Skip to content
2000
Volume 17, Issue 1
  • ISSN: 1874-4672
  • E-ISSN: 1874-4702
Preview this article:

There is no abstract available.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmp/10.2174/0118761429268892231116044537
2024-01-01
2024-11-23
Loading full text...

Full text loading...

/deliver/fulltext/cmp/17/1/e18761429268892.html?itemId=/content/journals/cmp/10.2174/0118761429268892231116044537&mimeType=html&fmt=ahah

References

  1. MatzingerP. The danger model: A renewed sense of self.Science (1979).2002296556630130510.1126/science.1071059
    [Google Scholar]
  2. Di VirgilioF. SartiA.C. Coutinho-SilvaR. Purinergic signaling, DAMPs, and inflammation.Am. J. Physiol. Cell Physiol.20203185C832C83510.1152/ajpcell.00053.202032159362
    [Google Scholar]
  3. DoschM. GerberJ. JebbawiF. BeldiG. Mechanisms of ATP release by inflammatory cells.Int. J. Mol. Sci.2018194122210.3390/ijms1904122229669994
    [Google Scholar]
  4. FitzJ.G. Regulation of cellular ATP release.Trans. Am. Clin. Climatol. Assoc.200711819920818528503
    [Google Scholar]
  5. Di VirgilioF. Vultaggio-PomaV. FalzoniS. GiulianiA.L. ExtracellularA.T.P. Extracellular ATP: A powerful inflammatory mediator in the central nervous system.Neuropharmacology202322410933310.1016/j.neuropharm.2022.10933336400278
    [Google Scholar]
  6. BurnstockG. KrügelU. AbbracchioM.P. IllesP. Purinergic signalling: From normal behaviour to pathological brain function.Prog. Neurobiol.201195222927410.1016/j.pneurobio.2011.08.00621907261
    [Google Scholar]
  7. IllesP. MüllerC.E. JacobsonK.A. GrutterT. NickeA. FountainS.J. KennedyC. SchmalzingG. JarvisM.F. StojilkovicS.S. KingB.F. Di VirgilioF. Update of P2X receptor properties and their pharmacology: IUPHAR Review 30.Br. J. Pharmacol.202010.1111/bph.1529933125712
    [Google Scholar]
  8. JacobsonK.A. DelicadoE.G. GachetC. KennedyC. von KügelgenI. LiB. Miras-PortugalM.T. NovakI. SchönebergT. Perez-SenR. ThorD. WuB. YangZ. MüllerC.E. Update of P2Y receptor pharmacology: IUPHAR Review 27.Br. J. Pharmacol.2020177112413243310.1111/bph.1500532037507
    [Google Scholar]
  9. GombaultA. BaronL. CouillinI. ATP release and purinergic signaling in NLRP3 inflammasome activation.Front. Immunol.2013341410.3389/fimmu.2012.0041423316199
    [Google Scholar]
  10. PelegrinP. P2X7 receptor and the NLRP3 inflammasome: Partners in crime.Biochem. Pharmacol.202118711438510.1016/j.bcp.2020.11438533359010
    [Google Scholar]
  11. LiuJ. LiuS. HuS. LuJ. WuC. HuD. ZhangW. ATP ion channel P2X purinergic receptors in inflammation response.Biomed. Pharmacother.202315811420510.1016/j.biopha.2022.114205
    [Google Scholar]
  12. GabelC.A. P2 purinergic receptor modulation of cytokine production.Purinergic Signal.200731-2273810.1007/s11302‑006‑9034‑y18404416
    [Google Scholar]
  13. JacobF. NovoC.P. BachertC. Van CrombruggenK. Purinergic signaling in inflammatory cells: P2 receptor expression, functional effects, and modulation of inflammatory responses.Purinergic Signal.20139328530610.1007/s11302‑013‑9357‑423404828
    [Google Scholar]
  14. DeaglioS. RobsonS.C. Ectonucleotidases as regulators of purinergic signaling in thrombosis, inflammation, and immunity.Adv Pharmacol201110.1016/B978‑0‑12‑385526‑8.00010‑2
    [Google Scholar]
  15. AbbracchioM.P. CerutiS. P1 receptors and cytokine secretion.Purinergic Signal.200731-2132510.1007/s11302‑006‑9033‑z18404415
    [Google Scholar]
  16. DixitA. CheemaH. GeorgeJ. IyerS. DudejaV. DawraR. SalujaA.K. Extracellular release of ATP promotes systemic inflammation during acute pancreatitis.Am. J. Physiol. Gastrointest. Liver Physiol.20193174G463G47510.1152/ajpgi.00395.201831433214
    [Google Scholar]
  17. CauwelsA. RoggeE. VandendriesscheB. ShivaS. BrouckaertP. Extracellular ATP drives systemic inflammation, tissue damage and mortality.Cell Death Dis.201453e110210.1038/cddis.2014.7024603330
    [Google Scholar]
  18. ShahD. RomeroF. StafstromW. DuongM. SummerR. Extracellular ATP mediates the late phase of neutrophil recruitment to the lung in murine models of acute lung injury.Am. J. Physiol. Lung Cell. Mol. Physiol.20143062L152L16110.1152/ajplung.00229.201324285266
    [Google Scholar]
  19. CickoS. KöhlerT.C. AyataC.K. MüllerT. EhratN. MeyerA. HossfeldM. ZechA. Di VirgilioF. IdzkoM. Extracellular ATP is a danger signal activating P2X7 receptor in a LPS mediated inflammation (ARDS/ALI).Oncotarget2018955306353064810.18632/oncotarget.2576130093975
    [Google Scholar]
  20. LeeB.H. HwangD.M. PalaniyarN. GrinsteinS. PhilpottD.J. HuJ. Activation of P2X(7) receptor by ATP plays an important role in regulating inflammatory responses during acute viral infection.PLoS One201274e3581210.1371/journal.pone.003581222558229
    [Google Scholar]
  21. RiteauN. GasseP. FauconnierL. GombaultA. CouegnatM. FickL. KanellopoulosJ. QuesniauxV.F.J. Marchand-AdamS. CrestaniB. RyffelB. CouillinI. Extracellular ATP is a danger signal activating P2X7 receptor in lung inflammation and fibrosis.Am. J. Respir. Crit. Care Med.2010182677478310.1164/rccm.201003‑0359OC20522787
    [Google Scholar]
  22. GrazianoF. DesdouitsM. GarzettiL. PodiniP. AlfanoM. RubartelliA. FurlanR. BenarochP. PoliG. Extracellular ATP induces the rapid release of HIV-1 from virus containing compartments of human macrophages.Proc. Natl. Acad. Sci. USA201511225E3265E327310.1073/pnas.150065611226056317
    [Google Scholar]
  23. ZhangC. HeH. WangL. ZhangN. HuangH. XiongQ. YanY. WuN. RenH. HanH. LiuM. QianM. DuB. Virus-triggered ATP release limits viral replication through facilitating IFN-β production in a P2X7-dependent manner.J. Immunol.201719941372138110.4049/jimmunol.170018728687662
    [Google Scholar]
  24. PachecoP.A.F. FariaR.X. The potential involvement of P2X7 receptor in COVID‐19 pathogenesis: A new therapeutic target?Scand. J. Immunol.2021932e1296010.1111/sji.1296032797724
    [Google Scholar]
  25. RibeiroD.E. Oliveira-GiacomelliÁ. GlaserT. Arnaud-SampaioV.F. AndrejewR. DieckmannL. BaranovaJ. LameuC. RatajczakM.Z. UlrichH. Hyperactivation of P2X7 receptors as a culprit of COVID-19 neuropathology.Mol. Psychiatry20212641044105910.1038/s41380‑020‑00965‑333328588
    [Google Scholar]
  26. FranciosiM.L.M. LimaM.D.M. SchetingerM.R.C. CardosoA.M. Possible role of purinergic signaling in COVID-19.Mol. Cell. Biochem.202147682891289810.1007/s11010‑021‑04130‑433740184
    [Google Scholar]
  27. SimõesJ.L.B. BagatiniM.D. Purinergic signaling of ATP in COVID-19 associated Guillain-Barré Syndrome.J. Neuroimmune Pharmacol.2021161485810.1007/s11481‑020‑09980‑133462776
    [Google Scholar]
  28. Di VirgilioF. TangY. SartiA.C. RossatoM. A rationale for targeting the P2X7 receptor in Coronavirus disease 19.Br. J. Pharmacol.2020177214990499410.1111/bph.1513832441783
    [Google Scholar]
  29. dos AnjosF. SimõesJ.L.B. AssmannC.E. CarvalhoF.B. BagatiniM.D. Potential therapeutic role of purinergic receptors in cardiovascular disease mediated by SARS-CoV-2.J. Immunol. Res.2020202011410.1155/2020/863204833299899
    [Google Scholar]
  30. HuangC. WangY. LiX. RenL. ZhaoJ. HuY. ZhangL. FanG. XuJ. GuX. ChengZ. YuT. XiaJ. WeiY. WuW. XieX. YinW. LiH. LiuM. XiaoY. GaoH. GuoL. XieJ. WangG. JiangR. GaoZ. JinQ. WangJ. CaoB. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China.Lancet20203951022349750610.1016/S0140‑6736(20)30183‑531986264
    [Google Scholar]
  31. SongP. LiW. XieJ. HouY. YouC. Cytokine storm induced by SARS-CoV-2.Clin. Chim. Acta202050928028710.1016/j.cca.2020.06.01732531256
    [Google Scholar]
  32. García-VillalbaJ. Hurtado-NavarroL. Peñín-FranchA. Molina-LópezC. Martínez-AlarcónL. Angosto-BazarraD. Baroja-MazoA. PelegrinP. Soluble P2X7 receptor is elevated in the plasma of COVID-19 patients and correlates with disease severity.Front. Immunol.20221389447010.3389/fimmu.2022.89447035663992
    [Google Scholar]
  33. da SilvaG.B. ManicaD. da SilvaA.P. KosvoskiG.C. HanauerM. AssmannC.E. SimõesJ.L.B. PillatM.M. de LaraJ.D. MarafonF. BertolloA.G. MingotiM.E.D. GavioliJ. RéusG.Z. de OliveiraG.G. IgnácioZ.M. BagatiniM.D. High levels of extracellular ATP lead to different inflammatory responses in COVID-19 patients according to the severity.J. Mol. Med.2022100464566310.1007/s00109‑022‑02185‑435249135
    [Google Scholar]
  34. GelinC.F. BhattacharyaA. LetavicM.A. P2X7 receptor antagonists for the treatment of systemic inflammatory disordersProg Med Chem202059369910.1016/bs.pmch.2019.11.002
    [Google Scholar]
  35. ParkJ.H. KimY.C. P2X7 receptor antagonists: A patent review (2010–2015).Expert Opin Ther Pat.20172725726710.1080/13543776.2017.1246538
    [Google Scholar]
  36. BirnbaumY. YeR. ChenH. CarlssonL. WhatlingC. FjellströmO. RybergE. YeY. Recombinant Apyrase (AZD3366) Against Myocardial Reperfusion Injury.Cardiovasc. Drugs Ther.20233762564610.1007/s10557‑022‑07329‑935192075
    [Google Scholar]
  37. ZhangR. LiN. ZhaoM. TangM. JiangX. CaiX. YeN. SuK. PengJ. ZhangX. WuW. YeH. From lead to clinic: A review of the structural design of P2X7R antagonists.Eur. J. Med. Chem.202325111523410.1016/j.ejmech.2023.11523436893624
    [Google Scholar]
/content/journals/cmp/10.2174/0118761429268892231116044537
Loading
/content/journals/cmp/10.2174/0118761429268892231116044537
Loading

Data & Media loading...


  • Article Type:
    Editorial
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test