Skip to content
2000
Volume 17, Issue 1
  • ISSN: 1874-4672
  • E-ISSN: 1874-4702

Abstract

Introduction

The study aimed to investigate the effects of low concentrations of mitochondrial uncouplers in endothelial cells on the CpG dinucleotide methylation of the ICAM1 gene promoter. The excessive inflammatory response in the endothelium is responsible for the development of many cardiovascular diseases. Mitochondria are important regulators of endothelial cell functions. Mild uncoupling of oxidative phosphorylation and respiration in endothelial mitochondria exerts a long lasting anti-inflammatory effect. However, the detailed mechanism of the anti-inflammatory activity of mitochondrial uncouplers remains unclear.We hypothesized that mild mitochondrial uncoupling leads to epigenetic changes in genomic DNA contributing to the anti-inflammatory response.

Methods

We studied the long-term effects of mitochondria-targeted compounds with the uncoupler’s activities: the antioxidant plastoquinonyl-decyl-triphenylphosphonium (SkQ1), dodecyl-triphenylphosphonium (CTPP), and 2,4-dinitrophenol (DNP). The mRNA expression of the intercellular adhesion molecule 1 (ICAM1), a marker of inflammatory activation of endothelial cells, was measured by RT-qPCR. Cytosine methylation in the CpG sites of the ICAM1 gene promoter was estimated by bisulfite sequencing of individual clones.

Results

It was found that downregulation of ICAM1 expression caused by DNP and CTPP was accompanied by an increase in the methylation of CpG sites in the ICAM1 gene promoter. None of the compounds affected intracellular or intramitochondrial ATP levels.

Conclusion

Low concentrations of mitochondrial oxidative phosphorylation uncouplers are able to increase methylation of ICAM1 gene promoter, which corresponds to the observed decrease in the levels of mRNA of this gene. Thus, the change in methylation of the ICAM1 gene promoter may underlie the mechanism of decreased ICAM1 expression caused by mild mitochondrial depolarization. Mitochondrial uncouplers may be exploited as possible therapeutic candidates to treat excessive inflammation in endothelium, by changing the methylation status of genomic DNA.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmp/10.2174/1874467217666230815142556
2024-01-01
2024-11-29
Loading full text...

Full text loading...

/deliver/fulltext/cmp/17/1/CMP-17-e150823219723.html?itemId=/content/journals/cmp/10.2174/1874467217666230815142556&mimeType=html&fmt=ahah

References

  1. HirataY. NagataD. SuzukiE. NishimatsuH. SuzukiJ. NagaiR. Diagnosis and treatment of endothelial dysfunction in cardiovascular disease.Int. Heart J.20105111610.1536/ihj.51.120145343
    [Google Scholar]
  2. LiM. van EschB.C.A.M. HenricksP.A.J. GarssenJ. FolkertsG. Time and concentration dependent effects of short chain fatty acids on lipopolysaccharide- or tumor necrosis factor α-induced endothelial activation.Front. Pharmacol.2018923310.3389/fphar.2018.0023329615908
    [Google Scholar]
  3. DaviesM.J. GordonJ.L. GearingA.J.H. PigottR. WoolfN. KatzD. KyriakopoulosA. The expression of the adhesion molecules ICAM-1, VCAM-1, PECAM, and E-selectin in human atherosclerosis.J. Pathol.1993171322322910.1002/path.17117103117506307
    [Google Scholar]
  4. WatanabeT. FanJ. Atherosclerosis and inflammation mononuclear cell recruitment and adhesion molecules with reference to the implication of ICAM-1/LFA-1 pathway in atherogenesis.Int. J. Cardiol.199866S1S455310.1016/s0167‑5273(98)00147‑89951802
    [Google Scholar]
  5. CollinsR.G. VeljiR. GuevaraN.V. HicksM.J. ChanL. BeaudetA.L. P-Selectin or intercellular adhesion molecule (ICAM)-1 deficiency substantially protects against atherosclerosis in apolipoprotein E-deficient mice.J. Exp. Med.2000191118919410.1084/jem.191.1.18910620617
    [Google Scholar]
  6. LawsonC. WolfS. ICAM-1 signaling in endothelial cells.Pharmacol. Rep.2009611223210.1016/S1734‑1140(09)70004‑019307690
    [Google Scholar]
  7. NoursharghS. AlonR. Leukocyte migration into inflamed tissues.Immunity201441569470710.1016/j.immuni.2014.10.00825517612
    [Google Scholar]
  8. KlugeM.A. FettermanJ.L. VitaJ.A. Mitochondria and endothelial function.Circ. Res.201311281171118810.1161/CIRCRESAHA.111.30023323580773
    [Google Scholar]
  9. CunhaF.M. Caldeira da SilvaC.C. CerqueiraF.M. KowaltowskiA.J. Mild mitochondrial uncoupling as a therapeutic strategy.Curr. Drug Targets201112678378910.2174/13894501179552877821275885
    [Google Scholar]
  10. KorshunovS.S. SkulachevV.P. StarkovA.A. High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria.FEBS Lett.19974161151810.1016/S0014‑5793(97)01159‑99369223
    [Google Scholar]
  11. ZinovkinR.A. RomaschenkoV.P. GalkinI.I. ZakharovaV.V. PletjushkinaO.Y. ChernyakB.V. PopovaE.N. Role of mitochondrial reactive oxygen species in age-related inflammatory activation of endothelium.Aging20146866167410.18632/aging.10068525239871
    [Google Scholar]
  12. RomaschenkoV.P. ZinovkinR.A. GalkinI.I. ZakharovaV.V. PanteleevaA.A. TokarchukA.V. LyamzaevK.G. PletjushkinaO.Y. ChernyakB.V. PopovaE.N. Low concentrations of uncouplers of oxidative phosphorylation prevent inflammatory activation of endothelial cells by tumor necrosis factor.Biochemistry201580561061910.1134/S000629791505014426071781
    [Google Scholar]
  13. ZakharovaV.V. PletjushkinaO.Y. ZinovkinR.A. PopovaE.N. ChernyakB.V. Mitochondria-targeted antioxidants and uncouplers of oxidative phosphorylation in treatment of the Systemic Inflammatory Response Syndrome (SIRS).J. Cell. Physiol.2017232590491210.1002/jcp.2562627684052
    [Google Scholar]
  14. HollidayR. DNA methylation and epigenetic inheritance.Philos. Trans. R. Soc. Lond. B Biol. Sci.1990326123532933810.1098/rstb.1990.00151968668
    [Google Scholar]
  15. ZinovkinaL.A. ZinovkinR.A. DNA methylation, mitochondria, and programmed aging.Biochemistry201580121571157710.1134/S000629791512004426638681
    [Google Scholar]
  16. MohammedS.A. AmbrosiniS. LüscherT. PaneniF. CostantinoS. Epigenetic control of mitochondrial function in the vasculature.Front. Cardiovasc. Med.202072810.3389/fcvm.2020.0002832195271
    [Google Scholar]
  17. TianY. GarciaG. BianQ. SteffenK.K. JoeL. WolffS. MeyerB.J. DillinA. Mitochondrial stress induces chromatin reorganization to promote longevity and UPR mt.Cell201616551197120810.1016/j.cell.2016.04.01127133166
    [Google Scholar]
  18. MerkwirthC. JovaisaiteV. DurieuxJ. MatilainenO. JordanS.D. QuirosP.M. SteffenK.K. WilliamsE.G. MouchiroudL. TronnesS.U. MurilloV. WolffS.C. ShawR.J. AuwerxJ. DillinA. Two conserved histone demethylases regulate mitochondrial stress-induced longevity.Cell201616551209122310.1016/j.cell.2016.04.01227133168
    [Google Scholar]
  19. Russell-HallinanA. WatsonC.J. O’DwyerD. GrieveD.J. O’NeillK.M. Epigenetic regulation of endothelial cell function by nucleic acid methylation in cardiac homeostasis and disease.Cardiovasc. Drugs Ther.20213551025104410.1007/s10557‑020‑07019‑432748033
    [Google Scholar]
  20. CostantinoS. PaneniF. CosentinoF. Targeting chromatin remodeling to prevent cardiovascular disease in diabetes.Curr. Pharm. Biotechnol.201516653154310.2174/13892010160615040711364425860064
    [Google Scholar]
  21. ChenH. KazemierH.G. de GrooteM.L. RuitersM.H.J. XuG.L. RotsM.G. Induced DNA demethylation by targeting ten-eleven translocation 2 to the human ICAM-1 promoter.Nucleic Acids Res.20144231563157410.1093/nar/gkt101924194590
    [Google Scholar]
  22. MallonaI. Díez-VillanuevaA. PeinadoM.A. Methylation plotter: A web tool for dynamic visualization of DNA methylation data.Source Code Biol. Med.2014911110.1186/1751‑0473‑9‑1125260021
    [Google Scholar]
  23. LobasM.A. TaoR. NagaiJ. KronschlägerM.T. BordenP.M. MarvinJ.S. LoogerL.L. KhakhB.S. A genetically encoded single-wavelength sensor for imaging cytosolic and cell surface ATP.Nat. Commun.201910171110.1038/s41467‑019‑08441‑530755613
    [Google Scholar]
  24. PavlyuchenkovaA.N. ZinovkinR.A. MakievskayaC.I. GalkinI.I. ChelombitkoM.A. Mitochondria-targeted triphenylphosphonium-based compounds inhibit FcεRI-dependent degranulation of mast cells by preventing mitochondrial dysfunction through Erk1/2.Life Sci.202228812017410.1016/j.lfs.2021.12017434826439
    [Google Scholar]
  25. WawrykS.O. CockerillP.N. WicksI.P. BoydA.W. Isolation and characterization of the promoter region of the human intercellular adhesion molecule-1 gene.Int. Immunol.199131839310.1093/intimm/3.1.831904768
    [Google Scholar]
  26. LeeK.U. LeeI.K. HanJ. SongD.K. KimY.M. SongH.S. KimH.S. LeeW.J. KohE.H. SongK.H. HanS.M. KimM.S. ParkI.S. ParkJ.Y. Effects of recombinant adenovirus-mediated uncoupling protein 2 overexpression on endothelial function and apoptosis.Circ. Res.200596111200120710.1161/01.RES.0000170075.73039.5b15905464
    [Google Scholar]
  27. ToimeL.J. BrandM.D. Uncoupling protein-3 lowers reactive oxygen species production in isolated mitochondria.Free Radic. Biol. Med.201049460661110.1016/j.freeradbiomed.2010.05.01020493945
    [Google Scholar]
  28. DemineS. RenardP. ArnouldT. Mitochondrial uncoupling: A key controller of biological processes in physiology and diseases.Cells20198879510.3390/cells808079531366145
    [Google Scholar]
  29. MaunakeaA.K. NagarajanR.P. BilenkyM. BallingerT.J. D’SouzaC. FouseS.D. JohnsonB.E. HongC. NielsenC. ZhaoY. TureckiG. DelaneyA. VarholR. ThiessenN. ShchorsK. HeineV.M. RowitchD.H. XingX. FioreC. SchillebeeckxM. JonesS.J.M. HausslerD. MarraM.A. HirstM. WangT. CostelloJ.F. Conserved role of intragenic DNA methylation in regulating alternative promoters.Nature2010466730325325710.1038/nature0916520613842
    [Google Scholar]
  30. LiuT. SunJ. WangZ. YangW. ZhangH. FanC. ShanZ. TengW. Changes in the DNA methylation and hydroxymethylation status of the intercellular adhesion molecule 1 gene promoter in thyrocytes from autoimmune thyroiditis patients.Thyroid201727683884510.1089/thy.2016.057628388873
    [Google Scholar]
  31. LeeP.P. FitzpatrickD.R. BeardC. JessupH.K. LeharS. MakarK.W. Pérez-MelgosaM. SweetserM.T. SchlisselM.S. NguyenS. CherryS.R. TsaiJ.H. TuckerS.M. WeaverW.M. KelsoA. JaenischR. WilsonC.B. A critical role for Dnmt1 and DNA methylation in T cell development, function, and survival.Immunity200115576377410.1016/S1074‑7613(01)00227‑811728338
    [Google Scholar]
  32. AntonenkoY.N. KhailovaL.S. KnorreD.A. MarkovaO.V. RokitskayaT.I. IlyasovaT.M. SeverinaI.I. KotovaE.A. KaravaevaY.E. PrikhodkoA.S. SeverinF.F. SkulachevV.P. Penetrating cations enhance uncoupling activity of anionic protonophores in mitochondria.PLoS One201384e6190210.1371/journal.pone.006190223626747
    [Google Scholar]
  33. MuersM. A haul of new histone modifications.Nat. Rev. Genet.2011121174410.1038/nrg308621946920
    [Google Scholar]
  34. LiX. ShaoY. ShaX. FangP. KuoY.M. AndrewsA.J. LiY. YangW.Y. MaddaloniM. PascualD.W. LuoJ.J. JiangX. WangH. YangX. IL-35 (Interleukin-35) suppresses endothelial cell activation by inhibiting mitochondrial reactive oxygen species-mediated site-specific acetylation of H3K14 (Histone 3 Lysine 14).Arterioscler. Thromb. Vasc. Biol.201838359960910.1161/ATVBAHA.117.31062629371247
    [Google Scholar]
/content/journals/cmp/10.2174/1874467217666230815142556
Loading
/content/journals/cmp/10.2174/1874467217666230815142556
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test