Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-4137
  • E-ISSN: 1875-6786

Abstract

In recent years, there has been significant research on developing magnetic nanoparticles (MNPs) with multifunctional characteristics. This review focuses on the properties and various types of MNPs, methods of their synthesis, and biomedical, clinical, and other applications. These syntheses of MNPs were achieved by various methods, like precipitation, thermal, pyrolysis, vapor deposition, and sonochemical. MNPs are nano-sized materials with diameters ranging from 1 to 100 nm. The MNPs have been used for various applications in biomedical, cancer theranostic, imaging, drug delivery, biosensing, environment, and agriculture. MNPs have been extensively researched for molecular diagnosis, treatment, and therapeutic outcome monitoring in a range of illnesses. They are perfect for biological applications, including cancer therapy, thrombolysis, and molecular imaging, because of their nanoscale size, surface area, and absence of side effects. In particular, MNPs can be used to conjugate chemotherapeutic medicines (or) target ligands/proteins, making them beneficial for drug delivery. However, up until that time, some ongoing issues and developments in MNPs include toxicity and biocompatibility, targeting accuracy, regulation and safety, clinical translation, hyperthermia therapy, immunomodulatory effects, multifunctionality, and nanoparticle aggregation.

Loading

Article metrics loading...

/content/journals/cnano/10.2174/0115734137271993231109174718
2025-01-01
2024-11-26
Loading full text...

Full text loading...

References

  1. NalwaH.S. Encyclopedia of nanoscience and nanotechnology;American scientific publishers20041
    [Google Scholar]
  2. MüllerR. SteinmetzH. HiergeistR. GawalekW. Magnetic particles for medical applications by glass crystallisation.J. Magn. Magn. Mater.2004272-2761539154110.1016/j.jmmm.2003.12.250
    [Google Scholar]
  3. HäfeliU.O. PauerG.J. In vitro and in vivo toxicity of magnetic microspheres.J. Magn. Magn. Mater.19991941-3768210.1016/S0304‑8853(98)00560‑5
    [Google Scholar]
  4. VadalaM.L. ZalichM.A. FulksD.B. PierreT.G.S. DaileyJ.P. RiffleJ.S. Cobalt-silica magnetic nanoparticles with functional surfaces.J. Magn. Magn. Mater.200529316217010.1016/j.jmmm.2005.01.056
    [Google Scholar]
  5. GuH. XuK. XuC. XuB. Biofunctional magnetic nanoparticles for protein separation and pathogen detection.Chem. Commun.2006994194910.1039/b514130c 16491171
    [Google Scholar]
  6. AhmadiA. ShiraziH. PourbagherN. AkbarzadehA. OmidfarK. An electrochemical immunosensor for digoxin using core-shell gold coated magnetic nanoparticles as labels.Mol. Biol. Rep.20144131659166810.1007/s11033‑013‑3014‑4 24395297
    [Google Scholar]
  7. RogerJ. PonsJ.N. MassartR. HalbreichA. BacriJ.C. Some biomedical applications of ferrofluids.Eur. Phys. J. Appl. Phys.19995321325
    [Google Scholar]
  8. KimJ.H. KimS.M. KimY.I. Properties of magnetic nanoparticles prepared by co-precipitation.J. Nanosci. Nanotechnol.201414118739874410.1166/jnn.2014.9993 25958595
    [Google Scholar]
  9. ManoharA. VijayakanthV. Prabhakar VattikutiS.V. KimK.H. Electrochemical investigation on nickel-doped spinel magnesium ferrite nanoparticles for supercapacitor applications.Mater. Chem. Phys.202330112760110.1016/j.matchemphys.2023.127601
    [Google Scholar]
  10. NurmiJ.T. TratnyekP.G. SarathyV. BaerD.R. AmonetteJ.E. PecherK. WangC. LinehanJ.C. MatsonD.W. PennR.L. DriessenM.D. Characterization and properties of metallic iron nanoparticles: Spectroscopy, electrochemistry, and kinetics.Environ. Sci. Technol.20053951221123010.1021/es049190u 15787360
    [Google Scholar]
  11. YeanS. CongL. YavuzC.T. MayoJ.T. YuW.W. KanA.T. ColvinV.L. TomsonM.B. Effect of magnetite particle size on adsorption and desorption of arsenite and arsenate.J. Mater. Res.200520123255326410.1557/jmr.2005.0403
    [Google Scholar]
  12. MahdaviM. NamvarF. AhmadM. MohamadR. Green biosynthesis and characterization of magnetic iron oxide (Fe3O4) nanoparticles using seaweed (Sargassum muticum) aqueous extract.Molecules20131855954596410.3390/molecules18055954 23698048
    [Google Scholar]
  13. IndiraT.K. LakshmiP.K. Magnetic nanoparticles-a review.Int. J. Pharm. Sci. Nanotechnol.2010310351042
    [Google Scholar]
  14. SimsekE. Akif KilicM. Magic ferritin: A novel chemotherapeutic encapsulation bullet.J. Magn. Magn. Mater.2005293150951310.1016/j.jmmm.2005.01.066
    [Google Scholar]
  15. ManoharA. VijayakanthV. VinodhiniV. ChintagumpalaK. ManivasaganP. JangE-S. KimK.H. ESR, magnetic hyperthermia and cytotoxicity studies of Zn-doped NiFe2O4 nanoparticles.J. Alloys Compd.202317078010.1016/j.jallcom.2023.170780
    [Google Scholar]
  16. ManoharA. VijayakanthV. VattikutiS.V.P. ReddyG.R. KimK.H. A brief review on Zn - based materials and nanocomposites for supercapacitor applications.J. Energy Storage20236810767410.1016/j.est.2023.107674
    [Google Scholar]
  17. ManoharA. VijayakanthV. Prabhakar VattikutiS.V. KimK.H. Electrochemical energy storage and photoelectrochemical performance of Ni1-XZnXFe2O4 nanoparticles.Mater. Sci. Semicond. Process.202315710733810.1016/j.mssp.2023.107338
    [Google Scholar]
  18. GuoT. LinM. HuangJ. ZhouC. TianW. YuH. JiangX. YeJ. ShiY. XiaoY. BianX. FengX. The recent advances of magnetic nanoparticles in medicine.J. Nanomater.201820181810.1155/2018/7805147
    [Google Scholar]
  19. VattaL.L. SandersonR.D. KochK.R. Magnetic nanoparticles: Properties and potential applications.Pure Appl. Chem.20067891793180110.1351/pac200678091793
    [Google Scholar]
  20. WuW. HeQ. JiangC. Magnetic iron oxide nanoparticles: Synthesis and surface functionalization strategies.Nanoscale Res. Lett.200831139741510.1007/s11671‑008‑9174‑9 21749733
    [Google Scholar]
  21. ChithraniB.D. GhazaniA.A. ChanW.C.W. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells.Nano Lett.20066466266810.1021/nl052396o 16608261
    [Google Scholar]
  22. JeyarajM. SathishkumarG. SivanandhanG. MubarakAliD. RajeshM. ArunR. KapildevG. ManickavasagamM. ThajuddinN. PremkumarK. GanapathiA. Biogenic silver nanoparticles for cancer treatment: An experimental report.Colloids Surf. B Biointerfaces2013106869210.1016/j.colsurfb.2013.01.027 23434696
    [Google Scholar]
  23. PankhurstQ.A. ConnollyJ. JonesS.K. DobsonJ. Applications of magnetic nanoparticles in biomedicine.J. Phys. D Appl. Phys.20033613R167R18110.1088/0022‑3727/36/13/201
    [Google Scholar]
  24. AkbarzadehA. SamieiM. DavaranS. Magnetic nanoparticles: Preparation, physical properties, and applications in biomedicine.Nanoscale Res. Lett.20127114410.1186/1556‑276X‑7‑144 22348683
    [Google Scholar]
  25. ManoharA. VijayakanthV. VattikutiS.V.P. KimK.H. A mini-review on AFe2O4 (A = Zn, Mg, Mn, Co, Cu, and Ni) nanoparticles: Photocatalytic, magnetic hyperthermia and cytotoxicity study.Mater. Chem. Phys.202228612611710.1016/j.matchemphys.2022.126117
    [Google Scholar]
  26. LuA.H. SalabasE.L. SchüthF. Magnetic nanoparticles: Synthesis, protection, functionalization, and application.Angew. Chem. Int. Ed.20074681222124410.1002/anie.200602866 17278160
    [Google Scholar]
  27. ManoharA. VijayakanthV. VattikutiS.V.P. KimK.H. Structural and electrochemical properties of mixed calcium-zinc spinel ferrites nanoparticles.Ceram. Int.20234934365437110.1016/j.ceramint.2022.09.322
    [Google Scholar]
  28. ManoharA. VijayakanthV. Prabhakar VattikutiS.V. KimK.H. Synthesis and characterization of Mg2+ substituted MnFe2O4 nanoparticles for supercapacitor applications.Ceram. Int.20224820306953070310.1016/j.ceramint.2022.07.018
    [Google Scholar]
  29. ManoharA. VijayakanthV. ManivasaganP. JangE.S. HariB. GuM. KimK.H. Investigation on the physico-chemical properties, hyperthermia and cytotoxicity study of magnesium doped manganese ferrite nanoparticles.Mater. Chem. Phys.202228712629510.1016/j.matchemphys.2022.126295
    [Google Scholar]
  30. NematiZ. AlonsoJ. KhurshidH. PhanM.H. SrikanthH. Core/shell iron/iron oxide nanoparticles: Are they promising for magnetic hyperthermia?RSC Adv.2016645386973870210.1039/C6RA05064F
    [Google Scholar]
  31. MahmoudiM. SantS. WangB. LaurentS. SenT. Superparamagnetic iron oxide nanoparticles (SPIONs): Development, surface modification and applications in chemotherapy.Adv. Drug Deliv. Rev.2011631-2244610.1016/j.addr.2010.05.006 20685224
    [Google Scholar]
  32. SunC. LeeJ.S.H. ZhangM. Magnetic nanoparticles in MR imaging and drug delivery.Adv. Drug Deliv. Rev.200860111252126510.1016/j.addr.2008.03.018 18558452
    [Google Scholar]
  33. ShubayevV.I. PisanicT.R.II JinS. Magnetic nanoparticles for theragnostics.Adv. Drug Deliv. Rev.200961646747710.1016/j.addr.2009.03.007 19389434
    [Google Scholar]
  34. AndradeÂ.L. SouzaD.M. PereiraM.C. FabrisJ.D. DominguesR.Z. pH effect on the synthesis of magnetite nanoparticles by the chemical reduction-precipitation method.Quim. Nova201033352452710.1590/S0100‑40422010000300006
    [Google Scholar]
  35. KhalilM.I. Co-precipitation in aqueous solution synthesis of magnetite nanoparticles using iron(III) salts as precursors.Arab. J. Chem.20158227928410.1016/j.arabjc.2015.02.008
    [Google Scholar]
  36. LiuZ.L. WangX. YaoK.L. DuG.H. LuQ.H. DingZ.H. TaoJ. NingQ. LuoX.P. TianD.Y. XiD. Synthesis of magnetite nanoparticles in W/O microemulsion.J. Mater. Sci.20043972633263610.1023/B:JMSC.0000020046.68106.22
    [Google Scholar]
  37. MaityD. ChooS.G. YiJ. DingJ. XueJ.M. Synthesis of magnetite nanoparticles via a solvent-free thermal decomposition route.J. Magn. Magn. Mater.200932191256125910.1016/j.jmmm.2008.11.013
    [Google Scholar]
  38. CaiW. WanJ. Facile synthesis of superparamagnetic magnetite nanoparticles in liquid polyols.J. Colloid Interface Sci.2007305236637010.1016/j.jcis.2006.10.023 17084856
    [Google Scholar]
  39. HawC.Y. MohamedF. ChiaC.H. RadimanS. ZakariaS. HuangN.M. LimH.N. Hydrothermal synthesis of magnetite nanoparticles as MRI contrast agents.Ceram. Int.20103641417142210.1016/j.ceramint.2010.02.005
    [Google Scholar]
  40. ZhaoX. WeiC. GaiZ. YuS. RenX. Chemical vapor deposition and its application in surface modification of nanoparticles.Chem. Pap.202074376777810.1007/s11696‑019‑00963‑y
    [Google Scholar]
  41. SutensB. SwustenT. ZhongK. JochumJ. Van BaelM. Van der EyckenE. BrullotW. BloemenM. VerbiestT. Tunability of size and magnetic moment of iron oxide nanoparticles synthesized by forced hydrolysis.Materials20169755410.3390/ma9070554 28773675
    [Google Scholar]
  42. MorelA.L. NikitenkoS.I. GionnetK. WattiauxA. Lai-Kee-HimJ. LabrugereC. ChevalierB. DelerisG. PetiboisC. BrissonA. SimonoffM. Sonochemical approach to the synthesis of Fe(3)O(4)@SiO(2) core-shell nanoparticles with tunable properties.ACS Nano20082584785610.1021/nn800091q 19206481
    [Google Scholar]
  43. DumitracheF. MorjanI. AlexandrescuR. CiupinaV. ProdanG. VoicuI. FleacaC. AlbuL. SavoiuM. SanduI. PopoviciE. SoareI. Iron-iron oxide core-shell nanoparticles synthesized by laser pyrolysis followed by superficial oxidation.Appl. Surf. Sci.20052471-4253110.1016/j.apsusc.2005.01.037
    [Google Scholar]
  44. XuJ. YangH. FuW. DuK. SuiY. ChenJ. ZengY. LiM. ZouG. Preparation and magnetic properties of magnetite nanoparticles by sol–gel method.J. Magn. Magn. Mater.2007309230731110.1016/j.jmmm.2006.07.037
    [Google Scholar]
  45. PangY.L. LimS. OngH.C. ChongW.T. Research progress on iron oxide-based magnetic materials: Synthesis techniques and photocatalytic applications.Ceram. Int.201642193410.1016/j.ceramint.2015.08.144
    [Google Scholar]
  46. Zamani KouhpanjiM.R. StadlerB.J.H. A guideline for effectively synthesizing and characterizing magnetic nanoparticles for advancing nanobiotechnology: A review.Sensors2020209255410.3390/s20092554 32365832
    [Google Scholar]
  47. LodhiaJ. MandaranoG. FerrisN.J. EuP. CowellS.F. Development and use of iron oxide nanoparticles (Part 1): Synthesis of iron oxide nanoparticles for MRI.BIIJ201062e1210.2349/biij.6.2.e12 21611034
    [Google Scholar]
  48. FreitasJ.C. BrancoR.M. LisboaI.G.O. CostaT.P. CamposM.G.N. Jafelicci JúniorM. MarquesR.F.C. Magnetic nanoparticles obtained by homogeneous coprecipitation sonochemically assisted.Mater. Res.201518Suppl. 222022410.1590/1516‑1439.366114
    [Google Scholar]
  49. BoyerC. WhittakerM.R. BulmusV. LiuJ. DavisT.P. The design and utility of polymer-stabilized iron-oxide nanoparticles for nanomedicine applications.NPG Asia Mater.201021233010.1038/asiamat.2010.6
    [Google Scholar]
  50. WulandariI.O. SantjojoD. ShobirinR.A. SabarudinA. Characteristics and magnetic properties of chitosan-coated Fe3O4 nanoparticles prepared by ex-situ co-precipitation method.Rasayan J. Chem.20171013481358
    [Google Scholar]
  51. LaurentS. ForgeD. PortM. RochA. RobicC. Vander ElstL. MullerR.N. Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications.Chem. Rev.200810862064211010.1021/cr068445e 18543879
    [Google Scholar]
  52. FarajiM. YaminiY. RezaeeM. Magnetic nanoparticles: Synthesis, stabilization, functionalization, characterization, and applications.J. Indian Chem. Soc.20107113710.1007/BF03245856
    [Google Scholar]
  53. AmaraD. FelnerI. NowikI. MargelS. Synthesis and characterization of Fe and Fe3O4 nanoparticles by thermal decomposition of triiron dodecacarbonyl.Colloids Surf. A Physicochem. Eng. Asp.20093391-310611010.1016/j.colsurfa.2009.02.003
    [Google Scholar]
  54. MylkieK. NowakP. RybczynskiP. Ziegler-BorowskaM. Polymer-coated magnetite nanoparticles for protein immobilization.Materials202114224810.3390/ma14020248 33419055
    [Google Scholar]
  55. Malo de MolinaP. ZhangM. BaylesA.V. HelgesonM.E. Oil-in-water-in-oil multinanoemulsions for templating complex nanoparticles.Nano Lett.201616127325733210.1021/acs.nanolett.6b02073 27455402
    [Google Scholar]
  56. CaiH. AnX. CuiJ. LiJ. WenS. LiK. ShenM. ZhengL. ZhangG. ShiX. Facile hydrothermal synthesis and surface functionalization of polyethyleneimine-coated iron oxide nanoparticles for biomedical applications.ACS Appl. Mater. Interfaces2013551722173110.1021/am302883m 23388099
    [Google Scholar]
  57. AiT. WangF. FengX. RuanM. Microstructural and mechanical properties of dual Ti3AlC2-Ti2AlC reinforced TiAl composites fabricated by reaction hot pressing.Ceram. Int.20144079947995310.1016/j.ceramint.2014.02.092
    [Google Scholar]
  58. BhavaniP. RajababuC.H. ArifM.D. ReddyI.V.S. ReddyN.R. Synthesis of high saturation magnetic iron oxide nanomaterials via low temperature hydrothermal method.J. Magn. Magn. Mater.201742645946610.1016/j.jmmm.2016.09.049
    [Google Scholar]
  59. WilliamsM.J. SánchezE. AluriE.R. DouglasF.J. MacLarenD.A. CollinsO.M. CussenE.J. BudgeJ.D. SandersL.C. MichaelisM. SmalesC.M. CinatlJ. LorrioS. KruegerD. de RosalesR.T.M. CorrS.A. Microwave-assisted synthesis of highly crystalline, multifunctional iron oxide nanocomposites for imaging applications.RSC Adv.2016687835208352810.1039/C6RA11819D
    [Google Scholar]
  60. DrozdovA.S. IvanovskiV. AvnirD. VinogradovV.V. A universal magnetic ferrofluid: Nanomagnetite stable hydrosol with no added dispersants and at neutral pH.J. Colloid Interface Sci.201646830731210.1016/j.jcis.2016.01.061 26852355
    [Google Scholar]
  61. HasanyS. AbdurahmanN. SunartiA. JoseR. Magnetic iron oxide nanoparticles: Chemical synthesis and applications review.Curr. Nanosci.20139556157510.2174/15734137113099990085
    [Google Scholar]
  62. Sanchez-DominguezM. AuberyC. SolansC. New trends on the synthesis of inorganic nanoparticles using microemulsions as confined reaction media. Smart Nanoparticles Technology.InTech201219522010.5772/33010
    [Google Scholar]
  63. TartajP. MoralesM.P. Veintemillas-VerdaguerS. Gonz lez-Carre oT. SernaC.J. The preparation of magnetic nanoparticles for applications in biomedicine.J. Phys. D Appl. Phys.20033613R182R19710.1088/0022‑3727/36/13/202
    [Google Scholar]
  64. DeshmukhR. NiederbergerM. Mechanistic aspects in the formation, growth and surface functionalization of metal oxide nanoparticles in organic solvents.Chemistry201723368542857010.1002/chem.201605957 28376243
    [Google Scholar]
  65. ChowG.M. KuriharaL.K. KemnerK.M. SchoenP.E. ElamW.T. ErvinA. KellerS. ZhangY.D. BudnickJ. AmbroseT. Structural, morphological, and magnetic study of nanocrystalline cobalt-copper powders synthesized by the polyol process.J. Mater. Res.19951061546155410.1557/JMR.1995.1546
    [Google Scholar]
  66. DongH. ChenY.C. FeldmannC. Polyol synthesis of nanoparticles: Status and options regarding metals, oxides, chalcogenides, and non-metal elements.Green Chem.20151784107413210.1039/C5GC00943J
    [Google Scholar]
  67. SwihartM.T. Vapor-phase synthesis of nanoparticles.Curr. Opin. Colloid Interface Sci.20038112713310.1016/S1359‑0294(03)00007‑4
    [Google Scholar]
  68. WegnerK. WalkerB. TsantilisS. PratsinisS.E. Design of metal nanoparticle synthesis by vapor flow condensation.Chem. Eng. Sci.200257101753176210.1016/S0009‑2509(02)00064‑7
    [Google Scholar]
  69. ZhangQ. SandoD. NagarajanV. Chemical route derived bismuth ferrite thin films and nanomaterials.J. Mater. Chem. C Mater. Opt. Electron. Devices20164194092412410.1039/C6TC00243A
    [Google Scholar]
  70. Veintemillas-VerdaguerS. Bomatí-MiguelO. MoralesM.P. Effect of the process conditions on the structural and magnetic properties of γ-Fe2O3 nanoparticles produced by laser pyrolysis.Scr. Mater.200247958959310.1016/S1359‑6462(02)00198‑7
    [Google Scholar]
  71. Veintemillas-VerdaguerS. MoralesM.P. Bomati-MiguelO. BautistaC. ZhaoX. BonvilleP. AlejoR.P. Ruiz-CabelloJ. SantosM. Tendillo-CortijoF.J. FerreirósJ. Colloidal dispersions of maghemite nanoparticles produced by laser pyrolysis with application as NMR contrast agents.J. Phys. D Appl. Phys.200437152054205910.1088/0022‑3727/37/15/002
    [Google Scholar]
  72. Veintemillas-VerdaguerS. LeconteY. CostoR. Bomati-MiguelO. Bouchet-FabreB. MoralesM.P. BonvilleP. Pérez-RialS. RodriguezI. Herlin-BoimeN. Continuous production of inorganic magnetic nanocomposites for biomedical applications by laser pyrolysis.J. Magn. Magn. Mater.2007311112012410.1016/j.jmmm.2006.10.1200
    [Google Scholar]
  73. MessingG.L. ZhangS.C. JayanthiG.V. Ceramic powder synthesis by spray pyrolysis.J. Am. Ceram. Soc.199376112707272610.1111/j.1151‑2916.1993.tb04007.x
    [Google Scholar]
  74. PecharrománC. Gonzalez-CarrenoT. IglesiasJ.E. The infrared dielectric properties of maghemite, γ-Fe2O3, from reflectance measurement on pressed powders.Phys. Chem. Miner.199522212910.1007/BF00202677
    [Google Scholar]
  75. CarreñoT.G. MifsudA. SernaC.J. PalaciosJ.M. Preparation of homogeneous mixed oxides by spray pyrolysis.Mater. Chem. Phys.199127328729610.1016/0254‑0584(91)90125‑E
    [Google Scholar]
  76. WillardM.A. KuriharaL.K. CarpenterE.E. CalvinS. HarrisV.G. Chemically prepared magnetic nanoparticles.Int. Mater. Rev.2004493-412517010.1179/095066004225021882
    [Google Scholar]
  77. SuslickK.S. FangM. HyeonT. Sonochemical synthesis of iron colloids.J. Am. Chem. Soc.199611847119601196110.1021/ja961807n
    [Google Scholar]
  78. BakerI. Magnetic nanoparticle synthesis. Nanobiomaterials.Elsevier201819722910.1016/B978‑0‑08‑100716‑7.00009‑X
    [Google Scholar]
  79. SandlerS.E. FellowsB. MeffordO.T. Best practices for characterization of magnetic nanoparticles for biomedical applications.Anal. Chem.20199122141591416910.1021/acs.analchem.9b03518 31566353
    [Google Scholar]
  80. FarajiM. YaminiY. SalehiN. Characterization of magnetic nanomaterials. Magnetic Nanomaterials in Analytical Chemistry.Elsevier2021396010.1016/B978‑0‑12‑822131‑0.00014‑5
    [Google Scholar]
  81. ShuklaS. KhanR. DavereyA. Synthesis and characterization of magnetic nanoparticles, and their applications in wastewater treatment: A review.Environmen. Technol. Innov.20212410192410.1016/j.eti.2021.101924
    [Google Scholar]
  82. LisjakD. MerteljA. Anisotropic magnetic nanoparticles: A review of their properties, syntheses and potential applications.Prog. Mater. Sci.20189528632810.1016/j.pmatsci.2018.03.003
    [Google Scholar]
  83. DongsarT.T. DongsarT.S. AbourehabM.A.S. GuptaN. KesharwaniP. Emerging application of magnetic nanoparticles for breast cancer therapy.Eur. Polym. J.202318711189810.1016/j.eurpolymj.2023.111898
    [Google Scholar]
  84. KhizarS. ElkallaE. ZineN. Jaffrezic-RenaultN. ErrachidA. ElaissariA. Magnetic nanoparticles: Multifunctional tool for cancer therapy.Expert Opin. Drug Deliv.202320218920410.1080/17425247.2023.2166484 36608938
    [Google Scholar]
  85. SetiaA. MehataA.K. Vikas MalikA.K. ViswanadhM.K. MuthuM.S. Theranostic magnetic nanoparticles: Synthesis, properties, toxicity, and emerging trends for biomedical applications.J. Drug Deliv. Sci. Technol.20238110429510.1016/j.jddst.2023.104295
    [Google Scholar]
  86. TegafawT. LiuS. AhmadM.Y. SaidiA.K.A.A. ZhaoD. LiuY. NamS.W. ChangY. LeeG.H. Magnetic nanoparticle-based high-performance positive and negative magnetic resonance imaging contrast agents.Pharmaceutics2023156174510.3390/pharmaceutics15061745 37376193
    [Google Scholar]
  87. XueF. ZhuS. TianQ. QinR. WangZ. HuangG. YangS. Macrophage-mediated delivery of magnetic nanoparticles for enhanced magnetic resonance imaging and magnetothermal therapy of solid tumors.J. Colloid Interface Sci.2023629Pt A55456210.1016/j.jcis.2022.08.186 36088700
    [Google Scholar]
  88. TranN. WebsterT.J. Magnetic nanoparticles: Biomedical applications and challenges.J. Mater. Chem.201020408760876710.1039/c0jm00994f
    [Google Scholar]
  89. Mertdinç-ÜlküsevenS. KhakzadF. AslanC. OnbasliK. ÇevikÇ. İşçiS. Balcı-ÇağıranÖ. Yagci AcarH. ÖveçoğluM.L. AğaoğullarıD. Fe2B magnetic nanoparticles: Synthesis, optimization and cytotoxicity for potential biomedical applications.J. Sci. Adv. Mater. Devices20238310060210.1016/j.jsamd.2023.100602
    [Google Scholar]
  90. ShaoJ. LiJ. WengL. ChengK. WengW. SunQ. WuM. LinJ. Remote activation of M2 macrophage polarization via magneto-mechanical stimulation to promote osteointegration.ACS Biomater. Sci. Eng.2023952483249410.1021/acsbiomaterials.3c00080 37092608
    [Google Scholar]
  91. YaoC. YangF. ZhangJ. YaoJ. CaoY. PengH. StanciuS.G. CharitidisC.A. WuA. Magneto-mechanical therapeutic effects and associated cell death pathways of magnetic nanocomposites with distinct geometries.Acta Biomater.202316123824910.1016/j.actbio.2023.02.033 36858162
    [Google Scholar]
  92. NamJ. SonS. ParkK.S. ZouW. SheaL.D. MoonJ.J. Cancer nanomedicine for combination cancer immunotherapy.Nat. Rev. Mater.20194639841410.1038/s41578‑019‑0108‑1
    [Google Scholar]
  93. GongF. YangN. WangX. ZhaoQ. ChenQ. LiuZ. ChengL. Tumor microenvironment-responsive intelligent nanoplatforms for cancer theranostics.Nano Today20203210085110.1016/j.nantod.2020.100851
    [Google Scholar]
  94. OverchukM. ZhengG. Overcoming obstacles in the tumor microenvironment: Recent advancements in nanoparticle delivery for cancer theranostics.Biomaterials201815621723710.1016/j.biomaterials.2017.10.024 29207323
    [Google Scholar]
  95. ZhaoS. YuX. QianY. ChenW. ShenJ. Multifunctional magnetic iron oxide nanoparticles: An advanced platform for cancer theranostics.Theranostics202010146278630910.7150/thno.42564 32483453
    [Google Scholar]
  96. LiuX. ZhangY. WangY. ZhuW. LiG. MaX. ZhangY. ChenS. TiwariS. ShiK. ZhangS. FanH.M. ZhaoY.X. LiangX.J. Comprehensive understanding of magnetic hyperthermia for improving antitumor therapeutic efficacy.Theranostics20201083793381510.7150/thno.40805 32206123
    [Google Scholar]
  97. ManoharA. VijayakanthV. VattikutiS.V.P. KimK.H. StructuralB.E.T. Structural, BET and EPR properties of mixed zinc-manganese spinel ferrites nanoparticles for energy storage applications.Ceram. Int.20234912197171972710.1016/j.ceramint.2023.03.089
    [Google Scholar]
  98. FarzinA. EtesamiS.A. QuintJ. MemicA. TamayolA. Magnetic nanoparticles in cancer therapy and diagnosis.Adv. Healthc. Mater.202099190105810.1002/adhm.201901058 32196144
    [Google Scholar]
  99. KangT. LiF. BaikS. ShaoW. LingD. HyeonT. Surface design of magnetic nanoparticles for stimuli-responsive cancer imaging and therapy.Biomaterials20171369811410.1016/j.biomaterials.2017.05.013 28525855
    [Google Scholar]
  100. HanH. HouY. ChenX. ZhangP. KangM. JinQ. JiJ. GaoM. Metformin-induced stromal depletion to enhance the penetration of gemcitabine-loaded magnetic nanoparticles for pancreatic cancer targeted therapy.J. Am. Chem. Soc.2020142104944495410.1021/jacs.0c00650 32069041
    [Google Scholar]
  101. LiX. LovellJ.F. YoonJ. ChenX. Clinical development and potential of photothermal and photodynamic therapies for cancer.Nat. Rev. Clin. Oncol.2020171165767410.1038/s41571‑020‑0410‑2 32699309
    [Google Scholar]
  102. MorosM. Idiago-LópezJ. AsínL. Moreno-AntolínE. BeolaL. GrazúV. FratilaR.M. GutiérrezL. de la FuenteJ.M. Triggering antitumoural drug release and gene expression by magnetic hyperthermia.Adv. Drug Deliv. Rev.201913832634310.1016/j.addr.2018.10.004 30339825
    [Google Scholar]
  103. Del Sol-FernándezS. Portilla-TundidorY. GutiérrezL. OdioO.F. RegueraE. BarberD.F. MoralesM.P. Flower-like mn-doped magnetic nanoparticles functionalized with αvβ3-integrin-ligand to efficiently induce intracellular heat after alternating magnetic field exposition, triggering glioma cell death.ACS Appl. Mater. Interfaces20191130266482666310.1021/acsami.9b08318 31287950
    [Google Scholar]
  104. SharmaS.K. ShrivastavaN. RossiF. TungL.D. ThanhN.T.K. Nanoparticles-based magnetic and photo induced hyperthermia for cancer treatment.Nano Today20192910079510.1016/j.nantod.2019.100795
    [Google Scholar]
  105. De SantisM. StrauG. BachnerM. Cross-sectional imaging techniques: The use of computed tomography (CT) and magnetic resonance imaging (MRI) in the management of germ cell tumors. Imaging in Oncological Urology.LondonSpringer2009287303
    [Google Scholar]
  106. McRobbieD.W. MooreE.A. GravesM.J. PrinceM.R. MRI from Picture to Proton.Cambridge university press201710.1017/9781107706958
    [Google Scholar]
  107. MurphyK.J. BrunbergJ.A. CohanR.H. Adverse reactions to gadolinium contrast media: A review of 36 cases.AJR Am. J. Roentgenol.1996167484784910.2214/ajr.167.4.8819369 8819369
    [Google Scholar]
  108. WangL. HuangJ. ChenH. WuH. XuY. LiY. YiH. WangY.A. YangL. MaoH. Exerting enhanced permeability and retention effect driven delivery by ultrafine iron oxide nanoparticles with T 1-T 2 switchable magnetic resonance imaging contrast.ACS Nano20171154582459210.1021/acsnano.7b00038 28426929
    [Google Scholar]
  109. TaoF. MaS. TaoH. JinL. LuoY. ZhengJ. XiangW. DengH. Chitosan-based drug delivery systems: From synthesis strategy to osteomyelitis treatment - A review.Carbohydr. Polym.202125111706310.1016/j.carbpol.2020.117063 33142615
    [Google Scholar]
  110. WidderK.J. SenyeiA.E. ScarpelliD.G. Magnetic microspheres: A model system of site specific drug delivery in vivo.Exp. Biol. Med.1978158214114610.3181/00379727‑158‑40158 674215
    [Google Scholar]
  111. LiongM. LuJ. KovochichM. XiaT. RuehmS.G. NelA.E. TamanoiF. ZinkJ.I. Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery.ACS Nano20082588989610.1021/nn800072t 19206485
    [Google Scholar]
  112. ManoharA. VijayakanthV. VattikutiS.V.P. ManivasaganP. JangE.S. ChintagumpalaK. KimK.H. Ca-doped MgFe2O4 nanoparticles for magnetic hyperthermia and their cytotoxicity in normal and cancer cell lines.ACS Appl. Nano Mater.2022545847585610.1021/acsanm.2c01062
    [Google Scholar]
  113. GiriS. TrewynB.G. StellmakerM.P. LinV.S.Y. Stimuli-responsive controlled-release delivery system based on mesoporous silica nanorods capped with magnetic nanoparticles.Angew. Chem. Int. Ed.200544325038504410.1002/anie.200501819 16038000
    [Google Scholar]
  114. YaoX. NiuX. MaK. HuangP. GrotheJ. KaskelS. ZhuY. Graphene quantum dots‐capped magnetic mesoporous silica nanoparticles as a multifunctional platform for controlled drug delivery, magnetic hyperthermia, and photothermal therapy.Small2017132160222510.1002/smll.201602225 27735129
    [Google Scholar]
  115. ShahzadK. MushtaqS. RizwanM. KhalidW. AtifM. DinF.U. AhmadN. AbbasiR. AliZ. Field-controlled magnetoelectric core-shell CoFe2O4@BaTiO3 nanoparticles as effective drug carriers and drug release in vitro.Mater. Sci. Eng. C202111911144410.1016/j.msec.2020.111444 33321584
    [Google Scholar]
  116. DaiL. LiuR. HuL.Q. ZouZ.F. SiC.L. Lignin nanoparticle as a novel green carrier for the efficient delivery of resveratrol.ACS Sustain. Chem. Eng.2017598241824910.1021/acssuschemeng.7b01903
    [Google Scholar]
  117. ManivasaganP. AshokkumarS. ManoharA. JoeA. HanH.-W. SeoS.-H. ThambiT. DuongH.-S. KaushikN.K. KimK.H. Biocompatible calcium ion-doped magnesium ferrite nanoparticles as a new family of photothermal therapeutic materials for cancer treatment.Pharmaceutics20231551555
    [Google Scholar]
  118. Rocha-SantosT.A.P. Sensors and biosensors based on magnetic nanoparticles.Trends Analyt. Chem.201462283610.1016/j.trac.2014.06.016
    [Google Scholar]
  119. WangT. ZhouY. LeiC. LuoJ. XieS. PuH. Magnetic impedance biosensor: A review.Biosens. Bioelectron.20179041843510.1016/j.bios.2016.10.031 27825890
    [Google Scholar]
  120. TangQ. ZhouZ. ChenZ. Graphene-related nanomaterials: Tuning properties by functionalization.Nanoscale20135114541458310.1039/c3nr33218g 23443470
    [Google Scholar]
  121. MornetS. VasseurS. GrassetF. VeverkaP. GoglioG. DemourguesA. PortierJ. PollertE. DuguetE. Magnetic nanoparticle design for medical applications.Prog. Solid State Chem.2006342-423724710.1016/j.progsolidstchem.2005.11.010
    [Google Scholar]
  122. HuangX. AguilarZ.P. XuH. LaiW. XiongY. Membrane-based lateral flow immunochromatographic strip with nanoparticles as reporters for detection: A review.Biosens. Bioelectron.20167516618010.1016/j.bios.2015.08.032 26318786
    [Google Scholar]
  123. WangC. WangC. WangX. WangK. ZhuY. RongZ. WangW. XiaoR. WangS. Magnetic SERS strip for sensitive and simultaneous detection of respiratory viruses.ACS Appl. Mater. Interfaces20191121194951950510.1021/acsami.9b03920 31058488
    [Google Scholar]
  124. JonesK.C. de VoogtP. Persistent organic pollutants (POPs): State of the science.Environ. Pollut.19991001-320922110.1016/S0269‑7491(99)00098‑6 15093119
    [Google Scholar]
  125. GovanJ. Recent advances in magnetic nanoparticles and nanocomposites for the remediation of water resources.Magnetochemistry2020644910.3390/magnetochemistry6040049
    [Google Scholar]
  126. MondalP. AnweshanA. PurkaitM.K. Green synthesis and environmental application of iron-based nanomaterials and nanocomposite: A review.Chemosphere202025912750910.1016/j.chemosphere.2020.127509 32645598
    [Google Scholar]
  127. HodgesB.C. CatesE.L. KimJ.H. Challenges and prospects of advanced oxidation water treatment processes using catalytic nanomaterials.Nat. Nanotechnol.201813864265010.1038/s41565‑018‑0216‑x 30082806
    [Google Scholar]
  128. XuP. ZengG.M. HuangD.L. FengC.L. HuS. ZhaoM.H. LaiC. WeiZ. HuangC. XieG.X. LiuZ.F. Use of iron oxide nanomaterials in wastewater treatment: A review.Sci. Total Environ.201242411010.1016/j.scitotenv.2012.02.023 22391097
    [Google Scholar]
  129. KilianováM. PrucekR. FilipJ. KolaříkJ. KvítekL. PanáčekA. TučekJ. ZbořilR. Remarkable efficiency of ultrafine superparamagnetic iron(III) oxide nanoparticles toward arsenate removal from aqueous environment.Chemosphere201393112690269710.1016/j.chemosphere.2013.08.071 24054133
    [Google Scholar]
  130. AlvarezP.J.J. ChanC.K. ElimelechM. HalasN.J. VillagránD. Emerging opportunities for nanotechnology to enhance water security.Nat. Nanotechnol.201813863464110.1038/s41565‑018‑0203‑2 30082804
    [Google Scholar]
  131. El-TemsahY.S. SevcuA. BobcikovaK. CernikM. JonerE.J. DDT degradation efficiency and ecotoxicological effects of two types of nano-sized zero-valent iron (nZVI) in water and soil.Chemosphere20161442221222810.1016/j.chemosphere.2015.10.122 26598990
    [Google Scholar]
  132. MishraS. KeswaniC. AbhilashP.C. FracetoL.F. SinghH.B. Integrated approach of agri-nanotechnology: Challenges and future trends.Front. Plant Sci.2017847110.3389/fpls.2017.00471 28421100
    [Google Scholar]
  133. RoutG.R. SahooS. Role of iron in plant growth and metabolism.Rev. Agric. Sci.20153012410.7831/ras.3.1
    [Google Scholar]
  134. Zia-ur-RehmanM. NaeemA. KhalidH. RizwanM. AliS. AzharM. Responses of plants to iron oxide nanoparticles. Nanomaterials in Plants, Algae, and Microorganisms.Elsevier201822123810.1016/B978‑0‑12‑811487‑2.00010‑4
    [Google Scholar]
  135. Abo-zeidY. IsmailN.S.M. McLeanG.R. HamdyN.M. A molecular docking study repurposes FDA approved iron oxide nanoparticles to treat and control COVID-19 infection.Eur. J. Pharm. Sci.202015310546510.1016/j.ejps.2020.105465 32668312
    [Google Scholar]
  136. SomvanshiS.B. KharatP.B. SarafT.S. SomwanshiS.B. ShejulS.B. JadhavK.M. Multifunctional nano-magnetic particles assisted viral RNA-extraction protocol for potential detection of COVID-19.Mater. Res. Innov.20212516917410.1080/14328917.2020.1769350
    [Google Scholar]
/content/journals/cnano/10.2174/0115734137271993231109174718
Loading
/content/journals/cnano/10.2174/0115734137271993231109174718
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): biosensing; drug delivery; ferrites; imaging; Magnetic nanoparticles; synthesis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test