutical, and food safety applications.Micromachines (Basel)20221414110.3390/mi14010041 36677102
    [Google Scholar]
/content/journals/cnano/10.2174/0115734137281377240103062220
Loading
/content/journals/cnano/10.2174/0115734137281377240103062220
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test