Skip to content
2000
Volume 17, Issue 1
  • ISSN: 1874-4672
  • E-ISSN: 1874-4702

Abstract

Background

Glucoregulatory protein 94 (Grp94) is necessary for the post-viral life cycle and plays a quality control role in viral proteins, but the role of Grp94 in regulating viral replication in host cells is not well known. Therefore, finding a compound that can regulate Grp94 will help us to study the mechanism of viral replication. Previously, we synthesized a coumarin pyrazoline derivative HCP1 that is an effective inhibitor of Grp94. We suppose that HCP1 may inhibit viral replication.

Objective

This study aimed to investigate the effect of HCP1 on the replication ability of Senecavirus A (SVA), so as to provide a target and a leading compound for revealing the pathogenic mechanism of the virus and developing antiviral drugs.

Methods

Rat cell lines BHK-21 and porcine cell lines PK-15 were infected with SVA, and the infected cells were treated with different concentrations of HCP1. The cell viability (CCK-8), virus titer (TCID), autophagy level, and Grp94 expression were measured.

Results

The results showed that a low concentration of HCP1 decreased viral titer and viral load in BHK-21 and PK-15 cells, and 5μM HCP1 significantly decreased the expression of SVA VP2 protein. In addition, SVA infection can lead to an increased level of autophagy, and HCP1 can inhibit host cell autophagy caused by SVA infection, thereby inhibiting viral replication and infection.

Conclusion

These findings reveal that Grp94 is a key factor in controlling SVA replication, and its inhibitor HCP1 suppresses SVA replication by inhibiting the increase of Grp94 protein level and autophagy induced by SVA. This study will contribute to the development of a new class of small-molecule antiviral drugs.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmp/10.2174/1874467217666230705120856
2023-08-23
2024-11-23
Loading full text...

Full text loading...

/deliver/fulltext/cmp/17/1/CMP-17-E050723218413.html?itemId=/content/journals/cmp/10.2174/1874467217666230705120856&mimeType=html&fmt=ahah

References

  1. GewirthD.T. Paralog Specific Hsp90 Inhibitors - A Brief History and a Bright Future.Curr. Top. Med. Chem.201616252779279110.2174/156802661666616041314115427072700
    [Google Scholar]
  2. HoterA. El-SabbanM. NaimH. The HSP90 Family: Structure, Regulation, Function, and Implications in Health and Disease.Int. J. Mol. Sci.2018199256010.3390/ijms1909256030158430
    [Google Scholar]
  3. Ansa-AddoE.A. ThaxtonJ. HongF. WuB.X. ZhangY. FugleC.W. MetelliA. RiesenbergB. WilliamsK. GewirthD.T. ChiosisG. LiuB. LiZ. Clients and Oncogenic Roles of Molecular Chaperone gp96/grp94.Curr. Top. Med. Chem.201616252765277810.2174/156802661666616041314161327072698
    [Google Scholar]
  4. KimD.S. LiB. RhewK.Y. OhH.W. LimH.D. LeeW. ChaeH.J. KimH.R. The regulatory mechanism of 4-phenylbutyric acid against ER stress-induced autophagy in human gingival fibroblasts.Arch. Pharm. Res.20123571269127810.1007/s12272‑012‑0718‑222864750
    [Google Scholar]
  5. RothanH.A.H.A. Small molecule grp94 inhibitors with antiviral activity against Dengue and Zika virus.Antiviral Res.201917110459010459010.1016/j.antiviral.2019.10459031421166
    [Google Scholar]
  6. HalesLM Complete genome sequence analysis of Seneca Valley virus-001, a novel oncolytic picornavirus. J Gen Virol.,20088912651275
    [Google Scholar]
  7. VenkataramanS. ReddyS.P. LooJ. IdamakantiN. HallenbeckP.L. ReddyV.S. Crystallization and preliminary X-ray diffraction studies of Seneca Valley Virus-001, a new member of the Picornaviridae family.Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun.200864429329610.1107/S174430910800692118391430
    [Google Scholar]
  8. ArztJ. BertramM.R. VuL.T. PauszekS.J. HartwigE.J. SmoligaG.R. PalinskiR. StenfeldtC. FishI.H. HoangB.H. PhuongN.T. HungV.V. VuP.P. DungN.K. DongP.V. TienN.N. DungD.H. First Detection and Genome Sequence of Senecavirus A in Vietnam.Microbiol. Resour. Announc.201983e01247-1810.1128/MRA.01247‑1830687818
    [Google Scholar]
  9. CanningP. CanonA. BatesJ.L. GerardyK. LinharesD.C.L. PiñeyroP.E. SchwartzK.J. YoonK.J. RademacherC.J. HoltkampD. KarrikerL. Neonatal Mortality, Vesicular Lesions and Lameness Associated with Senecavirus A in a U.S. Sow Farm.Transbound. Emerg. Dis.201663437337810.1111/tbed.1251627213868
    [Google Scholar]
  10. Saeng-chutoK. RodtianP. TemeeyasenG. WegnerM. NilubolD. The first detection of Senecavirus A in pigs in Thailand, 2016.Transbound. Emerg. Dis.201865128528810.1111/tbed.1265428474854
    [Google Scholar]
  11. PoirierJ.T. DobromilskayaI. MoriartyW.F. PeacockC.D. HannC.L. RudinC.M. Selective tropism of Seneca Valley virus for variant subtype small cell lung cancer.J. Natl. Cancer Inst.2013105141059106510.1093/jnci/djt13023739064
    [Google Scholar]
  12. BurkeM. Oncolytic Seneca Valley Virus: past perspectives and future directions.Oncolytic Virother.20165818910.2147/OV.S9691527660749
    [Google Scholar]
  13. HouL. DongJ. ZhuS. YuanF. WeiL. WangJ. QuanR. ChuJ. WangD. JiangH. XiY. LiZ. SongH. GuoY. LvM. LiuJ. Seneca valley virus activates autophagy through the PERK and ATF6 UPR pathways.Virology201953725426310.1016/j.virol.2019.08.02931539773
    [Google Scholar]
  14. HoustonE. TemeeyasenG. PiñeyroP.E. Comprehensive review on immunopathogenesis, diagnostic and epidemiology of Senecavirus A.Virus Res.202028619803819803810.1016/j.virusres.2020.19803832479975
    [Google Scholar]
  15. QianS. FanW. LiuT. WuM. ZhangH. CuiX. ZhouY. HuJ. WeiS. ChenH. LiX. QianP. Seneca Valley Virus Suppresses Host Type I Interferon Production by Targeting Adaptor Proteins MAVS, TRIF, and TANK for Cleavage.J. Virol.20179116e00823-1710.1128/JVI.00823‑1728566380
    [Google Scholar]
  16. RenH. YaoW. WeiQ. ZhangJ. ZhaoB. MiaoJ. Identification of a new autophagy inhibitor targeting lipid droplets in vascular endothelial cells.Biochem. Biophys. Res. Commun.202157119520010.1016/j.bbrc.2021.07.07834330064
    [Google Scholar]
  17. WeiQ. NingJ.Y. DaiX. GaoY.D. SuL. ZhaoB.X. MiaoJ.Y. Discovery of novel HSP90 inhibitors that induced apoptosis and impaired autophagic flux in A549 lung cancer cells.Eur. J. Med. Chem.201814555155810.1016/j.ejmech.2018.01.02429339250
    [Google Scholar]
  18. WuX. W.S.L.C., CRISPR/Cas9-Mediated Knockout of the Dicer and Ago2 Genes in BHK-21 Cell Promoted Seneca Virus A Replication and Enhanced Autophagy.Front. Cell. Infect. Microbiol.2022
    [Google Scholar]
  19. WenW. LiX. YinM. WangH. QinL. LiH. LiuW. ZhaoZ. ZhaoQ. ChenH. HuJ. QianP. Selective autophagy receptor SQSTM1/ p62 inhibits Seneca Valley virus replication by targeting viral VP1 and VP3.Autophagy202117113763377510.1080/15548627.2021.189722333719859
    [Google Scholar]
  20. GottliebR.A. AndresA.M. SinJ. TaylorD.P.J. Untangling autophagy measurements: all fluxed up.Circ. Res.2015116350451410.1161/CIRCRESAHA.116.30378725634973
    [Google Scholar]
  21. De PalmaA.M. VliegenI. De ClercqE. NeytsJ. Selective inhibitors of picornavirus replication.Med. Res. Rev.200828682388410.1002/med.2012518381747
    [Google Scholar]
  22. BoyleK.B. RandowF. The role of ‘eat-me’ signals and autophagy cargo receptors in innate immunity.Curr. Opin. Microbiol.201316333934810.1016/j.mib.2013.03.01023623150
    [Google Scholar]
  23. ValkP.J.M. VankanY. JoostenM. JenkinsN.A. CopelandN.G. LöwenbergB. DelwelR. Retroviral insertions in Evi12, a novel common virus integration site upstream of Tra1/Grp94, frequently coincide with insertions in the gene encoding the peripheral cannabinoid receptor Cnr2.J. Virol.19997353595360210.1128/JVI.73.5.3595‑3602.199910196250
    [Google Scholar]
  24. LeeS.H. SongR. LeeM.N. KimC.S. LeeH. KongY.Y. KimH. JangS.K. A molecular chaperone glucose-regulated protein 94 blocks apoptosis induced by virus infection.Hepatology200847385486610.1002/hep.2210718273841
    [Google Scholar]
  25. MayerM.P. Recruitment of Hsp70 chaperones: a crucial part of viral survival strategies.Rev. Physiol. Biochem. Pharmacol.200515314610.1007/s10254‑004‑0025‑515243813
    [Google Scholar]
  26. KaurM. KohliS. SandhuS. BansalY. BansalG. Coumarin: a promising scaffold for anticancer agents.Anticancer. Agents Med. Chem.20151581032104810.2174/187152061566615010112550325553437
    [Google Scholar]
  27. SashidharaK.V. KumarA. KumarM. SonkarR. BhatiaG. KhannaA.K. Novel coumarin derivatives as potential antidyslipidemic agents.Bioorg. Med. Chem. Lett.201020144248425110.1016/j.bmcl.2010.05.02320542691
    [Google Scholar]
  28. BhattaraiN. KumbharA.A. PokharelY.R. YadavP.N. Anticancer potential of coumarin and its derivatives.Mini Rev. Med. Chem.202121192996302910.2174/18755607MTE1uMjAm433820507
    [Google Scholar]
/content/journals/cmp/10.2174/1874467217666230705120856
Loading
/content/journals/cmp/10.2174/1874467217666230705120856
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): Autophagy; Endoplasmic Reticulum (ER); Grp94; HCP1; Infection; Senecavirus A; Virus replication
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test