Skip to content
2000
Volume 21, Issue 2
  • ISSN: 1573-4137
  • E-ISSN: 1875-6786

Abstract

Background

Rheumatoid arthritis (RA) is an inflammatory disease that causes pannus formation, thickened synovium, joint bone reabsorption, and acute impairment, and increases the death rate. Many people with RA now live better lives as a result of recent improvements in treatment, which have dramatically slowed the disease's course. However, a significant portion of patients continue to either be non-responsive to existing treatments or have developed a resistance to them. Nanotechnology is becoming a more and more intriguing tool for investigating novel strategies, ranging from treating various disease states to tackling complicated conditions.

Objective

The primary goal of the work was to outline the research activities on versatile nanocarriers, like polymeric micelles, nanoparticles, liposomes, ., with controlled/sustained drug release patterns fabricated to elevate the effectiveness of drug delivery.

Methods

This review mainly focuses on emerging strategies to deliver various nanocarriers encapsulating anti-rheumatic drugs, enzymes, genes, phytoconstituents, . It also includes up-to-date progress regarding patents and clinical trials filed for the treatment of RA.

Results

In most of the recent studies, nanocarrier-based drug delivery has gained attention worldwide and led to the development of new approaches for treating RA. A better understanding of pathophysiology and signalling pathways helps to select the antirheumatic drug. The encapsulation of active moiety into the novel nanocarrier enhances the solubility of insoluble drugs. It restricts the exposure of the drug to the non-inflamed site using various targeting strategies, like active, passive, or biomimetic targeting and stimuli-responsive carrier systems to enhance the drug delivery mechanism.

Conclusion

A brief description of current RA treatments using nanocarrier technology is provided in this paper, along with predictions for potential enhancements to the nanotherapeutic regimen.

Loading

Article metrics loading...

/content/journals/cnano/10.2174/0115734137264937231214071646
2024-01-25
2025-01-08
Loading full text...

Full text loading...

References

  1. GuoQ. WangY. XuD. NossentJ. PavlosN.J. XuJ. Rheumatoid arthritis: Pathological mechanisms and modern pharmacologic therapies.Bone Res.2018611510.1038/s41413‑018‑0016‑9 29736302
    [Google Scholar]
  2. ConigliaroP. TriggianeseP. De MartinoE. FontiG.L. ChimentiM.S. SunziniF. ViolaA. CanofariC. PerriconeR. Challenges in the treatment of rheumatoid arthritis.Autoimmun. Rev.201918770671310.1016/j.autrev.2019.05.007 31059844
    [Google Scholar]
  3. Ferreira-SilvaM. Faria-SilvaC. VianaB.P. FernandesE. RamosF.A. CorvoM.L. Liposomal nanosystems in rheumatoid arthritis.Pharmaceutics202113445410.3390/pharmaceutics13040454 33801603
    [Google Scholar]
  4. JeongM. ParkJ.H. Nanomedicine for the treatment of rheumatoid arthritis.Mol. Pharm.202118253954910.1021/acs.molpharmaceut.0c00295 32502346
    [Google Scholar]
  5. TenstadH.B. NilssonA.C. DellgrenC.D. LindegaardH.M. RubinK.H. LillevangS.T. Predictive values of anti-cyclic citrullinated peptide antibodies and rheumatoid factor in relation to serological aspects of the ACR/EULAR 2010 classification criteria for rheumatoid arthritis.Scand. J. Rheumatol.2020491182010.1080/03009742.2019.1609079 31264518
    [Google Scholar]
  6. RaduA.F. BungauS.G. Management of rheumatoid arthritis: An overview.Cells20211011285710.3390/cells10112857 34831081
    [Google Scholar]
  7. PirmardvandC.S. VarshosazJ. TaymouriS. Recent approaches for targeted drug delivery in rheumatoid arthritis diagnosis and treatment.Artif. Cells Nanomed. Biotechnol.201846S250251410.1080/21691401.2018.1460373
    [Google Scholar]
  8. SmolenJ.S. LandewéR. BijlsmaJ. BurmesterG. ChatzidionysiouK. DougadosM. NamJ. RamiroS. VoshaarM. van VollenhovenR. AletahaD. AringerM. BoersM. BuckleyC.D. ButtgereitF. BykerkV. CardielM. CombeB. CutoloM. van Eijk-HustingsY. EmeryP. FinckhA. GabayC. Gomez-ReinoJ. GossecL. GottenbergJ.E. HazesJ.M.W. HuizingaT. JaniM. KarateevD. KouloumasM. KvienT. LiZ. MarietteX. McInnesI. MyslerE. NashP. PavelkaK. PoórG. RichezC. van RielP. Rubbert-RothA. SaagK. da SilvaJ. StammT. TakeuchiT. WesthovensR. de WitM. van der HeijdeD. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2016 update.Ann. Rheum. Dis.201776696097710.1136/annrheumdis‑2016‑210715 28264816
    [Google Scholar]
  9. ZhaoJ. ChenX. HoK.H. CaiC. LiC.W. YangM. YiC. Nanotechnology for diagnosis and therapy of rheumatoid arthritis: Evolution towards theranostic approaches.Chin. Chem. Lett.2021321668610.1016/j.cclet.2020.11.048
    [Google Scholar]
  10. CascãoR. VidalB. RaquelH. Neves-CostaA. FigueiredoN. GuptaV. FonsecaJ.E. MoitaL.F. Effective treatment of rat adjuvant-induced arthritis by celastrol.Autoimmun. Rev.2012111285686210.1016/j.autrev.2012.02.022 22415021
    [Google Scholar]
  11. WangQ. QinX. FangJ. SunX. Nanomedicines for the treatment of rheumatoid arthritis: State of art and potential therapeutic strategies.Acta Pharm. Sin. B20211151158117410.1016/j.apsb.2021.03.013 34094826
    [Google Scholar]
  12. SimonazziA. CidA.G. VillegasM. RomeroA.I. PalmaS.D. BermúdezJ.M. Nanotechnology applications in drug controlled release.Drug targeting and stimuli sensitive drug delivery systems.William Andrew Publishing20188111610.1016/B978‑0‑12‑813689‑8.00003‑3
    [Google Scholar]
  13. SailajaA.K. An overall review on rheumatoid arthritis.J. Curr. Pharma Res2014421138114310.33786/JCPR.2014.v04i02.005
    [Google Scholar]
  14. HuangJ. FuX. ChenX. LiZ. HuangY. LiangC. Promising therapeutic targets for treatment of rheumatoid arthritis.Front. Immunol.20211268615510.3389/fimmu.2021.686155 34305919
    [Google Scholar]
  15. FangQ. ZhouC. NandakumarK.S. Molecular and cellular pathways contributing to joint damage in rheumatoid arthritis.Mediators Inflamm.20202020383021210.1155/2020/3830212
    [Google Scholar]
  16. PrasadP. VermaS. Surbhi; Ganguly, N.K.; Chaturvedi, V.; Mittal, S.A. Rheumatoid arthritis: Advances in treatment strategies.Mol. Cell. Biochem.20234781698810.1007/s11010‑022‑04492‑3 35725992
    [Google Scholar]
  17. ChakrabortyD. GuptaK. BiswasS. A mechanistic insight of phytoestrogens used for Rheumatoid arthritis: An evidence-based review.Biomed. Pharmacother.202113311103910.1016/j.biopha.2020.111039 33254019
    [Google Scholar]
  18. Ben MridR. BouchmaaN. AinaniH. El FatimyR. MalkaG. MaziniL. Anti-rheumatoid drugs advancements: New insights into the molecular treatment of rheumatoid arthritis.Biomed. Pharmacother.202215111312610.1016/j.biopha.2022.113126 35643074
    [Google Scholar]
  19. LiuX. GuoR. HuoS. ChenH. SongQ. JiangG. YuY. HuangJ. XieS. GaoX. LuL. CaP-based anti-inflammatory HIF-1α siRNA-encapsulating nanoparticle for rheumatoid arthritis therapy.J. Control. Release202234331432510.1016/j.jconrel.2022.01.029 35085700
    [Google Scholar]
  20. DingQ. HuW. WangR. YangQ. ZhuM. LiM. CaiJ. RoseP. MaoJ. ZhuY.Z. Signaling pathways in rheumatoid arthritis: Implications for targeted therapy.Signal Transduct. Target. Ther.2023816810.1038/s41392‑023‑01331‑9 36797236
    [Google Scholar]
  21. LiuT. ZhangL. JooD. SunS.C. NF-κB signaling in inflammation.Signal Transduct. Target. Ther.2017211702310.1038/sigtrans.2017.23
    [Google Scholar]
  22. KourG. ChoudharyR. AnjumS. BhagatA. BajajB.K. AhmedZ. Phytochemicals targeting JAK/STAT pathway in the treatment of rheumatoid arthritis: Is there a future?Biochem. Pharmacol.202219711492910.1016/j.bcp.2022.114929 35065024
    [Google Scholar]
  23. HuL. LiuR. ZhangL. Advance in bone destruction participated by JAK/STAT in rheumatoid arthritis and therapeutic effect of JAK/STAT inhibitors.Int. Immunopharmacol.202211110909510.1016/j.intimp.2022.109095 35926270
    [Google Scholar]
  24. AbasianP. GhanavatiS. RahebiS. NouriK.S. KhaliliS. Polymeric nanocarriers in targeted drug delivery systems: A review.Polym. Adv. Technol.202031122939295410.1002/pat.5031
    [Google Scholar]
  25. XiaoS. TangY. LvZ. LinY. ChenL. Nanomedicine – advantages for their use in rheumatoid arthritis theranostics.J. Control. Release201931630231610.1016/j.jconrel.2019.11.008 31715278
    [Google Scholar]
  26. BhagwatR.R. VaidhyaI.S. Novel drug delivery systems: An overview.Int. J. Pharm. Sci. Res.201343970
    [Google Scholar]
  27. DeaneK.D. DemoruelleM.K. KelmensonL.B. KuhnK.A. NorrisJ.M. HolersV.M. Genetic and environmental risk factors for rheumatoid arthritis.Best Pract. Res. Clin. Rheumatol.201731131810.1016/j.berh.2017.08.003 29221595
    [Google Scholar]
  28. PandaP.K. JainS.K. Polymeric nanocarrier system bearing anticancer agent for the treatment of prostate cancer: Systematic development and in vitro characterization.Int. J. Pharm. Investig.2022131879310.5530/223097131799
    [Google Scholar]
  29. PandaP.K. VermaA. SarafS. TiwariA. JainS.K. Ionically gelled gellan gum in drug deliveryIonically gelled biopolysaccharide based systems in drug delivery2021556910.1007/978‑981‑16‑2271‑7_3
    [Google Scholar]
  30. TiwariA. JainA. VermaA. PandaP. JainS.K. Alginate-based composites in drug delivery application.ALGINATES Versatile Polymers in Biomedical Applications and Therapeutics.Apple Academic Press201945748110.1201/9780429023439‑15
    [Google Scholar]
  31. WilczewskaA.Z. NiemirowiczK. MarkiewiczK.H. CarH. Nanoparticles as drug delivery systems.Pharmacol. Rep.20126451020103710.1016/S1734‑1140(12)70901‑5 23238461
    [Google Scholar]
  32. RaikwarS. PandaP.K. Das BidlaP. SarafS. JainA. JainS.K. Liposomal delivery system.Nanotechnology for Biomedical Applications.SingaporeSpringer Singapore202210913410.1007/978‑981‑16‑7483‑9_6
    [Google Scholar]
  33. CroyS. KwonG. Polymeric micelles for drug delivery.Curr. Pharm. Des.200612364669468410.2174/138161206779026245 17168771
    [Google Scholar]
  34. PandaP.K. JainS.K. Doxorubicin bearing peptide anchored PEGylated PLGA nanoparticles for the effective delivery to prostate cancer cells.J. Drug Deliv. Sci. Technol.20238610466710.1016/j.jddst.2023.104667
    [Google Scholar]
  35. NasraS. BhatiaD. KumarA. Recent advances in nanoparticle-based drug delivery systems for rheumatoid arthritis treatment.Nanoscale Adv.20224173479349410.1039/D2NA00229A 36134349
    [Google Scholar]
  36. ChenM. DaddyJ.C. K.A.; Xiao, Y.; Ping, Q.; Zong, L. Advanced nanomedicine for rheumatoid arthritis treatment: Focus on active targeting.Expert Opin. Drug Deliv.201714101141114410.1080/17425247.2017.1372746 28847165
    [Google Scholar]
  37. JainA.K. MohanP. JainS.K. KesavanK. Nano carriers based approaches for bioavailability enhancement of ora l hypoglycaemic agents.Drug Deliv. Lett.20177317018010.2174/2210303107666170929113339
    [Google Scholar]
  38. DuanW. LiH. Combination of NF-kB targeted siRNA and methotrexate in a hybrid nanocarrier towards the effective treatment in rheumatoid arthritis.J. Nanobiotechnol.20181615810.1186/s12951‑018‑0382‑x 30060740
    [Google Scholar]
  39. LiH. JinK. LuoM. WangX. ZhuX. LiuX. JiangT. ZhangQ. WangS. PangZ. Size dependency of circulation and biodistribution of biomimetic nanoparticles: Red blood cell membrane-coated nanoparticles.Cells20198888110.3390/cells8080881 31412631
    [Google Scholar]
  40. IshiharaT. KubotaT. ChoiT. HigakiM. Treatment of experimental arthritis with stealth-type polymeric nanoparticles encapsulating betamethasone phosphate.J. Pharmacol. Exp. Ther.2009329241241710.1124/jpet.108.150276 19244548
    [Google Scholar]
  41. WangX. YangB. XuX. SuM. XiM. YinZ. Dextran sulfate–modified pH-sensitive layered double hydroxide nanocomposites for treatment of rheumatoid arthritis.Drug Deliv. Transl. Res.20211131096110610.1007/s13346‑020‑00832‑2 32779111
    [Google Scholar]
  42. LorscheiderM. TsapisN. ur-Rehman, M.; Gaudin, F.; Stolfa, I.; Abreu, S.; Mura, S.; Chaminade, P.; Espeli, M.; Fattal, E. Dexamethasone palmitate nanoparticles: An efficient treatment for rheumatoid arthritis.J. Control. Release201929617918910.1016/j.jconrel.2019.01.015 30659904
    [Google Scholar]
  43. Simón-VázquezR. TsapisN. LorscheiderM. RodríguezA. CallejaP. MousnierL. de MiguelV.E. González-FernándezÁ. FattalE. Improving dexamethasone drug loading and efficacy in treating arthritis through a lipophilic prodrug entrapped into PLGA-PEG nanoparticles.Drug Deliv. Transl. Res.20221251270128410.1007/s13346‑021‑01112‑3 34993924
    [Google Scholar]
  44. ShiD. BeasockD. FesslerA. SzebeniJ. LjubimovaJ.Y. AfoninK.A. DobrovolskaiaM.A. To PEGylate or not to PEGylate: Immunological properties of nanomedicine’s most popular component, polyethylene glycol and its alternatives.Adv. Drug Deliv. Rev.202218011407910.1016/j.addr.2021.114079 34902516
    [Google Scholar]
  45. ShenQ. ShuH. XuX. ShuG. DuY. YingX. Tofacitinib citrate-based liposomes for effective treatment of rheumatoid arthritis.Pharmazie2020754131135 32295688
    [Google Scholar]
  46. ShenQ. DuY. A comprehensive review of advanced drug delivery systems for the treatment of rheumatoid arthritis.Int. J. Pharm.202363512269810.1016/j.ijpharm.2023.122698 36754181
    [Google Scholar]
  47. FengX. ChenY. Drug delivery targets and systems for targeted treatment of rheumatoid arthritis.J. Drug Target.2018261084585710.1080/1061186X.2018.1433680 29376442
    [Google Scholar]
  48. KumarP. HuoP. LiuB. Formulation strategies for folate-targeted liposomes and their biomedical applications.Pharmaceutics201911838110.3390/pharmaceutics11080381 31382369
    [Google Scholar]
  49. JiaoY. PangX. ZhaiG. Advances in hyaluronic acid-based drug delivery systems.Curr. Drug Targets201617672073010.2174/1389450116666150531155200 26028046
    [Google Scholar]
  50. FoxR.I. HerrmannM.L. FrangouC.G. WahlG.M. MorrisR.E. StrandV. KirschbaumB.J. Mechanism of action for leflunomide in rheumatoid arthritis.Clin. Immunol.199993319820810.1006/clim.1999.4777 10600330
    [Google Scholar]
  51. ZewailM. NafeeN. HelmyM.W. BoraieN. Coated nanostructured lipid carriers targeting the joints – An effective and safe approach for the oral management of rheumatoid arthritis.Int. J. Pharm.201956711844710.1016/j.ijpharm.2019.118447 31226475
    [Google Scholar]
  52. ColomboF. DuriguttoP. De MasoL. BiffiS. BelmonteB. TripodoC. OlivaR. BardiniP. MariniG.M. TerrenoE. PozzatoG. RampazzoE. BertrandJ. FeuersteinB. JavurekJ. HavrankovaJ. PitzalisC. NuñezL. MeroniP. TedescoF. SblatteroD. MacorP. Targeting CD34+ cells of the inflamed synovial endothelium by guided nanoparticles for the treatment of rheumatoid arthritis.J. Autoimmun.201910310228810.1016/j.jaut.2019.05.016 31213399
    [Google Scholar]
  53. Al-RahimA.M. AlChalabiR. Al-SaffarA.Z. SulaimanG.M. AlbukhatyS. BelaliT. AhmedE.M. KhalilK.A.A. Folate-methotrexate loaded bovine serum albumin nanoparticles preparation: An in vitro drug targeting cytokines overwhelming expressed immune cells from rheumatoid arthritis patients.Anim. Biotechnol.202334216618210.1080/10495398.2021.1951282 34319853
    [Google Scholar]
  54. PrajapatiR.N. PrajapatiS.K. AlokS. GuptaR. Folate anchored conjugates of poly (amidoamine)(PAMAM) dendrimer for controlled site specific delivery of piroxicam in arthritic rats.Int. J. Pharm. Sci. Res.20189938893896
    [Google Scholar]
  55. VermaA. JainA. TiwariA. SarafS. PandaP.K. AgrawalG.P. JainS.K. Folate conjugated double liposomes bearing prednisolone and methotrexate for targeting rheumatoid arthritis.Pharm. Res.201936812310.1007/s11095‑019‑2653‑0 31218557
    [Google Scholar]
  56. WangY. LiuZ. LiT. ChenL. LyuJ. LiC. LinY. HaoN. ZhouM. ZhongZ. Enhanced therapeutic effect of RGD-modified polymeric micelles loaded with low-dose methotrexate and nimesulide on rheumatoid arthritis.Theranostics20199370872010.7150/thno.30418 30809303
    [Google Scholar]
  57. PandaP.K. SarafS. TiwariA. VermaA. RaikwarS. JainA. JainS.K. Novel strategies for targeting prostate cancer.Curr. Drug Deliv.201916871272710.2174/1567201816666190821143805 31433757
    [Google Scholar]
  58. ZhouM. HouJ. ZhongZ. HaoN. LinY. LiC. Targeted delivery of hyaluronic acid-coated solid lipid nanoparticles for rheumatoid arthritis therapy.Drug Deliv.201825171672210.1080/10717544.2018.1447050 29516758
    [Google Scholar]
  59. DashP. PirasA.M. DashM. Cell membrane coated nanocarriers - an efficient biomimetic platform for targeted therapy.J. Control. Release202032754657010.1016/j.jconrel.2020.09.012 32911013
    [Google Scholar]
  60. JinK. LuoZ. ZhangB. PangZ. Biomimetic nanoparticles for inflammation targeting.Acta Pharm. Sin. B201881233310.1016/j.apsb.2017.12.002 29872620
    [Google Scholar]
  61. HeY. LiR. LiangJ. ZhuY. ZhangS. ZhengZ. QinJ. PangZ. WangJ. Drug targeting through platelet membrane-coated nanoparticles for the treatment of rheumatoid arthritis.Nano Res.201811116086610110.1007/s12274‑018‑2126‑5
    [Google Scholar]
  62. ZhengX. YuX. WangC. LiuY. JiaM. LeiF. TianJ. LiC. Targeted co-delivery biomimetic nanoparticles reverse macrophage polarization for enhanced rheumatoid arthritis therapy.Drug Deliv.20222911025103710.1080/10717544.2022.2057616 35363114
    [Google Scholar]
  63. QuanL. ZhangY. CrielaardB.J. DusadA. LeleS.M. RijckenC.J.F. MetselaarJ.M. KostkováH. EtrychT. UlbrichK. KiesslingF. MikulsT.R. HenninkW.E. StormG. LammersT. WangD. Nanomedicines for inflammatory arthritis: head-to-head comparison of glucocorticoid-containing polymers, micelles, and liposomes.ACS Nano20148145846610.1021/nn4048205 24341611
    [Google Scholar]
  64. TangT.T. WangB. LvL.L. LiuB.C. Extracellular vesicle-based Nanotherapeutics: Emerging frontiers in anti-inflammatory therapy.Theranostics202010188111812910.7150/thno.47865 32724461
    [Google Scholar]
  65. YanF. ZhongZ. WangY. FengY. MeiZ. LiH. ChenX. CaiL. LiC. Exosome-based biomimetic nanoparticles targeted to inflamed joints for enhanced treatment of rheumatoid arthritis.J. Nanobiotechnology202018111510.1186/s12951‑020‑00675‑6 32819405
    [Google Scholar]
  66. WangY. JiaM. ZhengX. WangC. ZhouY. PanH. LiuY. LuJ. MeiZ. LiC. Microvesicle-camouflaged biomimetic nanoparticles encapsulating a metal-organic framework for targeted rheumatoid arthritis therapy.J. Nanobiotechnology202220125310.1186/s12951‑022‑01447‑0 35658866
    [Google Scholar]
  67. TiwariA. VermaA. PandaP.K. SarafS. JainA. JainS.K. Stimuli-responsive polysaccharides for colon-targeted drug delivery.Stimuli Responsive Polymeric Nanocarriers for Drug Delivery Applications.Woodhead Publishing Series in Biomaterials201954756610.1016/B978‑0‑08‑101995‑5.00022‑2
    [Google Scholar]
  68. RaikwarS. SarafS. PandaP.K. TiwariA. BidlaP.D. VermaA. JainA. JainS.K. Opportunities in ultrasonic drug delivery to tumor.Advances and Challenges in Pharmaceutical Technology202149351510.1016/B978‑0‑12‑820043‑8.00016‑5
    [Google Scholar]
  69. LopesJ. SantosG. BarataP. OliveiraR. LopesC. Physical and chemical stimuli-responsive drug delivery systems: Targeted delivery and main routes of administration.Curr. Pharm. Des.201319417169718410.2174/13816128113199990698 23489197
    [Google Scholar]
  70. BhardwajA. KumarL. MehtaS. MehtaA. Stimuli-sensitive Systems-an emerging delivery system for drugs.Artif. Cells Nanomed. Biotechnol.201543529931010.3109/21691401.2013.856016 26561681
    [Google Scholar]
  71. XuX.L. LuK.J. YaoX.Q. YingX.Y. DuY.Z. Stimuli-responsive drug Delivery Systems as an emerging platform for treatment of rheumatoid arthritis.Curr. Pharm. Des.201925215516510.2174/1381612825666190321104424 30907308
    [Google Scholar]
  72. RaikwarS. JainA. SarafS. TiwariA. PandaP.K. JainS.K. Environmental stimuli-sensitive chitosan nanocarriers in therapeutics.Chitosan in Biomedical Applications202218920910.1016/B978‑0‑12‑821058‑1.00007‑1
    [Google Scholar]
  73. XieY. TuguntaevR.G. MaoC. ChenH. TaoY. WangS. YangB. GuoW. Stimuli-responsive polymeric nanomaterials for rheumatoid arthritis therapy.Biophys. Rep.20206519321010.1007/s41048‑020‑00117‑8 37288306
    [Google Scholar]
  74. KhanD. QindeelM. AhmedN. KhanA.U. KhanS. RehmanA. Development of novel pH-sensitive nanoparticle-based transdermal patch for management of rheumatoid arthritis.Nanomedicine202015660362410.2217/nnm‑2019‑0385 32098563
    [Google Scholar]
  75. WangY. GouK. GuoX. KeJ. LiS. LiH. Advances in regulating physicochemical properties of mesoporous silica nanocarriers to overcome biological barriers.Acta Biomater.2021123729210.1016/j.actbio.2021.01.005 33454385
    [Google Scholar]
  76. ZhuL. KateP. TorchilinV.P. Matrix metalloprotease 2-responsive multifunctional liposomal nanocarrier for enhanced tumor targeting.ACS Nano2012643491349810.1021/nn300524f 22409425
    [Google Scholar]
  77. HeL. FanD. LiangW. WangQ. FangJ. Matrix metalloproteinase-responsive PEGylated lipid nanoparticles for controlled drug delivery in the treatment of rheumatoid arthritis.ACS Appl. Bio Mater.2020353276328410.1021/acsabm.0c00242 35025370
    [Google Scholar]
  78. YuC. LiuH. GuoC. ChenQ. SuY. GuoH. HouX. ZhaoF. FanH. XuH. ZhaoY. MuX. WangG. XuH. ChenD. Dextran sulfate-based MMP-2 enzyme-sensitive SR-A receptor targeting nanomicelles for the treatment of rheumatoid arthritis.Drug Deliv.202229145446510.1080/10717544.2022.2032482 35119317
    [Google Scholar]
  79. FonsecaL.J.S. Nunes-SouzaV. GoulartM.O.F. RabeloL.A. Oxidative stress in rheumatoid arthritis: What the future might hold regarding novel biomarkers and add-on therapies.Oxid. Med. Cell. Longev.2019201911610.1155/2019/7536805 31934269
    [Google Scholar]
  80. YeoJ. LeeY.M. LeeJ. ParkD. KimK. KimJ. ParkJ. KimW.J. Nitric oxide-scavenging nanogel for treating rheumatoid arthritis.Nano Lett.201919106716672410.1021/acs.nanolett.9b00496 31082252
    [Google Scholar]
  81. ZhongJ. ZhangQ. ZhangZ. ShiK. SunY. LiuT. LinJ. YangK. Albumin mediated reactive oxygen species scavenging and targeted delivery of methotrexate for rheumatoid arthritis therapy.Nano Res.202215115316110.1007/s12274‑021‑3449‑1
    [Google Scholar]
  82. KimH.S. YangJ. KimK. ShinU.S. Biodegradable and injectable hydrogels as an immunosuppressive drug delivery system.Mater. Sci. Eng. C20199847248110.1016/j.msec.2018.11.051 30813049
    [Google Scholar]
  83. ChenM. Su; Guissi; Xiao; Zong; Ping; Ping, Q. Folate receptor-targeting and reactive oxygen species-responsive liposomal formulation of methotrexate for treatment of rheumatoid arthritis.Pharmaceutics2019111158210.3390/pharmaceutics11110582 31698794
    [Google Scholar]
  84. HashimotoT. YoshidaK. HashimotoN. NakaiA. KaneshiroK. SuzukiK. KawasakiY. ShibanumaN. HashiramotoA. Circulating cell free DNA: a marker to predict the therapeutic response for biological DMARDs in rheumatoid arthritis.Int. J. Rheum. Dis.201720672273010.1111/1756‑185X.12959 27943573
    [Google Scholar]
  85. LiangH. PengB. DongC. LiuL. MaoJ. WeiS. WangX. XuH. ShenJ. MaoH.Q. GaoX. LeongK.W. ChenY. Cationic nanoparticle as an inhibitor of cell-free DNA-induced inflammation.Nat. Commun.201891429110.1038/s41467‑018‑06603‑5 30327464
    [Google Scholar]
  86. YinN. TanX. LiuH. HeF. DingN. GouJ. YinT. HeH. ZhangY. TangX. A novel indomethacin/methotrexate/MMP-9 siRNA in situ hydrogel with dual effects of anti-inflammatory activity and reversal of cartilage disruption for the synergistic treatment of rheumatoid arthritis.Nanoscale202012158546856210.1039/D0NR00454E 32243486
    [Google Scholar]
  87. WangA. XuY. FeiY. WangM. The role of immunosuppressive agents in the management of severe and refractory immune-related adverse events.Asia Pac. J. Clin. Oncol.202016420121010.1111/ajco.13332 32212243
    [Google Scholar]
  88. SatoT. KonnoJ. SekiguchiA. YonekiN. KawanoK. HayashiT. OgawaY. KikitsuA. AijimaT. HaraK. HaraS. HayashiH. FuchigamiK. IgoN. TakashimaY. KobayashiY. MoriM. YamamotoK. NiwaM. SaigaK. IchimuraE. Long-lasting immunosuppressive effects of tacrolimus-loaded micelle NK61060 in preclinical arthritis and colitis models.Ther. Deliv.201891071172910.4155/tde‑2018‑0044 30277135
    [Google Scholar]
  89. ZhaoY.P. HanJ.F. ZhangF.Y. LiaoT.T. NaR. YuanX.F. HeG. YeW. Flexible nano-liposomes-based transdermal hydrogel for targeted delivery of dexamethasone for rheumatoid arthritis therapy.Drug Deliv.20222912269228210.1080/10717544.2022.2096718 35815790
    [Google Scholar]
  90. SinghA. BoregowdaS.S. MoinA. Abu LilaA.S. AldawsariM.F. KhafagyE.S. AlotaibiH.F. JayaramuR.A. Biosynthesis of silver nanoparticles using Commiphora mukul extract: Evaluation of anti-arthritic activity in adjuvant-induced arthritis rat model.Pharmaceutics20221411231810.3390/pharmaceutics14112318 36365137
    [Google Scholar]
  91. GargN.K. TyagiR.K. SinghB. SharmaG. NirbhavaneP. KushwahV. JainS. KatareO.P. Nanostructured lipid carrier mediates effective delivery of methotrexate to induce apoptosis of rheumatoid arthritis via NF-κB and FOXO1.Int. J. Pharm.20164991-230132010.1016/j.ijpharm.2015.12.061 26768725
    [Google Scholar]
  92. NakajimaA. Application of cellular gene therapy for rheumatoid arthritis.Mod. Rheumatol.200616526927510.3109/s10165‑006‑0501‑7 17039306
    [Google Scholar]
  93. AdriaansenJ. VervoordeldonkM.J.B.M. TakP.P. Gene therapy as a therapeutic approach for the treatment of rheumatoid arthritis: innovative vectors and therapeutic genes.Rheumatology200645665666810.1093/rheumatology/kel047 16510530
    [Google Scholar]
  94. GouzeE. PawliukR. PilapilC. GouzeJ.N. FleetC. PalmerG.D. EvansC.H. LeboulchP. GhivizzaniS.C. In vivo gene delivery to synovium by lentiviral vectors.Mol. Ther.20025439740410.1006/mthe.2002.0562 11945066
    [Google Scholar]
  95. SunX. DongS. LiX. YuK. SunF. LeeR.J. LiY. TengL. Delivery of siRNA using folate receptor-targeted pH-sensitive polymeric nanoparticles for rheumatoid arthritis therapy.Nanomedicine20192010201710.1016/j.nano.2019.102017 31128293
    [Google Scholar]
  96. PanS. WangL. WuB. XingH. Effect and mechanism of siRNAs targeting IL-1β/TNF-α combined with bmscs transplantation in ameliorating rheumatoid arthritis in rats.Vet. Sci.202291053110.3390/vetsci9100531 36288143
    [Google Scholar]
  97. NimeshS. Herbal drug is better than allopathic drug in the treatment of rheumatoid arthritis.Int. J. Pharmacogn.201859539545
    [Google Scholar]
  98. JainN. ValliK.S. DeviV.K. Importance of novel drug delivery systems in herbal medicines.Pharmacogn. Rev.201047273110.4103/0973‑7847.65322 22228938
    [Google Scholar]
  99. ChandrasekarR. ChandrasekarS. Natural herbal treatment for rheumatoid arthritis-a review.Int. J. Pharm. Sci. Res.201782368
    [Google Scholar]
  100. GokhaleJ.P. MahajanH.S. SuranaS.J. Quercetin loaded nanoemulsion-based gel for rheumatoid arthritis: In vivo and in vitro studies.Biomed. Pharmacother.201911210862210.1016/j.biopha.2019.108622 30797146
    [Google Scholar]
  101. BrusiniR. VarnaM. CouvreurP. Advanced nanomedicines for the treatment of inflammatory diseases.Adv. Drug Deliv. Rev.202015716117810.1016/j.addr.2020.07.010 32697950
    [Google Scholar]
  102. ElkomyM.H. AlruwailiN.K. ElmowafyM. ShalabyK. ZafarA. AhmadN. AlsalahatI. GhoneimM.M. EissaE.M. EidH.M. Surface-modified bilosomes nanogel bearing a natural plant alkaloid for safe management of rheumatoid arthritis inflammation.Pharmaceutics202214356310.3390/pharmaceutics14030563 35335939
    [Google Scholar]
  103. PăvăloiuR.D. Sha’atF. BubueanuC. DeaconuM. NeaguG. Sha’atM. AnastasescuM. MihailescuM. MateiC. NechiforG. BergerD. Polyphenolic extract from Sambucus ebulus L. leaves free and loaded into lipid vesicles.Nanomaterials20191015610.3390/nano10010056 31881758
    [Google Scholar]
  104. TanT. HuangQ. ChuW. LiB. WuJ. XiaQ. CaoX. Delivery of germacrone (GER) using macrophages-targeted polymeric nanoparticles and its application in rheumatoid arthritis.Drug Deliv.202229169270110.1080/10717544.2022.2044936 35225122
    [Google Scholar]
  105. ManiA. VasanthiC. GopalV. ChellathaiD. Role of phyto-stabilised silver nanoparticles in suppressing adjuvant induced arthritis in rats.Int. Immunopharmacol.201641172310.1016/j.intimp.2016.10.013 27788371
    [Google Scholar]
  106. SinghE. OsmaniR.A.M. BanerjeeR. Abu LilaA.S. MoinA. AlmansourK. ArabH.H. AlotaibiH.F. KhafagyE.S. Poly ε-caprolactone nanoparticles for sustained intra-articular immune modulation in adjuvant-induced arthritis rodent model.Pharmaceutics202214351910.3390/pharmaceutics14030519 35335895
    [Google Scholar]
  107. JoshiM. PathakK. DhaneshwarS. Nanotechnology-based strategies for effective delivery of phytoconstituents for the management of rheumatoid arthritis.Pharmacol. Res. Mod. Chin. Med.2022210006110.1016/j.prmcm.2022.100061
    [Google Scholar]
  108. TerkeltaubR.A. Colchicine update: 2008.Seminars in arthritis and rheumatism.WB Saunders2008411419
    [Google Scholar]
  109. LeungY.Y. HuiL.L. KrausV.B. Colchicine—update on mechanisms of action and therapeutic uses.Seminars in arthritis and rheumatismWB Saunders201545341350
    [Google Scholar]
  110. AbdulbaqiI.M. DarwisY. Abou AssiR. Abdul Karim KhanN. Transethosomal gels as carriers for the transdermal delivery of colchicine: statistical optimization, characterization, and ex vivo evaluation.Drug Des. Devel. Ther.20181279581310.2147/DDDT.S158018 29670336
    [Google Scholar]
  111. ZhaoX.X. PengC. ZhangH. QinL.P. Sinomenium acutum: A review of chemistry, pharmacology, pharmacokinetics, and clinical use.Pharm. Biol.20125081053106110.3109/13880209.2012.656847 22775422
    [Google Scholar]
  112. WeiweiL. XianQ. WeiJ. YanL. GangW. YueW. Effects and safety of Sinomenine in treatment of rheumatoid arthritis contrast to methotrexate: A systematic review and Meta-analysis.J. Tradit. Chin. Med.201636556457710.1016/S0254‑6272(16)30075‑9 29932627
    [Google Scholar]
  113. SongH. WenJ. LiH. MengY. ZhangY. ZhangN. ZhengW. Enhanced transdermal permeability and drug deposition of rheumatoid arthritis via sinomenine hydrochloride-loaded antioxidant surface transethosome.Int. J. Nanomedicine2019143177318810.2147/IJN.S188842 31118630
    [Google Scholar]
  114. ZiaeiS. HalabyR. Immunosuppressive, anti-inflammatory and anti-cancer properties of triptolide: A mini review.Avicenna J. Phytomed.201662149164 27222828
    [Google Scholar]
  115. ChenS.R. DaiY. ZhaoJ. LinL. WangY. WangY. A mechanistic overview of triptolide and celastrol, natural products from Tripterygium wilfordii Hook F.Front. Pharmacol.2018910410.3389/fphar.2018.00104 29491837
    [Google Scholar]
  116. GuY. TangX. YangM. YangD. LiuJ. Transdermal drug delivery of triptolide-loaded nanostructured lipid carriers: Preparation, pharmacokinetic, and evaluation for rheumatoid arthritis.Int. J. Pharm.201955423524410.1016/j.ijpharm.2018.11.024 30423415
    [Google Scholar]
  117. VasaviramaK. UpenderM. Piperine: A valuable alkaloid from piper species.Int. J. Pharm. Pharm. Sci.2014643438
    [Google Scholar]
  118. BangJ.S. OhD.H. ChoiH.M. SurB.J. LimS.J. KimJ.Y. YangH.I. YooM.C. HahmD.H. KimK.S. Anti-inflammatory and antiarthritic effects of piperine in human interleukin 1β-stimulated fibroblast-like synoviocytes and in rat arthritis models.Arthritis Res. Ther.2009112R4910.1186/ar2662 19327174
    [Google Scholar]
  119. BhalekarM.R. MadgulkarA.R. DesaleP.S. MariumG. Formulation of piperine solid lipid nanoparticles (SLN) for treatment of rheumatoid arthritis.Drug Dev. Ind. Pharm.20174361003101010.1080/03639045.2017.1291666 28161984
    [Google Scholar]
  120. ChandraA. AryaR.K. PalG.R. TewariB. Formulation and evaluation of ginger extract loaded nanoemulgel for the treatment of rheumatoid arthritis.J. Drug Deliv. Ther.201994559570
    [Google Scholar]
  121. VenkateshaS.H. AstryB. NanjundaiahS.M. YuH. MoudgilK.D. Suppression of autoimmune arthritis by Celastrus-derived Celastrol through modulation of pro-inflammatory chemokines.Bioorg. Med. Chem.201220175229523410.1016/j.bmc.2012.06.050 22854193
    [Google Scholar]
  122. KangQ. LiuJ. ZhaoY. LiuX. LiuX.Y. WangY.J. MoN.L. WuQ. Transdermal delivery system of nanostructured lipid carriers loaded with Celastrol and Indomethacin: optimization, characterization and efficacy evaluation for rheumatoid arthritis.Artif. Cells Nanomed. Biotechnol.201846S3S585S59710.1080/21691401.2018.1503599
    [Google Scholar]
  123. KhatakS. DurejaH. Recent techniques and patents on solid lipid nanoparticles as novel carrier for drug delivery.Recent Pat. Nanotechnol.20159315017710.2174/1872210510999151126105754 27009132
    [Google Scholar]
  124. ChhikaraK. GuptaS. SaharawatS. SarkarS. ChandaA. Design, manufacturing, and trial of a 3D printed customized finger splint for patients with rheumatoid arthritis.Rheumato202331516210.3390/rheumato3010004
    [Google Scholar]
  125. van der GiesenF.J. van LankveldW. Hopman-RockM. de JongZ. MunnekeM. HazesJ.M.W. van RielP.L.C.M. PeetersA.J. RondayH.K. VlielandT.P.M.V. Exploring the public health impact of an intensive exercise program for patients with rheumatoid arthritis: A dissemination and implementation study.Arthritis Care Res.201062686587210.1002/acr.20138 20535798
    [Google Scholar]
/content/journals/cnano/10.2174/0115734137264937231214071646
Loading
/content/journals/cnano/10.2174/0115734137264937231214071646
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test