Skip to content
2000
Volume 21, Issue 2
  • ISSN: 1573-4137
  • E-ISSN: 1875-6786

Abstract

Due to the recent rise in explosive-based terrorism and ecological issues, the invention of good capacity detectors for the identification of explosives has emerged as one of the major thirsts in the scientific community. Due to their unique optical and electrical properties, nanocomposites can meet all of the prerequisites for developing preferential, responsive, easy, and cost-effective sensor nodes for the sensing of various explosives. This study primarily throws light on current developments in explosives detection using nanomaterial-based sensors. In particular, it describes how quantum dots, carbon nanomaterials, monometallic nanomaterials, and bimetallic nanomaterials have been used to detect explosives optically and electrochemically. The accurate and consistent features of the nanomaterials, including their synthesis, the explosive detection technique, and the analytical facets, are all thoroughly examined.

Loading

Article metrics loading...

/content/journals/cnano/10.2174/0115734137277198231218060425
2023-03-29
2025-01-08
Loading full text...

Full text loading...

References

  1. ChavanV.A. BhagatD.S. GangawaneA.K. Overview of bimetallic nanomaterials used for visualization of latent fingerprints on various surfaces.Problems Forensic Sci.2022129759110.4467/12307483PFS.22.004.16305
    [Google Scholar]
  2. ChavanV.A. KumarR. Exploring the potential of ridge density as a measure of sex identification.J. Forensics Res.2020115
    [Google Scholar]
  3. BellS. Forensic chemistry.2nd edUpper Saddle RiverPearson-Prentice Hall2006
    [Google Scholar]
  4. HouckJ.A. SiegelM.M. Fundamentals of forensic science.Burlington, MAElsevier Academic Press2006
    [Google Scholar]
  5. DotyK.C. MuroC.K. BuenoJ. HalámkováL. LednevI.K. What can Raman spectroscopy do for criminalistics?J. Raman Spectrosc.2016471395010.1002/jrs.4826
    [Google Scholar]
  6. MarićM. van BronswijkW. LewisS.W. PittsK. Rapid characterisation and classification of automotive clear coats by attenuated total reflectance infrared spectroscopy.Anal. Methods201249268710.1039/c2ay25419k
    [Google Scholar]
  7. MohdM.I. BadruzamanN.A. PengK.S. LongK. Quantification of cytokinins in coconut water from different maturation stages of malaysia’s coconut (Cocos nucifera L.) Varieties.J. Food Process. Technol.201561110.4172/2157‑7110.1000515
    [Google Scholar]
  8. Lloyd-HughesH. ShiatisA.E. PabariA. Current and future nanotechnology applications in the management of melanoma: A review.J. Nanomed. Nanotechnol.201566110.4172/2157‑7439.1000334
    [Google Scholar]
  9. DennisE. PeoplesV.A. JohnsonF. BibbsR.K. ToppsD. Bopola-WaffloA. CoatsM.I. Utilizing nanotechnology to combat malaria.J. Infect. Dis. Ther.20153410.4172/2332‑0877.1000229
    [Google Scholar]
  10. TamiriT. ZitrinS. Explosives: analysis.Elsevier eBooks2013648410.1016/B978‑0‑12‑382165‑2.00083‑0
    [Google Scholar]
  11. KumarS. JainP. Importance of forensic investigation in explosion: A case study.J. Forensics Res.2016734710.4172/2157‑7145.1000347
    [Google Scholar]
  12. AgarwalJ.P. High Energy Materials: Propellants, Explosives and Pyrotechnics.Weinheim, GermanyWiley-VCH Verlag GmbH & Co201016710.1002/9783527628803
    [Google Scholar]
  13. SafersteinR. Criminalistics: An Introduction to Forensic Science.13th edNew Jersey, USAPearson Education2021
    [Google Scholar]
  14. a KlapecD.J. CzarnopysG. PannutoJ. Interpol review of the analysis and detection of explosives and explosives residues.Forensic Science International: Synergy2023610029810.1016/j.fsisyn.2022.100298 36685733
    [Google Scholar]
  15. b BajajA. JohnC. SinghM. Explosive post blast analysis: A case study.Eur. J. Forensic Sci.2016325010.5455/ejfs.197667
    [Google Scholar]
  16. (a LiuS. DuG. RanX. YangH. YuanJ. WuY. LiJ. LinX. GaoW. YangL. Visual, customizable wood-based colorimetric test paper encapsulated with fluorescent carbon dots for rapid explosive detection.Ind. Crops Prod.202319411639810.1016/j.indcrop.2023.116398
    [Google Scholar]
  17. (b JohnD. Kelleher. Explosives Residue: Origin and DistributionForensic Sci. Comm20024
    [Google Scholar]
  18. a ZhengC. LingY. ChenJ. YuanX. LiS. ZhangZ. Design of a versatile and selective electrochemical sensor based on dummy molecularly imprinted PEDOT/laser-induced graphene for nitroaromatic explosives detection.Environ. Res.2023236Pt 211676910.1016/j.envres.2023.116769 37517500
    [Google Scholar]
  19. (b YinonJ. HoffsommerJ.C. Analysis of explosives.Crit. Rev. Anal. Chem.19777113510.1080/10408347708085699
    [Google Scholar]
  20. (a LiuW. WangZ. LiuZ. ChenJ. ShiL. HuangL. LiuY. CuiS. HeX. Utilizing an automated SERS-digital microfludic system for high-throughput detection of explosives.ACS Sens.2023841733174110.1021/acssensors.3c00012 36950737
    [Google Scholar]
  21. (b YinonJ. Explosives.Handbook of analytical separations200060361310.1016/S1567‑7192(00)80072‑8
    [Google Scholar]
  22. (a TamiriT. ZitrinS. Explosives: analysis.,201310.1016/B978‑0‑12‑382165‑2.00083‑0
    [Google Scholar]
  23. (b ApakR. ÜzerA. SağlamŞ. ArmanA. Selective electrochemical detection of explosives with nanomaterial based electrodes.Electroanalysis2023351e20220017510.1002/elan.202200175
    [Google Scholar]
  24. BumbrahGS JaniM BhagatDS DalalK KaushalA SadhanaK Zinc oxide nanoparticles for detection of latent fingermarks on nonporous surfaces.Materials Chemistry and Physics.202227812566010.1016/j.matchemphys.2021.125660
    [Google Scholar]
  25. ChavanV. BhagatD. GangwaneA. KhawashiH. ThoratB. Bimetallic nanomaterials-based electroanalytical methods for detection of pesticide residues.Biointerface Res. Appl. Chem.202313546810.33263/BRIAC135.468
    [Google Scholar]
  26. KhawashiH. ChavanV. BhagatD. DeshmukhS. ThoratB. Recent advances in the detection of lead ions using nanoparticle-based sensors.Biointerface Res. Appl. Chem.202313546610.33263/BRIAC135.466
    [Google Scholar]
  27. WangH. MiD. WangW. ZhangH. TongD. WangS. GaoF. Latent fingerprint visualization and subsequent DNA extraction using electron beam evaporation of metallic Ultra-Thin films.Curr. Nanosci.201915324825310.2174/1573413714666180628155824
    [Google Scholar]
  28. AlkhuderK. Surface-enhanced raman scattering: A promising nanotechnology for anti-counterfeiting and tracking systems.Curr. Nanosci.202319563665010.2174/1573413718666220607164053
    [Google Scholar]
  29. DilagJ. KobusH. EllisA. Nanotechnology as a new tool for fingermark detection: A review.Curr. Nanosci.20117215315910.2174/157341311794653596
    [Google Scholar]
  30. (a HehetP. PützM. KämmererB. UmlaufG. GeissO. CaetanoJ.G.N. KaraghiosoffK. WendeM. Determination of triacetone triperoxide (TATP) traces using passive samplers in combination with GC-MS and GC-PCI-MS/MS methods.Forensic Sci. Int.202334811167310.1016/j.forsciint.2023.111673 37031011
    [Google Scholar]
  31. (b RawtaniD. TharmavaramM. PandeyG. HussainC.M. Functionalized nanomaterial for forensic sample analysis.Trends Analyt. Chem.201912011566110.1016/j.trac.2019.115661
    [Google Scholar]
  32. SharmaV. MehataM.S. Rapid optical sensor for recognition of explosive 2,4,6-TNP traces in water through fluorescent ZnSe quantum dots.Spectrochim. Acta A Mol. Biomol. Spectrosc.202126011993710.1016/j.saa.2021.119937 34034075
    [Google Scholar]
  33. MitriF. De IacovoA. De SantisS. GiansanteC. SotgiuG. ColaceL. Chemiresistive device for the detection of nitroaromatic explosives based on colloidal PBS quantum dots.ACS Appl. Electron. Mater.2021373234323910.1021/acsaelm.1c00401
    [Google Scholar]
  34. MitriF. De IacovoA. De SantisS. GiansanteC. SpiritoD. SotgiuG. ColaceL. A compact optical sensor for explosive detection based on NIR luminescent quantum dots.Appl. Phys. Lett.2021119404110610.1063/5.0060400
    [Google Scholar]
  35. SharmaP. MehataM.S. Colloidal MoS2 quantum dots based optical sensor for detection of 2,4,6-TNP explosive in an aqueous medium.Opt. Mater.202010010964610.1016/j.optmat.2019.109646
    [Google Scholar]
  36. MalulekeR. SakhoE.H.M. OluwafemiO.S. Aqueous synthesis of glutathione-capped CuInS2/ZnS quantum dots-graphene oxide nanocomposite as fluorescence “switch OFF” for explosive detection.Mater. Lett.202026912766910.1016/j.matlet.2020.127669
    [Google Scholar]
  37. ChenX. SunC. LiuY. YuL. ZhangK. AsiriA.M. MarwaniH.M. TanH. AiY. WangX. WangS. All-inorganic perovskite quantum dots CsPbX3 (Br/I) for highly sensitive and selective detection of explosive picric acid.Chem. Eng. J.202037912236010.1016/j.cej.2019.122360
    [Google Scholar]
  38. TianX. PengH. LiY. YangC. ZhouZ. WangY. Highly sensitive and selective paper sensor based on carbon quantum dots for visual detection of TNT residues in groundwater.Sens. Actuators B Chem.20172431002100910.1016/j.snb.2016.12.079
    [Google Scholar]
  39. YiK.Y. Application of CdSe quantum dots for the direct detection of TNT.Forensic Sci. Int.201625910110510.1016/j.forsciint.2015.12.028 26773219
    [Google Scholar]
  40. PevelerW.J. RoldanA. HollingsworthN. PorterM.J. ParkinI.P. Multichannel detection and differentiation of explosives with a quantum dot array.ACS Nano20161011139114610.1021/acsnano.5b06433 26579950
    [Google Scholar]
  41. ChenZ. TaoZ. CongS. HouJ. ZhangD. GengF. ZhaoZ. Fast preparation of ultrafine monolayered transition-metal dichalcogenide quantum dots using electrochemical shock for explosive detection.Chem. Commun.20165276114421144510.1039/C6CC06325J 27711305
    [Google Scholar]
  42. KauffmanD.R. StarA. Carbon nanotube gas and vapor sensors.Angew. Chem. Int. Ed.200847356550657010.1002/anie.200704488 18642264
    [Google Scholar]
  43. MaY. WangS. WangL. Nanomaterials for luminescence detection of nitroaromatic explosives.Trends Analyt. Chem.201565132110.1016/j.trac.2014.09.007
    [Google Scholar]
  44. LuS. XueM. TaoA. WengY. YaoB. WengW. LinX. Facile microwave-assisted synthesis of functionalized carbon nitride quantum dots as fluorescence probe for fast and highly selective detection of 2,4,6-Trinitrophenol.J. Fluoresc.20213111910.1007/s10895‑020‑02633‑9 33057853
    [Google Scholar]
  45. TanX. ZhangT. ZengW. HeS. LiuX. TianH. ShiJ. CaoT. A fluorescence sensing determination of 2, 4, 6-Trinitrophenol based on cationic water-soluble pillar[6]arene graphene nanocomposite.Sensors20181919110.3390/s19010091 30597872
    [Google Scholar]
  46. SiddiqueA.B. PramanickA.K. ChatterjeeS. RayM. Amorphous carbon dots and their remarkable ability to detect 2,4,6-Trinitrophenol.Sci. Rep.201881977010.1038/s41598‑018‑28021‑9 29950660
    [Google Scholar]
  47. KumarD. JhaP. ChoukseyA. TandonR.P. ChaudhuryP.K. RawatJ.S. Flexible single walled nanotube based chemical sensor for 2,4-dinitrotoluene sensing.J. Mater. Sci. Mater. Electron.20182986200620510.1007/s10854‑018‑8595‑1
    [Google Scholar]
  48. JuB. WangY. ZhangY.M. ZhangT. LiuZ. LiM. Xiao-An ZhangS. Photostable and low-toxic yellow-green carbon dots for highly selective detection of explosive 2,4,6-Trinitrophenol based on the dual electron transfer mechanism.ACS Appl. Mater. Interfaces20181015130401304710.1021/acsami.8b02330 29589747
    [Google Scholar]
  49. ZhangY. XuM. BunesB.R. WuN. GrossD.E. MooreJ.S. ZangL. Oligomer-coated carbon nanotube chemiresistive sensors for selective detection of nitroaromatic explosives.ACS Appl. Mater. Interfaces20157147471747510.1021/acsami.5b01532 25823968
    [Google Scholar]
  50. RuanW. LiY. TanZ. LiuL. JiangK. WangZ. In situ synthesized carbon nanotube networks on a microcantilever for sensitive detection of explosive vapors.Sens. Actuators B Chem.201317614114810.1016/j.snb.2012.10.026
    [Google Scholar]
  51. NiuQ. GaoK. LinZ. WuW. Amine-capped carbon dots as a nanosensor for sensitive and selective detection of picric acid in aqueous solution via electrostatic interaction.Anal. Methods2013521622810.1039/c3ay41275j
    [Google Scholar]
  52. AnuradhaB.T. BhatiaT. Novel nanomaterials in forensic investigations: A review.Mater. Today Proc.2022501071107910.1016/j.matpr.2021.07.466
    [Google Scholar]
  53. AdegokeO. Nic DaeidN. Colorimetric optical nanosensors for trace explosive detection using metal nanoparticles: advances, pitfalls, and future perspective.Emerg. Top. Life Sci.20215336737910.1042/ETLS20200281 33960382
    [Google Scholar]
  54. Chou ChauY.F. MingT.Y. Chou ChaoC.T. ThotagamugeR. KoohM.R.R. HuangH.J. LimC.M. ChiangH.P. Significantly enhanced coupling effect and gap plasmon resonance in a MIM-cavity based sensing structure.Sci. Rep.20211111851510.1038/s41598‑021‑98001‑z 34531463
    [Google Scholar]
  55. ChaoC.T. KoohM. ChauY.F. ThotagamugeR. Susceptible plasmonic photonic crystal fiber sensor with elliptical air holes and external-flat gold-coated surface.Photonics202291291610.3390/photonics9120916
    [Google Scholar]
  56. ZubaidahB.H.J.S. ChouC.C-T. ChouC.Y-F. MahadiA.H. KoohM.R.R. KumaraN.T.R.N. ChiangH-P. Plasmonic refractive index sensor based on the combination of rectangular and circular resonators including baffles.Zhongguo Wuli Xuekan20217128629910.1016/j.cjph.2021.02.006
    [Google Scholar]
  57. PassoniM. PeregoC. SgattoniA. BataniD. Advances in target normal sheath acceleration theory.Phys. Plasmas201320606070110.1063/1.4812708
    [Google Scholar]
  58. Chou ChaoC-T. Chou ChauY-F. ChiangH.P. Highly sensitive metal-insulator-metal plasmonic refractive index sensor with a centrally coupled nanoring containing defects.J. Phys. D Appl. Phys.2021541111530110.1088/1361‑6463/abce7f
    [Google Scholar]
  59. ZhangY. McKelvieI.D. CattrallR.W. KolevS.D. Colorimetric detection based on localised surface plasmon resonance of gold nanoparticles: Merits, inherent shortcomings and future prospects.Talanta201615241042210.1016/j.talanta.2016.02.015 26992537
    [Google Scholar]
  60. ÜzerA. YalçınU. CanZ. ErçağE. ApakR. Indirect determination of pentaerythritol tetranitrate (PETN) with a gold nanoparticles−based colorimetric sensor.Talanta201717524324910.1016/j.talanta.2017.06.049 28841986
    [Google Scholar]
  61. UlarN. ÜzerA. DurmazelS. ErçağE. ApakR. Diaminocyclohexane-functionalized/thioglycolic acid-modified gold nanoparticle-based colorimetric sensing of trinitrotoluene and tetryl.ACS Sens.20183112335234210.1021/acssensors.8b00709 30350589
    [Google Scholar]
  62. ÖzcanÇ. ÜzerA. DurmazelS. ApakR. Colorimetric sensing of nitroaromatic energetic materials using Surfactant-Stabilized and Dithiocarbamate-Functionalized gold nanoparticles.Anal. Lett.201952172794280810.1080/00032719.2019.1608555
    [Google Scholar]
  63. ChaiendooK. NgamdeeK. LimbutW. SaiyasombatC. BusayapornW. IttisanronnachaiS. PromarakV. PromsuwanK. ThavarungkulP. KanatharanaP. NgeontaeW. Gold nanoparticle-based cascade reaction-triggered fluorogenicity for highly selective nitrite ion detection in forensic samples.Microchem. J.202116810647010.1016/j.microc.2021.106470
    [Google Scholar]
  64. AparnaR.S. Anjali DeviJ.S. AnjanaR.R. NebuJ. GeorgeS. Zn(II) ion modulated red emitting copper nanocluster probe for the fluorescence turn on sensing of RDX.Sens. Actuators B Chem.201929129830510.1016/j.snb.2019.04.051
    [Google Scholar]
  65. RazaA. SahaB. In situ silver nanoparticles synthesis in agarose film supported on filter paper and its application as highly efficient SERS test stripes.Forensic Sci. Int.2014237e42e4610.1016/j.forsciint.2014.01.019 24582080
    [Google Scholar]
  66. PonlakhetK. PhooplubK. PhongsanamN. PhongsraphangT. PhetduangS. SurawanitkunC. BuranachaiC. LoilomeW. NgeontaeW. Smartphone-based portable fluorescence sensor with gold nanoparticle mediation for selective detection of nitrite ions.Food Chem.202238413247810.1016/j.foodchem.2022.132478 35219228
    [Google Scholar]
  67. KayhomayunZ. GhaniK. ZargooshK. Synthesis of samarium orthoferrite-based perovskite nanoparticles as a turn-on fluorescent probe for trace level detection of picric acid.Spectrochim. Acta A Mol. Biomol. Spectrosc.202228112162710.1016/j.saa.2022.121627 35853251
    [Google Scholar]
  68. DemircioğluT. KaplanM. TezginE. Kaan KoçÖ. DurmazelS. ÜzerA. ApakR. A sensitive colorimetric nanoprobe based on gold nanoparticles functionalized with thiram fungicide for determination of TNT and tetryl.Microchem. J.202217610725110.1016/j.microc.2022.107251
    [Google Scholar]
  69. UzunboyS. AvanA.N. Demirci-ÇekiçS. ApakR. Indirect colorimetric determination of trace hydrogen peroxide by its oxidizing power on chromium(III) oxide nanoparticles.Microchem. J.202217810733510.1016/j.microc.2022.107335
    [Google Scholar]
  70. ChauY.F. JiangZ.H. LiH.Y. LinG.M. WuF.L. LinW.H. Localized resonance of composite core-shell nanospheres, nanobars and nanospherical chains.Prog. Electromagn. Res. B Pier B20112818319910.2528/PIERB10102705
    [Google Scholar]
  71. ChauY.F. YehH.H. TsaiD.P. A new type of optical antenna: Plasmonics nanoshell bowtie antenna with dielectric hole.J. Electromagn. Waves Appl.20102411-121621163210.1163/156939310792149588
    [Google Scholar]
  72. SongG. YuL. DuanG.Y. WangL.L. Tunable band-stop filters based on the strong coupling-like phenomenon in metal–insulator–metal cavities involving molecular J-aggregates.J. Phys. D Appl. Phys.2017502020510410.1088/1361‑6463/aa6a00
    [Google Scholar]
  73. de BarrosM.R. WiniarskiJ.P. EliasW.C. de CamposC.E.M. JostC.L. Au-on-Pd bimetallic nanoparticles applied to the voltammetric determination and monitoring of 4-nitroaniline in environmental samples.J. Environ. Chem. Eng.20219510582110.1016/j.jece.2021.105821
    [Google Scholar]
  74. AdegokeO. DaeidN.N. Polymeric-coated Fe-doped ceria/gold hybrid nanocomposite as an aptasensor for the catalytic enhanced colorimetric detection of 2,4-dinitrophenol.Colloids Surf. A Physicochem. Eng. Asp.202162712719410.1016/j.colsurfa.2021.127194
    [Google Scholar]
  75. ThirumalaiD. LeeJ.U. ChoiH. KimM. LeeJ. KimS. ShinB.S. ChangS.C. In situ synthesis of copper–ruthenium bimetallic nanoparticles on laser-induced graphene as a peroxidase mimic.Chem. Commun.202157151947195010.1039/D0CC07518C 33501483
    [Google Scholar]
  76. LiJ. HeL. JiangJ. XuZ. LiuM. LiuX. TongH. LiuZ. QianD. Facile syntheses of bimetallic Prussian blue analogues (KxM[Fe(CN)6]·nH2O, M=Ni, Co, and Mn) for electrochemical determination of toxic 2-nitrophenol.Electrochim. Acta202035313657910.1016/j.electacta.2020.136579
    [Google Scholar]
  77. MengX. BiM. XiaoQ. GaoW. Rapid detection of low concentration H2 using Au@Pd/SnO2 nanocomposites.Sens. Actuators B Chem.202236613197110.1016/j.snb.2022.131971
    [Google Scholar]
  78. ArshadA. WangH. BaiX. JiangR. XuS. WangL. Colorimetric paper sensor for sensitive detection of explosive nitroaromatics based on Au@Ag nanoparticles.Spectrochim. Acta A Mol. Biomol. Spectrosc.2019206162210.1016/j.saa.2018.07.095 30077892
    [Google Scholar]
  79. MoramS.S.B. ShaikA.K. ByramC. HamadS. SomaV.R. Instantaneous trace detection of nitro-explosives and mixtures with nanotextured silicon decorated with Ag–Au alloy nanoparticles using the SERS technique.Anal. Chim. Acta2020110115716810.1016/j.aca.2019.12.026 32029107
    [Google Scholar]
  80. Sree Satya BharatiM. ByramC. SomaV.R. Femtosecond laser fabricated AG@AU and CU@AU alloy nanoparticles for surface enhanced RAMAN spectroscopy based trace explosives detection.Front. Phys.201862810.3389/fphy.2018.00028
    [Google Scholar]
  81. ByramC. SomaV.R. 2,4-dinitrotoluene detected using portable Raman spectrometer and femtosecond laser fabricated Au–Ag nanoparticles and nanostructures.Nano-Structures & Nano-Objects20171212112910.1016/j.nanoso.2017.09.019
    [Google Scholar]
/content/journals/cnano/10.2174/0115734137277198231218060425
Loading
/content/journals/cnano/10.2174/0115734137277198231218060425
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test