Skip to content
2000
Volume 21, Issue 2
  • ISSN: 1573-4137
  • E-ISSN: 1875-6786

Abstract

Background

Infection is the main reason for the failure of the clinical application of guided tissue regeneration (GTR).

Objective

The aim of this study is to develop a membrane containing nanoparticles incorporated with the antimicrobial drug metronidazole (MTZ-NPs Membrane) to enhance drug permeation delivery into cells and promote periodontal tissue recovery and regeneration.

Methods

We prepared membranes containing nanoparticles incorporated with metronidazole (MTZ-NPs Membrane) and characterized the properties, such as mechanical properties, physicochemical properties, and release. Coumarin-6 was used to prepare a membrane containing nanoparticles incorporated with Coumarin-6 (C6-NPs Membrane) to evaluate the efficiency of the nanoparticles-loaded membranes on transmembrane entry into cells. Moreover, experiments were conducted to assess the effectiveness of the membrane.

Results

MTZ-NPs membrane had suitable mechanical strength; the drug was released by diffusion. Fourier Transform Infrared Spectroscopy (FTIR), differential scanning calorimetry (DSC), and X-ray diffraction (XRD) results showed the existence of metronidazole might be in the amorphous state in the membrane and had good compatibility with polymers. The cytotoxicity assays showed that the MTZ-NPs membrane was biocompatible. Cellular uptake of the C6-NPs membrane was significantly higher than that of the C6 membrane ( < 0.0001), signifying that encapsulating the drug in nanoparticles increases drug permeability and improves drug transport efficiency across the cellular membrane. The histological analysis showed that the MTZ-NPs membrane could promote periodontal tissue recovery.

Conclusion

MTZ-NPs membrane can improve drug penetration delivery into the cells and has a good prospect for the treatment of periodontal disease.

© 2025 The Author(s). Published by Bentham Science Publisher. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cnano/10.2174/0115734137276083231128082103
2023-12-08
2025-01-08
Loading full text...

Full text loading...

/deliver/fulltext/cnano/21/2/CNANO-21-2-09.html?itemId=/content/journals/cnano/10.2174/0115734137276083231128082103&mimeType=html&fmt=ahah

References

  1. TrindadeD. CarvalhoR. MachadoV. ChambroneL. MendesJ.J. BotelhoJ. Prevalence of periodontitis in dentate people between 2011 and 2020: A systematic review and meta‐analysis of epidemiological studies.J. Clin. Periodontol.202350560462610.1111/jcpe.13769 36631982
    [Google Scholar]
  2. MirzaeeiS. EzzatiA. MehrandishS. Asare-AddoK. NokhodchiA. An overview of guided tissue regeneration (GTR) systems designed and developed as drug carriers for management of periodontitis.J. Drug Deliv. Sci. Technol.20227110334110.1016/j.jddst.2022.103341
    [Google Scholar]
  3. LiangY. LuanX. LiuX. Recent advances in periodontal regeneration: A biomaterial perspective.Bioact. Mater.20205229730810.1016/j.bioactmat.2020.02.012 32154444
    [Google Scholar]
  4. KimJ.Y. ParkJ.B. Various coated barrier membranes for better guided bone regeneration: A review.Coatings2022128105910.3390/coatings12081059
    [Google Scholar]
  5. TurriA. ElgaliI. VazirisaniF. JohanssonA. EmanuelssonL. DahlinC. ThomsenP. OmarO. Guided bone regeneration is promoted by the molecular events in the membrane compartment.Biomaterials20168416718310.1016/j.biomaterials.2016.01.034 26828682
    [Google Scholar]
  6. LiuZ. ChenX. ZhangZ. ZhangX. SaundersL. ZhouY. MaP.X. Nanofibrous spongy microspheres to distinctly release miRNA and growth factors to enrich regulatory T cells and rescue periodontal bone loss.ACS Nano201812109785979910.1021/acsnano.7b08976 30141906
    [Google Scholar]
  7. ArdekaniS.M. DehghaniA. YeP. NguyenK.A. GomesV.G. Conjugated carbon quantum dots: Potent nano-antibiotic for intracellular pathogens.J. Colloid Interface Sci.201955237838710.1016/j.jcis.2019.05.067 31136856
    [Google Scholar]
  8. ManzanaresD. CeñaV. Endocytosis: The nanoparticle and submicron nanocompounds gateway into the cell.Pharmaceutics202012437110.3390/pharmaceutics12040371 32316537
    [Google Scholar]
  9. LiX. WangC. WangL. HuangR. LiW.C. WangX. WongS.S.W. CaiZ. LeungK.C.F. JinL. A glutathione-responsive silica-based nanosystem capped with in-situ polymerized cell-penetrating poly(disulfide)s for precisely modulating immuno-inflammatory responses.J. Colloid Interface Sci.202261432233610.1016/j.jcis.2022.01.091 35104706
    [Google Scholar]
  10. LiY. YangL. HouY. ZhangZ. ChenM. WangM. LiuJ. WangJ. ZhaoZ. XieC. LuX. Polydopamine-mediated graphene oxide and nanohydroxyapatite-incorporated conductive scaffold with an immunomodulatory ability accelerates periodontal bone regeneration in diabetes.Bioact. Mater.20221821322710.1016/j.bioactmat.2022.03.021 35387166
    [Google Scholar]
  11. GhavimiM.A. BaniS.A. JarolmasjedS. MemarM.Y. MalekiS. SharifiS. Nanofibrous asymmetric collagen/curcumin membrane containing aspirin-loaded PLGA nanoparticles for guided bone regeneration.Sci. Rep.20201011820010.1038/s41598‑020‑75454‑2 33097790
    [Google Scholar]
  12. TzanovaM.M. HagesaetherE. ThoI. Solid lipid nanoparticle-loaded mucoadhesive buccal films-Critical quality attributes and in vitro safety & efficacy.Int. J. Pharm.202159212010010.1016/j.ijpharm.2020.120100 33227374
    [Google Scholar]
  13. LiF. WenY. ZhangY. ZhengK. BanJ. XieQ. WenY. LiuQ. ChenF. MoZ. LiuL. ChenY. LuZ. Characterisation of 2-HP-β-cyclodextrin-PLGA nanoparticle complexes for potential use as ocular drug delivery vehicles.Artif. Cells Nanomed. Biotechnol.20194714097410810.1080/21691401.2019.1683567 31663388
    [Google Scholar]
  14. VandervoortJ. LudwigA. Biocompatible stabilizers in the preparation of PLGA nanoparticles: A factorial design study.Int. J. Pharm.20022381-2779210.1016/S0378‑5173(02)00058‑3 11996812
    [Google Scholar]
  15. JunmahasathienT. PanraksaP. ProtiarnP. HormdeeD. NoisombutR. KantrongN. JantrawutP. Preparation and evaluation of metronidazole-loaded pectin films for potentially targeting a microbial infection associated with periodontal disease.Polymers2018109102110.3390/polym10091021 30960947
    [Google Scholar]
  16. BorgesA.F. SilvaC. CoelhoJ.F.J. SimõesS. Oral films: Current status and future perspectives.J. Control. Release201520611910.1016/j.jconrel.2015.03.006 25747406
    [Google Scholar]
  17. IrfanM. RabelS. BukhtarQ. QadirM.I. JabeenF. KhanA. Orally disintegrating films: A modern expansion in drug delivery system.Saudi Pharm. J.201624553754610.1016/j.jsps.2015.02.024 27752225
    [Google Scholar]
  18. EzzatiN.D.J. HamishehkarH. EskandaniM. ValizadehH. Formulation, characterization and cytotoxicity studies of alendronate sodium-loaded solid lipid nanoparticles.Colloids Surf. B Biointerfaces2014117212810.1016/j.colsurfb.2014.01.055 24607519
    [Google Scholar]
  19. SongJ. FanX. ShenQ. Daidzein-loaded nanostructured lipid carriers-PLGA nanofibers for transdermal delivery.Int. J. Pharm.20165011-224525210.1016/j.ijpharm.2016.02.003 26851353
    [Google Scholar]
  20. ChandraA. ChondkarA.D. ShirodkarR. LewisS.A. Rapidly dissolving lacidipine nanoparticle strips for transbuccal administration.J. Drug Deliv. Sci. Technol.20184725926710.1016/j.jddst.2018.07.025
    [Google Scholar]
  21. LiY. LiuY. RenY. SuL. LiA. AnY. RotelloV. ZhangZ. WangY. LiuY. LiuS. LiuJ. LamanJ.D. ShiL. van der MeiH.C. BusscherH.J. Coating of a novel antimicrobial nanoparticle with a macrophage membrane for the selective entry into infected macrophages and killing of intracellular staphylococci.Adv. Funct. Mater.20203048200494210.1002/adfm.202004942 34737689
    [Google Scholar]
  22. RousselS. GrenierP. ChénardV. BertrandN. Dual-labelled nanoparticles inform on the stability of fluorescent labels in vivo.Pharmaceutics202315376910.3390/pharmaceutics15030769 36986630
    [Google Scholar]
  23. TakeuchiI. SuzukiT. MakinoK. Skin permeability and transdermal delivery route of 50-nm indomethacin-loaded PLGA nanoparticles.Colloids Surf. B Biointerfaces201715931231710.1016/j.colsurfb.2017.08.003 28858661
    [Google Scholar]
  24. WeiY. DengY. MaS. RanM. JiaY. MengJ. HanF. GouJ. YinT. HeH. WangY. ZhangY. TangX. Local drug delivery systems as therapeutic strategies against periodontitis: A systematic review.J. Control. Release202133326928210.1016/j.jconrel.2021.03.041 33798664
    [Google Scholar]
  25. RuanH. YuY. LiuY. DingX. GuoX. JiangQ. Preparation and characteristics of thermoresponsive gel of minocycline hydrochloride and evaluation of its effect on experimental periodontitis models.Drug Deliv.201623252553110.3109/10717544.2014.929195 24963751
    [Google Scholar]
  26. LiuR. LiN. LiuN. ZhouX. DongZ. WenX. LiuL. Effects of systemic ornidazole, systemic and local compound ornidazole and pefloxacin mesylate on experimental periodontitis in rats.Med. Sci. Monit.2012183BR95BR10210.12659/MSM.882514 22367122
    [Google Scholar]
  27. AlmoshariY. RenR. ZhangH. JiaZ. WeiX. ChenN. LiG. RyuS. LeleS.M. ReinhardtR.A. WangD. GSK3 inhibitor-loaded osteotropic Pluronic hydrogel effectively mitigates periodontal tissue damage associated with experimental periodontitis.Biomaterials202026112029310.1016/j.biomaterials.2020.120293 32877763
    [Google Scholar]
  28. VaidyaB. ParvathaneniV. KulkarniN.S. ShuklaS.K. DamonJ.K. SarodeA. KanabarD. GarciaJ.V. MitragotriS. MuthA. GuptaV. Cyclodextrin modified erlotinib loaded PLGA nanoparticles for improved therapeutic efficacy against non-small cell lung cancer.Int. J. Biol. Macromol.201912233834710.1016/j.ijbiomac.2018.10.181 30401652
    [Google Scholar]
  29. PichayakornW. BoonmeP. Evaluation of cross-linked chitosan microparticles containing metronidazole for periodontitis treatment.Mater. Sci. Eng. C20133331197120210.1016/j.msec.2012.12.010 23827560
    [Google Scholar]
  30. Peter ChristoperG.V. Vijaya RaghavanC. SiddharthK. Siva Selva KumarM. Hari PrasadR. Formulation and optimization of coated PLGA – Zidovudine nanoparticles using factorial design and in vitro in vivo evaluations to determine brain targeting efficiency.Saudi Pharm. J.201422213314010.1016/j.jsps.2013.04.002 24648825
    [Google Scholar]
  31. HanF.Y. LiuY. KumarV. XuW. YangG. ZhaoC.X. WoodruffT.M. WhittakerA.K. SmithM.T. Sustained-release ketamine-loaded nanoparticles fabricated by sequential nanoprecipitation.Int. J. Pharm.202058111929110.1016/j.ijpharm.2020.119291 32259638
    [Google Scholar]
  32. BensouikiS. BelaibF. SindtM. Rup-JacquesS. MagriP. IkhlefA. MeniaiA.H. Synthesis of cyclodextrins-metronidazole inclusion complexes and incorporation of metronidazole - 2-hydroxypropyl-β-cyclodextrin inclusion complex in chitosan nanoparticles.J. Mol. Struct.2022124713129810.1016/j.molstruc.2021.131298
    [Google Scholar]
  33. de OliveiraA.M. JägerE. JägerA. StepánekP. GiacomelliF.C. Physicochemical aspects behind the size of biodegradable polymeric nanoparticles: A step forward.Colloids Surf. A Physicochem. Eng. Asp.20134361092110210.1016/j.colsurfa.2013.08.056
    [Google Scholar]
  34. SongX. ZhaoY. WuW. BiY. CaiZ. ChenQ. LiY. HouS. PLGA nanoparticles simultaneously loaded with vincristine sulfate and verapamil hydrochloride: Systematic study of particle size and drug entrapment efficiency.Int. J. Pharm.20083501-232032910.1016/j.ijpharm.2007.08.034 17913411
    [Google Scholar]
  35. TeodorescuM. BerceaM. MorariuS. Biomaterials of PVA and PVP in medical and pharmaceutical applications: Perspectives and challenges.Biotechnol. Adv.201937110913110.1016/j.biotechadv.2018.11.008 30472307
    [Google Scholar]
  36. ZhaoJ. WeiY. XiongJ. LiuH. LvG. ZhaoJ. HeH. GouJ. YinT. TangX. ZhangY. A multiple controlled-release hydrophilicity minocycline hydrochloride delivery system for the efficient treatment of periodontitis.Int. J. Pharm.202363612280210.1016/j.ijpharm.2023.122802 36894039
    [Google Scholar]
  37. Abd El AzimH. NafeeN. RamadanA. KhalafallahN. Liposomal buccal mucoadhesive film for improved delivery and permeation of water-soluble vitamins.Int. J. Pharm.20154881-2788510.1016/j.ijpharm.2015.04.052 25899288
    [Google Scholar]
  38. SongQ. GuoX. SunY. YangM. Anti-solvent precipitation method coupled electrospinning process to produce poorly water-soluble drug-loaded orodispersible films.AAPS PharmSciTech201920727310.1208/s12249‑019‑1464‑2 31385126
    [Google Scholar]
  39. XueJ. HeM. LiuH. NiuY. CrawfordA. CoatesP.D. ChenD. ShiR. ZhangL. Drug loaded homogeneous electrospun PCL/gelatin hybrid nanofiber structures for anti-infective tissue regeneration membranes.Biomaterials201435349395940510.1016/j.biomaterials.2014.07.060 25134855
    [Google Scholar]
  40. CelebiogluA. UyarT. Metronidazole/Hydroxypropyl-β-Cyclo-dextrin inclusion complex nanofibrous webs as fast-dissolving oral drug delivery system.Int. J. Pharm.201957211882810.1016/j.ijpharm.2019.118828 31715341
    [Google Scholar]
  41. KraisitP. HirunN. MahadlekJ. LimmatvapiratS. Fluconazole-loaded solid lipid nanoparticles (SLNs) as a potential carrier for buccal drug delivery of oral candidiasis treatment using the Box-Behnken design.J. Drug Deliv. Sci. Technol.20216310243710.1016/j.jddst.2021.102437
    [Google Scholar]
  42. KraisitP. LimmatvapiratS. Luangtana-AnanM. SriamornsakP. Buccal administration of mucoadhesive blend films saturated with propranolol loaded nanoparticles.Asian J. Pharm. Sci.2018131344310.1016/j.ajps.2017.07.006 32104376
    [Google Scholar]
  43. JiS. SunR. WangW. XiaQ. Preparation, characterization, and evaluation of tamarind seed polysaccharide-carboxy-methylcellulose buccal films loaded with soybean peptides-chitosan nanoparticles.Food Hydrocoll.202314110868410.1016/j.foodhyd.2023.108684
    [Google Scholar]
  44. PezikE. GulsunT. SahinS. Vuralİ. Development and characterization of pullulan-based orally disintegrating films containing amlodipine besylate.Eur. J. Pharm. Sci.202115610559710.1016/j.ejps.2020.105597 33065224
    [Google Scholar]
  45. ElgendyH.A. MakkyA.M.A. ElakkadY.E. IsmailR.M. YounesN.F. Syringeable atorvastatin loaded eugenol enriched PEGylated cubosomes in-situ gel for the intra-pocket treatment of periodontitis: Statistical optimization and clinical assessment.Drug Deliv.2023301216215910.1080/10717544.2022.2162159 36604813
    [Google Scholar]
  46. LaiP.C. WaltersJ.D. Relative effectiveness of azithromycin in killing intracellular Porphyromonas gingivalis.Clin. Exp. Dent. Res.201621354310.1002/cre2.17 29744147
    [Google Scholar]
  47. FirdessaR. OelschlaegerT.A. MollH. Identification of multiple cellular uptake pathways of polystyrene nanoparticles and factors affecting the uptake: Relevance for drug delivery systems.Eur. J. Cell Biol.2014938-932333710.1016/j.ejcb.2014.08.001 25224362
    [Google Scholar]
/content/journals/cnano/10.2174/0115734137276083231128082103
Loading
/content/journals/cnano/10.2174/0115734137276083231128082103
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test