Skip to content
2000
Volume 17, Issue 1
  • ISSN: 1874-4672
  • E-ISSN: 1874-4702
side by side viewer icon HTML

Abstract

Background and Objective

Disease relapse and therapy resistance remain serious impediments to treating cancer. Leukemia stem cells (LSC) are therapy resistant and the cause of relapse. A state of deep quiescence appears to enable cancer stem cells (CSC) to acquire new somatic mutations essential for disease progression and therapy resistance. Both normal hematopoietic stem cells (HSC) and LSC share many common features, thereby complicating the safe elimination of LSC. A recent study demonstrated that long lived normal oocytes exist without mitochondrial complex I (MC-1), expressing it in a developmentally regulated fashion, thereby mitigating their vulnerability to ROS. Quiescent CSC rely on mitochondrial FAO, without complex I expression, thereby avoiding the generation of damaging ROS, similar to long lived normal human stem cells. A deeper understanding of the biology of therapy resistance is important for the development of optimal strategies to attain complete leukemia cures.

Methods

Here, using scRNA-sequencing and ATAC-seq on primary chronic myelogenous leukemia (CML) patient samples, combined with bioinformatics analyses, we further examine the heterogeneity of a previously characterized imatinib-selected CD34-CD38- CML LSC population. We utilized a series of functional analyses, including single-cell metabolomic and Seahorse analyses, to validate the existence of the deepest quiescent leukemia initiators (LI) subset.

Results

Current study revealed heterogeneity of therapy resistant LSC in CML patients and their existence of two functionally distinct states. The most deeply quiescent LI suppress the expression of MC-1, yet are highly dependent on fatty acid oxidation (FAO) for their metabolic requirements and ATAC-seq demonstrated increased chromatin accessibility in this population, all consistent with an extremely primitive, quiescent stemness transcriptional signature. Importantly, the specific CREB binding protein (CBP)/β-catenin antagonist ICG-001 initiates the differentiation of LSC, including LI, decreases chromatin accessibility with differentiation and increasing expression of MC-1, CD34, CD38 and , thereby re-sensitizing them to imatinib.

Conclusion

We investigated the biological aspects related to LSC heterogeneity in CML patients and demonstrated the ability of specific small molecule CBP/β-catenin antagonists to safely eliminate deeply quiescent therapy resistant CSC. These observations may represent an attractive generalizable therapeutic strategy that could help develop better protocols to eradicate the quiescent LSC population.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmp/10.2174/1874467217666230906092236
2024-01-01
2024-11-29
Loading full text...

Full text loading...

/deliver/fulltext/cmp/17/1/CMP-17-e060923220758.html?itemId=/content/journals/cmp/10.2174/1874467217666230906092236&mimeType=html&fmt=ahah

References

  1. GilesF.J. DeAngeloD.J. BaccaraniM. DeiningerM. GuilhotF. HughesT. MauroM. RadichJ. OttmannO. CortesJ. Optimizing outcomes for patients with advanced disease in chronic myelogenous leukemia.Semin. Oncol.2008351S1S1710.1053/j.seminoncol.2007.12.00218346528
    [Google Scholar]
  2. MahonF.X. RéaD. GuilhotJ. GuilhotF. HuguetF. NicoliniF. LegrosL. CharbonnierA. GuerciA. VaretB. EtienneG. ReiffersJ. RousselotP. Discontinuation of imatinib in patients with chronic myeloid leukaemia who have maintained complete molecular remission for at least 2 years: The prospective, multicentre Stop Imatinib (STIM) trial.Lancet Oncol.201011111029103510.1016/S1470‑2045(10)70233‑320965785
    [Google Scholar]
  3. RossD.M. BranfordS. SeymourJ.F. SchwarerA.P. ArthurC. YeungD.T. DangP. GoyneJ.M. SladerC. FilshieR.J. MillsA.K. MeloJ.V. WhiteD.L. GriggA.P. HughesT.P. Safety and efficacy of imatinib cessation for CML patients with stable undetectable minimal residual disease: Results from the TWISTER study.Blood2013122451552210.1182/blood‑2013‑02‑48375023704092
    [Google Scholar]
  4. SausseleS. RichterJ. GuilhotJ. GruberF.X. Hjorth-HansenH. AlmeidaA. JanssenJ.J.W.M. MayerJ. KoskenvesaP. PanayiotidisP. Olsson-StrömbergU. Martinez-LopezJ. RousselotP. VestergaardH. EhrencronaH. KairistoV. Machová PolákováK. MüllerM.C. MustjokiS. BergerM.G. FabariusA. HofmannW.K. HochhausA. PfirrmannM. MahonF.X. OssenkoppeleG. PagoniM.N. SöderlundS. Escoffre-BarbeM. EtienneG. DenglerJ. HuguetF. von BubnoffN. KlamovaH. FaberE. GuilhotF. LotfiK. ReaD. BrümmendorfT.H. de GreefG.E. StenkeL. NicoliniF.E. LegrosL. BurchertA. VoglovaJ. CharbonnierA. GyanE. KunzmannV. WesterweelP.E. Discontinuation of tyrosine kinase inhibitor therapy in chronic myeloid leukaemia (EURO-SKI): A prespecified interim analysis of a prospective, multicentre, non-randomised, trial.Lancet Oncol.201819674775710.1016/S1470‑2045(18)30192‑X29735299
    [Google Scholar]
  5. ShahN.P. García-GutiérrezV. Jiménez-VelascoA. LarsonS. SausseleS. ReaD. MahonF.X. LevyM.Y. Gómez-CasaresM.T. PaneF. NicoliniF.E. MauroM.J. SyO. Martin-RegueiraP. LiptonJ.H. Dasatinib discontinuation in patients with chronic-phase chronic myeloid leukemia and stable deep molecular response: The DASFREE study.Leuk. Lymphoma202061365065910.1080/10428194.2019.167587931647335
    [Google Scholar]
  6. HolyoakeT.L. VetrieD. The chronic myeloid leukemia stem cell: Stemming the tide of persistence.Blood2017129121595160610.1182/blood‑2016‑09‑69601328159740
    [Google Scholar]
  7. Bolton-GillespieE. SchemionekM. KleinH.U. FlisS. HoserG. LangeT. Nieborowska-SkorskaM. MaierJ. KerstiensL. KoptyraM. MüllerM.C. ModiH. StoklosaT. SeferynskaI. BhatiaR. HolyoakeT.L. KoschmiederS. SkorskiT. Genomic instability may originate from imatinib-refractory chronic myeloid leukemia stem cells.Blood2013121204175418310.1182/blood‑2012‑11‑46693823543457
    [Google Scholar]
  8. VetrieD. HelgasonG.V. CoplandM. The leukaemia stem cell: Similarities, differences and clinical prospects in CML and AML.Nat. Rev. Cancer202020315817310.1038/s41568‑019‑0230‑931907378
    [Google Scholar]
  9. JamiesonC.H.M. AillesL.E. DyllaS.J. MuijtjensM. JonesC. ZehnderJ.L. GotlibJ. LiK. ManzM.G. KeatingA. SawyersC.L. WeissmanI.L. Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML.N. Engl. J. Med.2004351765766710.1056/NEJMoa04025815306667
    [Google Scholar]
  10. LemoliR.M. SalvestriniV. BianchiE. BertoliniF. FogliM. AmabileM. TafuriA. SalatiS. ZiniR. TestoniN. RabascioC. RossiL. Martin-PaduraI. CastagnettiF. MarighettiP. MartinelliG. BaccaraniM. FerrariS. ManfrediniR. Molecular and functional analysis of the stem cell compartment of chronic myelogenous leukemia reveals the presence of a CD34- cell population with intrinsic resistance to imatinib.Blood2009114255191520010.1182/blood‑2008‑08‑17601619855080
    [Google Scholar]
  11. NgS.W.K. MitchellA. KennedyJ.A. ChenW.C. McLeodJ. IbrahimovaN. ArrudaA. PopescuA. GuptaV. SchimmerA.D. SchuhA.C. YeeK.W. BullingerL. HeroldT. GörlichD. BüchnerT. HiddemannW. BerdelW.E. WörmannB. CheokM. PreudhommeC. DombretH. MetzelerK. BuskeC. LöwenbergB. ValkP.J.M. ZandstraP.W. MindenM.D. DickJ.E. WangJ.C.Y. A 17-gene stemness score for rapid determination of risk in acute leukaemia.Nature2016540763343343710.1038/nature2059827926740
    [Google Scholar]
  12. QuekL. OttoG.W. GarnettC. LhermitteL. KaramitrosD. StoilovaB. LauI.J. DoondeeaJ. UsukhbayarB. KennedyA. MetznerM. GoardonN. IveyA. AllenC. GaleR. DaviesB. SternbergA. KillickS. HunterH. CahalinP. PriceA. CarrA. GriffithsM. VirgoP. MackinnonS. GrimwadeD. FreemanS. RussellN. CraddockC. MeadA. PeniketA. PorcherC. VyasP. Genetically distinct leukemic stem cells in human CD34- acute myeloid leukemia are arrested at a hemopoietic precursor-like stage.J. Exp. Med.201621381513153510.1084/jem.2015177527377587
    [Google Scholar]
  13. TaussigD.C. VargaftigJ. Miraki-MoudF. GriessingerE. SharrockK. LukeT. LillingtonD. OakerveeH. CavenaghJ. AgrawalS.G. ListerT.A. GribbenJ.G. BonnetD. Leukemia-initiating cells from some acute myeloid leukemia patients with mutated nucleophosmin reside in the CD34- fraction.Blood2010115101976198410.1182/blood‑2009‑02‑20656520053758
    [Google Scholar]
  14. ZhaoY. WuK. WuY. MelendezE. SmbatyanG. MassielloD. KahnM. Characterization of imatinib resistant CML leukemic stem/initiating cells and their sensitivity to CBP/catenin antagonists.Curr. Mol. Pharmacol.201811211312110.2174/187446721066617091915573928933312
    [Google Scholar]
  15. ZhaoY. MasielloD. McMillianM. NguyenC. WuY. MelendezE. SmbatyanG. KidaA. HeY. TeoJ-L. KahnM. CBP/catenin antagonist safely eliminates drug-resistant leukemia-initiating cells.Oncogene201635283705371710.1038/onc.2015.43826657156
    [Google Scholar]
  16. GiustacchiniA. ThongjueaS. BarkasN. WollP.S. PovinelliB.J. BoothC.A.G. SoppP. NorfoR. Rodriguez-MeiraA. AshleyN. JamiesonL. VyasP. AndersonK. SegerstolpeÅ. QianH. Olsson-StrömbergU. MustjokiS. SandbergR. JacobsenS.E.W. MeadA.J. Single-cell transcriptomics uncovers distinct molecular signatures of stem cells in chronic myeloid leukemia.Nat. Med.201723669270210.1038/nm.433628504724
    [Google Scholar]
  17. WarfvingeR. GeironsonL. SommarinM.N.E. LangS. KarlssonC. RoschupkinaT. StenkeL. StentoftJ. Olsson-StrömbergU. Hjorth-HansenH. MustjokiS. SonejiS. RichterJ. KarlssonG. Single-cell molecular analysis defines therapy response and immunophenotype of stem cell subpopulations in CML.Blood2017129172384239410.1182/blood‑2016‑07‑72887328122740
    [Google Scholar]
  18. ValletteF.M. OlivierC. LézotF. OliverL. CochonneauD. LalierL. CartronP.F. HeymannD. Dormant, quiescent, tolerant and persister cells: Four synonyms for the same target in cancer.Biochem. Pharmacol.201916216917610.1016/j.bcp.2018.11.00430414937
    [Google Scholar]
  19. OrenY. TsabarM. CuocoM.S. Amir-ZilbersteinL. CabanosH.F. HütterJ.C. HuB. ThakoreP.I. TabakaM. FulcoC.P. ColganW. CuevasB.M. HurvitzS.A. SlamonD.J. DeikA. PierceK.A. ClishC. HataA.N. ZaganjorE. LahavG. PolitiK. BruggeJ.S. RegevA. Cycling cancer persister cells arise from lineages with distinct programs.Nature2021596787357658210.1038/s41586‑021‑03796‑634381210
    [Google Scholar]
  20. ItoK. ItoK. Leukemia stem cells as a potential target to achieve therapy-free remission in chronic myeloid leukemia.Cancers20211322582210.3390/cancers1322582234830976
    [Google Scholar]
  21. ZhangB. HoY.W. HuangQ. MaedaT. LinA. LeeS. HairA. HolyoakeT.L. HuettnerC. BhatiaR. Altered microenvironmental regulation of leukemic and normal stem cells in chronic myelogenous leukemia.Cancer Cell201221457759210.1016/j.ccr.2012.02.01822516264
    [Google Scholar]
  22. ZhaoC. BlumJ. ChenA. KwonH.Y. JungS.H. CookJ.M. LagooA. ReyaT. Loss of beta-catenin impairs the renewal of normal and CML stem cells in vivo.Cancer Cell200712652854110.1016/j.ccr.2007.11.00318068630
    [Google Scholar]
  23. ItoK. CarracedoA. WeissD. AraiF. AlaU. AviganD.E. SchaferZ.T. EvansR.M. SudaT. LeeC.H. PandolfiP.P. A PML-PPAR-δ pathway for fatty acid oxidation regulates hematopoietic stem cell maintenance.Nat. Med.20121891350135810.1038/nm.288222902876
    [Google Scholar]
  24. PernesG. FlynnM.C. LancasterG.I. MurphyA.J. Fat for fuel: Lipid metabolism in haematopoiesis.Clin. Transl. Immunol.2019812e109810.1002/cti2.109831890207
    [Google Scholar]
  25. WarrM.R. BinnewiesM. FlachJ. ReynaudD. GargT. MalhotraR. DebnathJ. PasseguéE. FOXO3A directs a protective autophagy program in haematopoietic stem cells.Nature2013494743732332710.1038/nature1189523389440
    [Google Scholar]
  26. Rodríguez-NuevoA. Torres-SanchezA. DuranJ.M. De GuiriorC. Martínez-ZamoraM.A. BökeE. Oocytes maintain ROS-free mitochondrial metabolism by suppressing complex I.Nature2022607792075676110.1038/s41586‑022‑04979‑535859172
    [Google Scholar]
  27. StuartT. ButlerA. HoffmanP. HafemeisterC. PapalexiE. MauckW.M.III HaoY. StoeckiusM. SmibertP. SatijaR. Comprehensive integration of single-cell data.Cell2019177718881902.e2110.1016/j.cell.2019.05.03131178118
    [Google Scholar]
  28. WagnerA. WangC. FesslerJ. DeTomasoD. Avila-PachecoJ. KaminskiJ. ZaghouaniS. ChristianE. ThakoreP. SchellhaassB. Akama-GarrenE. PierceK. SinghV. Ron-HarelN. DouglasV.P. BodL. SchnellA. PulestonD. SobelR.A. HaigisM. PearceE.L. SoleimaniM. ClishC. RegevA. KuchrooV.K. YosefN. Metabolic modeling of single Th17 cells reveals regulators of autoimmunity.Cell20211841641684185.e2110.1016/j.cell.2021.05.04534216539
    [Google Scholar]
  29. ArgüelloR.J. CombesA.J. CharR. GiganJ.P. BaazizA.I. BousiquotE. CamossetoV. SamadB. TsuiJ. YanP. BoissonneauS. Figarella-BrangerD. GattiE. TabouretE. KrummelM.F. PierreP. SCENITH: A flow cytometry-based method to functionally profile energy metabolism with single-cell resolution.Cell Metab.202032610631075.e710.1016/j.cmet.2020.11.00733264598
    [Google Scholar]
  30. HuX. OnoM. ChimgeN.O. ChosaK. NguyenC. MelendezE. LouC.H. LimP. TerminiJ. LaiK.K.Y. FuegerP.T. TeoJ.L. HiguchiY. KahnM. Differential Kat3 usage orchestrates the integration of cellular metabolism with differentiation.Cancers20211323588410.3390/cancers1323588434884992
    [Google Scholar]
  31. LaiK.K.Y. HuX. ChosaK. NguyenC. LinD.P. LaiK.K. KatoN. HiguchiY. HighlanderS.K. MelendezE. EriguchiY. FuegerP.T. OuelletteA.J. ChimgeN.O. OnoM. KahnM. p300 Serine 89: A critical signaling integrator and its effects on intestinal homeostasis and repair.Cancers2021136128810.3390/cancers1306128833799418
    [Google Scholar]
  32. OnoM. ShitashigeM. HondaK. IsobeT. KuwabaraH. MatsuzukiH. HirohashiS. YamadaT. Label-free quantitative proteomics using large peptide data sets generated by nanoflow liquid chromatography and mass spectrometry.Mol. Cell. Proteomics2006571338134710.1074/mcp.T500039‑MCP20016552026
    [Google Scholar]
  33. OnoM. LaiK.K.Y. WuK. NguyenC. LinD.P. MuraliR. KahnM. Nuclear receptor/Wnt beta-catenin interactions are regulated via differential CBP/p300 coactivator usage.PLoS One2018137e020071410.1371/journal.pone.020071430020971
    [Google Scholar]
  34. LindqvistL.M. TandocK. TopisirovicI. FuricL. Cross-talk between protein synthesis, energy metabolism and autophagy in cancer.Curr. Opin. Genet. Dev.20184810411110.1016/j.gde.2017.11.00329179096
    [Google Scholar]
  35. KohliL. PasseguéE. Surviving change: The metabolic journey of hematopoietic stem cells.Trends Cell Biol.201424847948710.1016/j.tcb.2014.04.00124768033
    [Google Scholar]
  36. CarracedoA. CantleyL.C. PandolfiP.P. Cancer metabolism: Fatty acid oxidation in the limelight.Nat. Rev. Cancer201313422723210.1038/nrc348323446547
    [Google Scholar]
  37. ThomasP.D. KahnM. Kat3 coactivators in somatic stem cells and cancer stem cells: Biological roles, evolution, and pharmacologic manipulation.Cell Biol. Toxicol.2016321618110.1007/s10565‑016‑9318‑027008332
    [Google Scholar]
  38. KumariA. BrendelC. HochhausA. NeubauerA. BurchertA. Low BCR-ABL expression levels in hematopoietic precursor cells enable persistence of chronic myeloid leukemia under imatinib.Blood2012119253053910.1182/blood‑2010‑08‑30349522101898
    [Google Scholar]
  39. CumboC. AnelliL. SpecchiaG. AlbanoF. Monitoring of Minimal Residual Disease (MRD) in chronic myeloid leukemia: Recent advances.Cancer Manag. Res.2020123175318910.2147/CMAR.S23275232440215
    [Google Scholar]
  40. GangE.J. HsiehY-T. PhamJ. ZhaoY. NguyenC. HuantesS. ParkE. NaingK. KlemmL. SwaminathanS. ConwayE.M. PelusL.M. CrispinoJ. MullighanC.G. McMillanM. MüschenM. KahnM. KimY-M. Small-molecule inhibition of CBP/catenin interactions eliminates drug-resistant clones in acute lymphoblastic leukemia.Oncogene201433172169217810.1038/onc.2013.16923728349
    [Google Scholar]
  41. KimY.M. GangE.J. KahnM. CBP/Catenin antagonists: Targeting LSCs’ achilles heel.Exp. Hematol.20175211110.1016/j.exphem.2017.04.01028479420
    [Google Scholar]
  42. DuchartreY. KimY.M. KahnM. The Wnt signaling pathway in cancer.Crit. Rev. Oncol. Hematol.20169914114910.1016/j.critrevonc.2015.12.00526775730
    [Google Scholar]
  43. RanzoniA.M. TangherloniA. BerestI. RivaS.G. MyersB. StrzeleckaP.M. XuJ. PanadaE. MohorianuI. ZauggJ.B. CvejicA. Integrative single-cell RNA-seq and ATAC-seq analysis of human developmental hematopoiesis.Cell Stem Cell2021283472487.e710.1016/j.stem.2020.11.01533352111
    [Google Scholar]
  44. BricambertJ. MirandaJ. BenhamedF. GirardJ. PosticC. DentinR. Salt-inducible kinase 2 links transcriptional coactivator p300 phosphorylation to the prevention of ChREBP-dependent hepatic steatosis in mice.J. Clin. Invest.2010120124316433110.1172/JCI4162421084751
    [Google Scholar]
  45. LiuY. DentinR. ChenD. HedrickS. RavnskjaerK. SchenkS. MilneJ. MeyersD.J. ColeP. IiiJ.Y. OlefskyJ. GuarenteL. MontminyM. A fasting inducible switch modulates gluconeogenesis via activator/coactivator exchange.Nature2008456721926927310.1038/nature0734918849969
    [Google Scholar]
  46. KahnM. Taking the road less traveled - the therapeutic potential of CBP/β-catenin antagonists.Expert Opin. Ther. Targets202125970171910.1080/14728222.2021.199238634633266
    [Google Scholar]
  47. BelserM. WalkerD.W. Role of prohibitins in aging and therapeutic potential against age-related diseases.Front. Genet.20211271422810.3389/fgene.2021.71422834868199
    [Google Scholar]
  48. GurevichI. FloresA.M. AneskievichB.J. Corepressors of agonist-bound nuclear receptors.Toxicol. Appl. Pharmacol.2007223328829810.1016/j.taap.2007.05.01917628626
    [Google Scholar]
  49. RenL. MengL. GaoJ. LuM. GuoC. LiY. RongZ. YeY. PHB2 promotes colorectal cancer cell proliferation and tumorigenesis through NDUFS1-mediated oxidative phosphorylation.Cell Death Dis.20231414410.1038/s41419‑023‑05575‑936658121
    [Google Scholar]
  50. ChuS. McDonaldT. LinA. ChakrabortyS. HuangQ. SnyderD.S. BhatiaR. Persistence of leukemia stem cells in chronic myelogenous leukemia patients in prolonged remission with imatinib treatment.Blood2011118205565557210.1182/blood‑2010‑12‑32743721931114
    [Google Scholar]
  51. RossD.M. BranfordS. SeymourJ.F. SchwarerA.P. ArthurC. BartleyP.A. SladerC. FieldC. DangP. FilshieR.J. MillsA.K. GriggA.P. MeloJ.V. HughesT.P. Patients with chronic myeloid leukemia who maintain a complete molecular response after stopping imatinib treatment have evidence of persistent leukemia by DNA PCR.Leukemia201024101719172410.1038/leu.2010.18520811403
    [Google Scholar]
  52. SalehT. GewirtzD.A. Considering therapy-induced senescence as a mechanism of tumour dormancy contributing to disease recurrence.Br. J. Cancer2022126101363136510.1038/s41416‑022‑01787‑635304605
    [Google Scholar]
  53. AgudoJ. ParkE.S. RoseS.A. AliboE. SweeneyR. DhainautM. KobayashiK.S. SachidanandamR. BaccariniA. MeradM. BrownB.D. Quiescent tissue stem cells evade immune surveillance.Immunity2018482271285.e510.1016/j.immuni.2018.02.00129466757
    [Google Scholar]
  54. RehmanS.K. HaynesJ. CollignonE. BrownK.R. WangY. NixonA.M.L. BruceJ.P. WintersingerJ.A. Singh MerA. LoE.B.L. LeungC. Lima-FernandesE. PedleyN.M. SoaresF. McGibbonS. HeH.H. PolletA. PughT.J. Haibe-KainsB. MorrisQ. Ramalho-SantosM. GoyalS. MoffatJ. O’BrienC.A. Colorectal cancer cells enter a diapause-like DTP state to survive chemotherapy.Cell20211841226242.e2110.1016/j.cell.2020.11.01833417860
    [Google Scholar]
  55. BonnetD. Normal and leukemic CD34-negative human hematopoietic stem cells.Rev. Clin. Exp. Hematol.200151426110.1046/j.1468‑0734.2001.00028.x11486732
    [Google Scholar]
  56. ZanjaniE.D. Almeida-PoradaG. LivingstonA.G. ZengH. OgawaM. Reversible expression of CD34 by adult human bone marrow long-term engrafting hematopoietic stem cells.Exp. Hematol.200331540641210.1016/S0301‑472X(03)00051‑112763139
    [Google Scholar]
  57. LemoliR.M. BertoliniF. PetrucciM.T. GregorjC. RicciardiM.R. FogliM. CurtiA. RabascioC. PandolfiS. FerrariS. FoR. BaccaraniM. TafuriA. Functional and kinetic characterization of granulocyte colony-stimulating factor-primed CD34 − human stem cells.Br. J. Haematol.2003123472072910.1046/j.1365‑2141.2003.04673.x14616978
    [Google Scholar]
  58. RodgersJ.T. KingK.Y. BrettJ.O. CromieM.J. CharvilleG.W. MaguireK.K. BrunsonC. MasteyN. LiuL. TsaiC.R. GoodellM.A. RandoT.A. mTORC1 controls the adaptive transition of quiescent stem cells from G0 to GAlert.Nature2014510750539339610.1038/nature1325524870234
    [Google Scholar]
  59. Cuesta-MateosC. TerrónF. HerlingM. CCR7 in blood cancers - Review of its pathophysiological roles and the potential as a therapeutic target.Front. Oncol.20211173675810.3389/fonc.2021.73675834778050
    [Google Scholar]
  60. BührerE.D. AmreinM.A. ForsterS. IsringhausenS. SchürchC.M. BhateS.S. BrodieT. ZindelJ. StrokaD. SayedM.A. Nombela-ArrietaC. RadpourR. RietherC. OchsenbeinA.F. Splenic red pulp macrophages provide a niche for CML stem cells and induce therapy resistance.Leukemia202236112634264610.1038/s41375‑022‑01682‑236163264
    [Google Scholar]
  61. LiZ. MaR. MaS. TianL. LuT. ZhangJ. Mundy-BosseB.L. ZhangB. MarcucciG. CaligiuriM.A. YuJ. ILC1s control leukemia stem cell fate and limit development of AML.Nat. Immunol.202223571873010.1038/s41590‑022‑01198‑y35487987
    [Google Scholar]
  62. HeidelF.H. BullingerL. FengZ. WangZ. NeffT.A. SteinL. KalaitzidisD. LaneS.W. ArmstrongS.A. Genetic and pharmacologic inhibition of β-catenin targets imatinib-resistant leukemia stem cells in CML.Cell Stem Cell201210441242410.1016/j.stem.2012.02.01722482506
    [Google Scholar]
  63. HechtA. VleminckxK. StemmlerM.P. van RoyF. KemlerR. The p300/CBP acetyltransferases function as transcriptional coactivators of beta-catenin in vertebrates.EMBO J.20001981839185010.1093/emboj/19.8.183910775268
    [Google Scholar]
  64. TakemaruK.I. MoonR.T. The transcriptional coactivator CBP interacts with beta-catenin to activate gene expression.J. Cell Biol.2000149224925410.1083/jcb.149.2.24910769018
    [Google Scholar]
  65. TeoJ.L. KahnM. The Wnt signaling pathway in cellular proliferation and differentiation: A tale of two coactivators.Adv. Drug Deliv. Rev.201062121149115510.1016/j.addr.2010.09.01220920541
    [Google Scholar]
  66. CreyghtonM.P. ChengA.W. WelsteadG.G. KooistraT. CareyB.W. SteineE.J. HannaJ. LodatoM.A. FramptonG.M. SharpP.A. BoyerL.A. YoungR.A. JaenischR. Histone H3K27ac separates active from poised enhancers and predicts developmental state.Proc. Natl. Acad. Sci.201010750219312193610.1073/pnas.101607110721106759
    [Google Scholar]
  67. HniszD. AbrahamB.J. LeeT.I. LauA. Saint-AndréV. SigovaA.A. HokeH.A. YoungR.A. Super-enhancers in the control of cell identity and disease.Cell2013155493494710.1016/j.cell.2013.09.05324119843
    [Google Scholar]
  68. MartireS. NguyenJ. SundaresanA. BanaszynskiL.A. Differential contribution of p300 and CBP to regulatory element acetylation in mESCs.BMC Mol. Cell Biol.20202115510.1186/s12860‑020‑00296‑932690000
    [Google Scholar]
  69. Mirzadeh AzadF. AtlasiY. WNT-regulated transcriptional enhancers and stem cell plasticity.Trends Cell Biol.202131752552810.1016/j.tcb.2021.03.00733775538
    [Google Scholar]
  70. ZamudioA.V. Dall’AgneseA. HenningerJ.E. ManteigaJ.C. AfeyanL.K. HannettN.M. CoffeyE.L. LiC.H. OksuzO. SabariB.R. BoijaA. KleinI.A. HawkenS.W. SpilleJ.H. DeckerT.M. CisseI.I. AbrahamB.J. LeeT.I. TaatjesD.J. SchuijersJ. YoungR.A. Mediator condensates localize signaling factors to key cell identity genes.Mol. Cell2019765753766.e610.1016/j.molcel.2019.08.01631563432
    [Google Scholar]
  71. VoN. GoodmanR.H. CREB-binding protein and p300 in transcriptional regulation.J. Biol. Chem.200127617135051350810.1074/jbc.R00002520011279224
    [Google Scholar]
  72. ChanW.I. HannahR.L. DawsonM.A. PridansC. FosterD. JoshiA. GöttgensB. Van DeursenJ.M. HuntlyB.J.P. The transcriptional coactivator Cbp regulates self-renewal and differentiation in adult hematopoietic stem cells.Mol. Cell. Biol.201131245046506010.1128/MCB.05830‑1122006020
    [Google Scholar]
  73. KawasakiH. EcknerR. YaoT.P. TairaK. ChiuR. LivingstonD.M. YokoyamaK.K. Distinct roles of the co-activators p300 and CBP in retinoic-acid-induced F9-cell differentiation.Nature1998393668228428910.1038/305389607768
    [Google Scholar]
  74. RebelV.I. KungA.L. TannerE.A. YangH. BronsonR.T. LivingstonD.M. Distinct roles for CREB-binding protein and p300 in hematopoietic stem cell self-renewal.Proc. Natl. Acad. Sci.20029923147891479410.1073/pnas.23256849912397173
    [Google Scholar]
  75. TeoJ.L. MaH. NguyenC. LamC. KahnM. Specific inhibition of CBP/β-catenin interaction rescues defects in neuronal differentiation caused by a presenilin-1 mutation.Proc. Natl. Acad. Sci.200510234121711217610.1073/pnas.050460010216093313
    [Google Scholar]
  76. YangK. WangF. ZhangH. WangX. ChenL. SuX. WuX. HanQ. ChenZ. ChenZ.S. FuL. Target inhibition of CBP induced cell senescence in BCR-ABL- T315I mutant chronic myeloid leukemia.Front. Oncol.20211058864110.3389/fonc.2020.58864133585207
    [Google Scholar]
  77. ZhangY. WangS. KangW. LiuC. DongY. RenF. WangY. ZhangJ. WangG. ToK.F. ZhangX. SungJ.J.Y. ChangZ. YuJ. CREPT facilitates colorectal cancer growth through inducing Wnt/β-catenin pathway by enhancing p300-mediated β-catenin acetylation.Oncogene201837263485350010.1038/s41388‑018‑0161‑z29563608
    [Google Scholar]
  78. ZimmerS.N. ZhouQ. ZhouT. ChengZ. Abboud-WernerS.L. HornD. LecockeM. WhiteR. KrivtsovA.V. ArmstrongS.A. KungA.L. LivingstonD.M. RebelV.I. Crebbp haploinsufficiency in mice alters the bone marrow microenvironment, leading to loss of stem cells and excessive myelopoiesis.Blood20111181697910.1182/blood‑2010‑09‑30794221555743
    [Google Scholar]
  79. BavelloniA. PiazziM. RaffiniM. FaenzaI. BlalockW.L. Prohibitin 2: At a communications crossroads.IUBMB Life201567423925410.1002/iub.136625904163
    [Google Scholar]
  80. RadichJ.P. DaiH. MaoM. OehlerV. SchelterJ. DrukerB. SawyersC. ShahN. StockW. WillmanC.L. FriendS. LinsleyP.S. Gene expression changes associated with progression and response in chronic myeloid leukemia.Proc. Natl. Acad. Sci.200610382794279910.1073/pnas.051042310316477019
    [Google Scholar]
  81. GrassiS. PalumboS. MariottiV. LiberatiD. GuerriniF. CiabattiE. SalehzadehS. BaratèC. BalducciS. RicciF. BudaG. IovinoL. MazziottaF. GhioF. ErcolanoG. Di PaoloA. CecchettiniA. BaldiniC. MattiiL. PellegriniS. PetriniM. GalimbertiS. The WNT pathway is relevant for the BCR-ABL1-independent resistance in chronic myeloid leukemia.Front. Oncol.2019953210.3389/fonc.2019.0053231293972
    [Google Scholar]
  82. TaskesenE. StaalF.J.T. ReindersM.J.T. An integrated approach of gene expression and DNA-methylation profiles of WNT signaling genes uncovers novel prognostic markers in Acute Myeloid Leukemia.BMC Bioinform.201516S4S410.1186/1471‑2105‑16‑S4‑S425734857
    [Google Scholar]
  83. YsebaertL. ChicanneG. DemurC. De ToniF. Prade-HoudellierN. RuidavetsJ-B. Mansat-De MasV. Rigal-HuguetF. LaurentG. PayrastreB. ManentiS. Racaud-SultanC. Expression of β-catenin by acute myeloid leukemia cells predicts enhanced clonogenic capacities and poor prognosis.Leukemia20062071211121610.1038/sj.leu.240423916688229
    [Google Scholar]
  84. MikeschJ-H. SteffenB. BerdelW.E. ServeH. Müller-TidowC. The emerging role of Wnt signaling in the pathogenesis of acute myeloid leukemia.Leukemia20072181638164710.1038/sj.leu.240473217554387
    [Google Scholar]
  85. EmamiK.H. NguyenC. MaH. KimD.H. JeongK.W. EguchiM. MoonR.T. TeoJ.L. KimH.Y. MoonS.H. HaJ.R. KahnM. A small molecule inhibitor of beta-catenin/CREB-binding protein transcription.Proc. Natl. Acad. Sci.200410134126821268710.1073/pnas.040487510115314234
    [Google Scholar]
  86. LukaszewiczA.I. NguyenC. MelendezE. LinD.P. TeoJ.L. LaiK.K.Y. HuttnerW.B. ShiS.H. KahnM. The mode of stem cell division is dependent on the differential interaction of β-Catenin with the Kat3 coactivators CBP or p300.Cancers201911796210.3390/cancers1107096231324005
    [Google Scholar]
  87. ManegoldP. LaiK. WuY. TeoJ.L. LenzH.J. GenykY. PandolS. WuK. LinD. ChenY. NguyenC. ZhaoY. KahnM. Differentiation therapy targeting the β-Catenin/CBP interaction in pancreatic cancer.Cancers20181049510.3390/cancers1004009529596326
    [Google Scholar]
/content/journals/cmp/10.2174/1874467217666230906092236
Loading
/content/journals/cmp/10.2174/1874467217666230906092236
Loading

Data & Media loading...

Supplements


  • Article Type:
    Research Article
Keyword(s): CBP; CML; ICG-001; LI; LSC; MC-1; Metabolism
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test