Skip to content
2000
Volume 21, Issue 2
  • ISSN: 1573-4137
  • E-ISSN: 1875-6786

Abstract

Background

Silver nanoparticles (AgNPs) biosynthesized the deployment of plant extractives have garnered much attention, especially due to their antimicrobial properties. Herein, the green synthesis of silver nanoparticles has been accomplished using the aqueous extract of , which includes a study of its antibacterial, antifungal, and scolicidal activity.

Methods

The preparative process was followed by characterization using UV-Vis spectroscopy, and the ensuing spherical AgNPs of average size 7-25 nm were identified by Dynamic Light Scattering (DLS), X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), and Transmission Electron Microscopy (TEM). The antibacterial, antifungal, and scolicidal activities of AgNPs were assessed by deploying disc diffusion and microdilution methods against four standard bacteria and four typical Candida species and liver hydatid cyst protoscoleces, where they exhibited good biological activity.

Results

The results showed that the greener synthesis of silver nanoparticles using the aqueous extract of renewable and abundant plant is a simple, inexpensive, and safer alternative that does not use any toxic or harmful substances.

Conclusion

Thus, with minimal or no side effects, this approach to AgNPs bodes well for their appliances as antibacterial, antifungal, and scolicidal agents.

Loading

Article metrics loading...

/content/journals/cnano/10.2174/0115734137328566240821090454
2024-08-23
2025-01-08
Loading full text...

Full text loading...

References

  1. HarrisonR.M. Measurement of number, mass and size distribution of particles in the atmosphere. Philosophical Transactions of the Royal Society of London. Series A: Mathematical.Physical and Engineering Sciences1775200035825672580
    [Google Scholar]
  2. NadagoudaM.N. SpethT.F. VarmaR.S. Microwave-assisted green synthesis of silver nanostructures.Acc. Chem. Res.201144746947810.1021/ar1001457 21526846
    [Google Scholar]
  3. VarmaR.S. Greener approach to nanomaterials and their sustainable applications.Curr. Opin. Chem. Eng.20121212312810.1016/j.coche.2011.12.002
    [Google Scholar]
  4. JadounS. ChauhanN.P.S. ZarrintajP. BaraniM. VarmaR.S. ChinnamS. RahdarA. Synthesis of nanoparticles using microorganisms and their applications: a review.Environ. Chem. Lett.20222053153319710.1007/s10311‑022‑01444‑7
    [Google Scholar]
  5. HebbalaluD. LalleyJ. NadagoudaM.N. VarmaR.S. Greener techniques for the synthesis of silver nanoparticles using plant extracts, enzymes, bacteria, biodegradable polymers, and microwaves.ACS Sustain. Chem. Eng.20131770371210.1021/sc4000362
    [Google Scholar]
  6. BaruwatiB. VarmaR.S. High value products from waste: grape pomace extract--a three-in-one package for the synthesis of metal nanoparticles.ChemSusChem20092111041104410.1002/cssc.200900220 19842157
    [Google Scholar]
  7. KouJ. VarmaR.S. Beet juice-induced green fabrication of plasmonic AgCl/Ag nanoparticles.ChemSusChem20125122435244110.1002/cssc.201200477 22945662
    [Google Scholar]
  8. KouJ. VarmaR.S. Beet juice utilization: Expeditious green synthesis of noble metal nanoparticles (Ag, Au, Pt, and Pd) using microwaves.RSC Adv.2012227102831029010.1039/c2ra21908e
    [Google Scholar]
  9. BawazeerS. RaufA. ShahS.U.A. ShawkyA.M. Al-AwthanY.S. BahattabO.S. UddinG. SabirJ. El-EsawiM.A. Green synthesis of silver nanoparticles using Tropaeolum majus: Phytochemical screening and antibacterial studies.Green Process. Synth.2021101859410.1515/gps‑2021‑0003
    [Google Scholar]
  10. MohammadiE. AminiS.M. Green synthesis of stable and biocompatible silver nanoparticles with natural flavonoid apigenin. Nano-Struct.Nano-Objects20243810117510.1016/j.nanoso.2024.101175
    [Google Scholar]
  11. SwilamN. NematallahK.A. Polyphenols profile of pomegranate leaves and their role in green synthesis of silver nanoparticles.Sci. Rep.20201011485110.1038/s41598‑020‑71847‑5 32908245
    [Google Scholar]
  12. KhanM.J. ShameliK. SaziliA.Q. SelamatJ. KumariS. Rapid green synthesis and characterization of silver nanoparticles arbitrated by curcumin in an alkaline medium.Molecules201924471910.3390/molecules24040719 30781541
    [Google Scholar]
  13. Parlinska-WojtanM. Kus-LiskiewiczM. DepciuchJ. SadikO. Green synthesis and antibacterial effects of aqueous colloidal solutions of silver nanoparticles using camomile terpenoids as a combined reducing and capping agent.Bioprocess Biosyst. Eng.20163981213122310.1007/s00449‑016‑1599‑4 27083587
    [Google Scholar]
  14. ShaikhW.A. ChakrabortyS. OwensG. IslamR.U. A review of the phytochemical mediated synthesis of AgNP (silver nanoparticle): the wonder particle of the past decade.Appl. Nanosci.202111112625266010.1007/s13204‑021‑02135‑5 34745812
    [Google Scholar]
  15. RaniP. VarmaR.S. SinghK. AcevedoR. SinghJ. Catalytic and antimicrobial potential of green synthesized Au and Au@Ag core-shell nanoparticles.Chemosphere202331713784110.1016/j.chemosphere.2023.137841 36642143
    [Google Scholar]
  16. RabieeN. AhmadiS. IravaniS. VarmaR.S. Functionalized silver and gold nanomaterials with diagnostic and therapeutic applications.Pharmaceutics20221410218210.3390/pharmaceutics14102182 36297620
    [Google Scholar]
  17. HassanisaadiM. BonjarA.H.S. RahdarA. VarmaR.S. AjalliN. PandeyS. Eco-friendly biosynthesis of silver nanoparticles using Aloysia citrodora leaf extract and evaluations of their bioactivities.Mater. Today Commun.20223310418310.1016/j.mtcomm.2022.104183
    [Google Scholar]
  18. ChandrakerS.K. LalM. DhruveP. YadavA.K. SinghR.P. VarmaR.S. ShuklaR. Bioengineered and biocompatible silver nanoparticles from Thalictrum foliolosum DC and their biomedical applications.Clean Technol. Environ. Policy20222482479249410.1007/s10098‑022‑02329‑7
    [Google Scholar]
  19. PandaP.K. KumariP. PatelP. SamalS.K. MishraS. TambuwalaM.M. DuttA. HilscherováK. MishraY.K. VarmaR.S. SuarM. AhujaR. VermaS.K. Molecular nanoinformatics approach assessing the biocompatibility of biogenic silver nanoparticles with channelized intrinsic steatosis and apoptosis.Green Chem.20222431190121010.1039/D1GC04103G
    [Google Scholar]
  20. JalalM. AnsariM.A. AlzohairyM.A. AliS.G. KhanH.M. AlmatroudiA. SiddiquiM.I. Anticandidal activity of biosynthesized silver nanoparticles: effect on growth, cell morphology, and key virulence attributes of Candida species.Int. J. Nanomedicine2019144667467910.2147/IJN.S210449 31308652
    [Google Scholar]
  21. AlaviM. VarmaR.S. Antibacterial and wound healing activities of silver nanoparticles embedded in cellulose compared to other polysaccharides and protein polymers.Cellulose202128138295831110.1007/s10570‑021‑04067‑3
    [Google Scholar]
  22. MozaffarianV. A dictionary of Iranian plant names.TehranMazda Publisher1996396
    [Google Scholar]
  23. TownsendC. Taxonomic revision of the genus Haplophyllum.Kew Publishing1986336
    [Google Scholar]
  24. ZareiZ. RazmjoueD. KarimiJ. Green synthesis of silver nanoparticles from Caralluma tuberculata extract and its antibacterial activity.J. Inorg. Organomet. Polym. Mater.202030114606461410.1007/s10904‑020‑01586‑7
    [Google Scholar]
  25. AlishahH. SeyediS.P. EbrahimipourS.Y. Esmaeili-MahaniS. A green approach for the synthesis of silver nanoparticles using root extract of Chelidonium majus: Characterization and antibacterial evaluation.J. Cluster Sci.201627242142910.1007/s10876‑016‑0968‑0
    [Google Scholar]
  26. GaikwadS. IngleA. GadeA. RaiM. FalangaA. IncoronatoN. RussoL. GaldieroS. GaldieroM. Antiviral activity of mycosynthesized silver nanoparticles against Herpes simplex virus and human parainfluenza virus type 3.Int. J. Nanomedicine2013843034314 24235828
    [Google Scholar]
  27. NiknejadF. NabiliM. Daie GhazviniR. MoazeniM. Green synthesis of silver nanoparticles: Advantages of the yeast Saccharomyces cerevisiae model.Curr. Med. Mycol.201513172410.18869/acadpub.cmm.1.3.17 28680992
    [Google Scholar]
  28. GharaghaniM. AhmadiB. Taheripour SisakhtM. IlamiO. ArameshS. MouhamadiF. BaratiZ. RoozmehS. MohammadiH. Nouripour-SisakhtS. Identification of Candida species isolated from vulvovaginal candidiasis patients by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) in Yasuj southwestern Iran.Jundishapur J. Microbiol.201811810.5812/jjm.65359
    [Google Scholar]
  29. AbdallahB.M. AliE.M. Therapeutic effect of green synthesized silver nanoparticles using Erodium glaucophyllum extract against oral candidiasis: In Vitro and In Vivo Study.Molecules20222713422110.3390/molecules27134221 35807474
    [Google Scholar]
  30. HaghaniA. RoozitalabA. SafiS.N. Low scolicidal effect of Ocimum bacilicum and Allium cepa on protoccoleces of hydatid cyst: an in vitro study.Comp. Clin. Pathol.201423484785310.1007/s00580‑013‑1701‑0
    [Google Scholar]
  31. SokmenA. Abdel-BakiA-A.S. Al-MalkiE.S. Al-QuraishyS. Abdel-HaleemH.M. Constituents of essential oil of Origanum minutiflorum and its in vitro antioxidant, scolicidal and anticancer activities.J. King Saud Univ. Sci.20203242377238210.1016/j.jksus.2020.03.018
    [Google Scholar]
  32. ShameliK. AhmadM.B. ShabanzadehP. Jaffar Al-MullaE.A. ZamanianA. AbdollahiY. JazayeriS.D. EiliM. JalilianF.A. HarounR.Z. Effect of Curcuma longa tuber powder extract on size of silver nanoparticles prepared by green method.Res. Chem. Intermed.20144031313132510.1007/s11164‑013‑1040‑4
    [Google Scholar]
  33. MuthukrishnanS. BhakyaS. Senthil KumarT. RaoM.V. Biosynthesis, characterization and antibacterial effect of plant-mediated silver nanoparticles using Ceropegia thwaitesii – An endemic species.Ind. Crops Prod.20156311912410.1016/j.indcrop.2014.10.022
    [Google Scholar]
  34. GomathiM. PrakasamA. RajkumarP.V. Green synthesis, characterization and antibacterial activity of silver nanoparticles using Amorphophallus paeoniifolius leaf extract.J. Cluster Sci.2019304995100110.1007/s10876‑019‑01559‑y
    [Google Scholar]
  35. GopinathK. DeviN.P. GovindarajanM. BhakyarajK. KumaraguruS. ArumugamA. AlharbiN.S. KadaikunnanS. BenelliG. One-Pot green synthesis of silver nanoparticles using the orchid leaf extracts of Anoectochilus elatus: growth inhibition activity on seven microbial pathogens.J. Cluster Sci.20172831541155010.1007/s10876‑017‑1164‑6
    [Google Scholar]
  36. HackleyV.A. ClogstonJ.D. Measuring the Hydrodynamic Size of Nanoparticles in Aqueous Media Using Batch-Mode Dynamic Light Scattering.Characterization of Nanoparticles Intended for Drug Delivery. McNeilS.E. Totowa, NJHumana Press2011355210.1007/978‑1‑60327‑198‑1_4
    [Google Scholar]
  37. NarayananK.B. SakthivelN. Coriander leaf mediated biosynthesis of gold nanoparticles.Mater. Lett.200862304588459010.1016/j.matlet.2008.08.044
    [Google Scholar]
  38. RajasekharreddyP. Usha RaniP. SreedharB. Qualitative assessment of silver and gold nanoparticle synthesis in various plants: a photobiological approach.J. Nanopart. Res.20101251711172110.1007/s11051‑010‑9894‑5
    [Google Scholar]
  39. MosaviniyaM. KikhavaniT. TanzifiM. Tavakkoli YarakiM. TajbakhshP. LajevardiA. Facile green synthesis of silver nanoparticles using Crocus Haussknechtii Bois bulb extract: Catalytic activity and antibacterial properties.Colloid Interface Sci. Commun.20193310021110.1016/j.colcom.2019.100211
    [Google Scholar]
  40. FurtadoA.A. Torres-RêgoM. LimaM.C.J.S. BitencourtM.A.O. EstrelaA.B. Souza da SilvaN. da Silva SiqueiraE.M. TomazJ.C. LopesN.P. Silva-JúniorA.A. ZucolottoS.M. Fernandes-PedrosaM.F. Aqueous extract from Ipomoea asarifolia (Convolvulaceae) leaves and its phenolic compounds have anti-inflammatory activity in murine models of edema, peritonitis and air-pouch inflammation.J. Ethnopharmacol.201619222523510.1016/j.jep.2016.07.048 27448455
    [Google Scholar]
  41. KimS.R. JungY.R. KimD.H. AnH.J. KimM.K. KimN.D. ChungH.Y. Caffeic acid regulates LPS-induced NF-κB activation through NIK/IKK and c-Src/ERK signaling pathways in endothelial cells.Arch. Pharm. Res.201437453954710.1007/s12272‑013‑0211‑6 23888332
    [Google Scholar]
  42. ElangovanK. ElumalaiD. AnupriyaS. ShenbhagaramanR. KaleenaP.K. MurugesanK. Phyto mediated biogenic synthesis of silver nanoparticles using leaf extract of Andrographis echioides and its bio-efficacy on anticancer and antibacterial activities.J. Photochem. Photobiol. B201515111812410.1016/j.jphotobiol.2015.05.015 26233711
    [Google Scholar]
  43. SadeghiB. GholamhoseinpoorF. A study on the stability and green synthesis of silver nanoparticles using Ziziphora tenuior (Zt) extract at room temperature.Spectrochim. Acta A Mol. Biomol. Spectrosc.201513431031510.1016/j.saa.2014.06.046 25022503
    [Google Scholar]
  44. SuriyakalaG. SathiyarajS. BabujanarthanamR. AlarjaniK.M. HusseinD.S. RasheedR.A. KanimozhiK. Green synthesis of gold nanoparticles using Jatropha integerrima Jacq. flower extract and their antibacterial activity.J. King Saud Univ. Sci.202234310183010.1016/j.jksus.2022.101830
    [Google Scholar]
  45. JebrilS. Khanfir Ben JenanaR. DridiC. Green synthesis of silver nanoparticles using Melia azedarach leaf extract and their antifungal activities: In vitro and in vivo.Mater. Chem. Phys.202024812289810.1016/j.matchemphys.2020.122898
    [Google Scholar]
  46. GulbagcaF. OzdemirS. GulcanM. SenF. Synthesis and characterization of Rosa canina-mediated biogenic silver nanoparticles for anti-oxidant, antibacterial, antifungal, and DNA cleavage activities.Heliyon2019512e0298010.1016/j.heliyon.2019.e02980 31867461
    [Google Scholar]
  47. KathiravanV. RaviS. AshokkumarS. VelmuruganS. ElumalaiK. KhatiwadaC.P. Green synthesis of silver nanoparticles using Croton sparsiflorus morong leaf extract and their antibacterial and antifungal activities.Spectrochim. Acta A Mol. Biomol. Spectrosc.201513920020510.1016/j.saa.2014.12.022 25561298
    [Google Scholar]
  48. DuttaT. GhoshN.N. DasM. AdhikaryR. MandalV. ChattopadhyayA.P. Green synthesis of antibacterial and antifungal silver nanoparticles using Citrus limetta peel extract: Experimental and theoretical studies.J. Environ. Chem. Eng.20208410401910.1016/j.jece.2020.104019
    [Google Scholar]
  49. KhatamiM. SharifiI. NobreM.A.L. ZafarniaN. AflatoonianM.R. Waste-grass-mediated green synthesis of silver nanoparticles and evaluation of their anticancer, antifungal and antibacterial activity.Green Chem. Lett. Rev.201811212513410.1080/17518253.2018.1444797
    [Google Scholar]
  50. PanáčekA. KvítekL. PrucekR. KolářM. VečeřováR. PizúrováN. SharmaV.K. NevěčnáT. ZbořilR. Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity.J. Phys. Chem. B200611033162481625310.1021/jp063826h 16913750
    [Google Scholar]
  51. BakerC. PradhanA. PakstisL. PochanD. ShahS.I. Synthesis and antibacterial properties of silver nanoparticles.J. Nanosci. Nanotechnol.20055224424910.1166/jnn.2005.034 15853142
    [Google Scholar]
  52. MoronesJ.R. ElechiguerraJ.L. CamachoA. HoltK. KouriJ.B. RamírezJ.T. YacamanM.J. The bactericidal effect of silver nanoparticles.Nanotechnology200516102346235310.1088/0957‑4484/16/10/059 20818017
    [Google Scholar]
  53. BehravanM. HosseinA. NaghizadehA. ZiaeeM. MahdaviR. MirzapourA. Facile green synthesis of silver nanoparticles using Berberis vulgaris leaf and root aqueous extract and its antibacterial activity.Int. J. Biol. Macromol.201912414815410.1016/j.ijbiomac.2018.11.101 30447360
    [Google Scholar]
  54. GopinathK. GowriS. ArumugamA. Phytosynthesis of silver nanoparticles using Pterocarpus santalinus leaf extract and their antibacterial properties.J. Nanostructure Chem.2013316810.1186/2193‑8865‑3‑68
    [Google Scholar]
  55. EssghaierB. Ben KhedherG. HannachiH. DridiR. ZidM.F. ChaffeiC. Green synthesis of silver nanoparticles using mixed leaves aqueous extract of wild olive and pistachio: characterization, antioxidant, antimicrobial and effect on virulence factors of Candida.Arch. Microbiol.2022204420310.1007/s00203‑022‑02810‑3 35247079
    [Google Scholar]
  56. CarsonC.F. HammerK.A. RileyT.V. Melaleuca alternifolia (Tea Tree) oil: a review of antimicrobial and other medicinal properties.Clin. Microbiol. Rev.2006191506210.1128/CMR.19.1.50‑62.2006 16418522
    [Google Scholar]
  57. DantasA. DayA. IkehM. KosI. AchanB. QuinnJ. Oxidative stress responses in the human fungal pathogen, Candida albicans.Biomolecules20155114216510.3390/biom5010142 25723552
    [Google Scholar]
  58. MahmoudvandH. Fasihi HarandiM. ShakibaieM. AflatoonianM.R. ZiaAli, N.; Makki, M.S.; Jahanbakhsh, S. Scolicidal effects of biogenic selenium nanoparticles against protoscolices of hydatid cysts.Int. J. Surg.201412539940310.1016/j.ijsu.2014.03.017 24686032
    [Google Scholar]
  59. AdasG. ArikanS. KemikO. OnerA. SahipN. KaratepeO. Use of albendazole sulfoxide, albendazole sulfone, and combined solutions as scolicidal agents on hydatid cysts (in vitro study).World J. Gastroenterol.200915111211610.3748/wjg.15.112 19115476
    [Google Scholar]
  60. BarabadiH. HonaryS. Ali MohammadiM. AhmadpourE. RahimiM.T. AlizadehA. NaghibiF. SaravananM. Green chemical synthesis of gold nanoparticles by using Penicillium aculeatum and their scolicidal activity against hydatid cyst protoscolices of Echinococcus granulosus.Environ. Sci. Pollut. Res. Int.20172465800581010.1007/s11356‑016‑8291‑8 28054267
    [Google Scholar]
  61. LashkarizadehM.R. AsgaripourK. Saedi DezakiE. Fasihi HarandiM. Comparison of scolicidal effects of amphotricin b, silver nanoparticles,_and Foeniculum vulgare mill on hydatid cysts protoscoleces.Iran. J. Parasitol.2015102206212 26246818
    [Google Scholar]
  62. NorouziR. AtaeiA. HejazyM. NoreddinA. El ZowalatyM.E. Scolicidal effects of nanoparticles against hydatid cyst protoscolices in vitro.Int. J. Nanomedicine2020151095110010.2147/IJN.S228538 32110009
    [Google Scholar]
  63. ZhangJ. YeB. KongJ. CaiH. ZhaoY. HanX. LiF. In vitro protoscolicidal effects of high-intensity focused ultrasound enhanced by a superabsorbent polymer.Parasitol. Res.2013112138539110.1007/s00436‑012‑3176‑3 23086446
    [Google Scholar]
  64. RahulS. ChandrashekharP. HemantB. BipinchandraS. MourayE. GrellierP. SatishP. In vitro antiparasitic activity of microbial pigments and their combination with phytosynthesized metal nanoparticles.Parasitol. Int.201564535335610.1016/j.parint.2015.05.004 25986963
    [Google Scholar]
/content/journals/cnano/10.2174/0115734137328566240821090454
Loading
/content/journals/cnano/10.2174/0115734137328566240821090454
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): AgNPs; antibacterial; antifungal; H. robustum; Nanoparticles; scolicidal
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test