Skip to content
2000
Volume 17, Issue 1
  • ISSN: 1874-4672
  • E-ISSN: 1874-4702

Abstract

Introduction

Our previous work has demonstrated significant effects on the oxidative stress response, mitochondrial function, and oxidative phosphorylation in the livers and intestines of p300 S89A knockin (S89AKI) mice. We now show that this mutation is also associated with brain metabolic defects and neuronal differentiation.

Methods

p300 S89A edited P19 cells, and S89AKI mice demonstrated metabolic and neuronal differentiation defects based on proteomic, cell biological and PET imaging studies.

Results

The metabolic and differentiation defects associated with the p300 S89A knockin mutation could be corrected both and utilizing the small molecule CBP/beta-catenin antagonist ICG-001.

Conclusion

Rebalancing the equilibrium between CBP/β-catenin p300/β-catenin associated transcription, utilizing the small molecule CBP/beta-catenin antagonist ICG-001, enhances mitochondrial oxidative phosphorylation, metabolic function, and neuronal differentiation and may be able to ameliorate the cognitive decline seen in neurodegenerative disorders, including Alzheimer’s Disease.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmp/10.2174/1874467217666230817092415
2023-08-28
2024-11-23
Loading full text...

Full text loading...

/deliver/fulltext/cmp/17/1/CMP-17-E170823219875.html?itemId=/content/journals/cmp/10.2174/1874467217666230817092415&mimeType=html&fmt=ahah

References

  1. GutP. VerdinE. The nexus of chromatin regulation and intermediary metabolism.Nature2013502747248949810.1038/nature1275224153302
    [Google Scholar]
  2. ThomasP.D. KahnM. Kat3 coactivators in somatic stem cells and cancer stem cells: Biological roles, evolution, and pharmacologic manipulation.Cell Biol. Toxicol.2016321618110.1007/s10565‑016‑9318‑027008332
    [Google Scholar]
  3. BricambertJ. MirandaJ. BenhamedF. GirardJ. PosticC. DentinR. Salt-inducible kinase 2 links transcriptional coactivator p300 phosphorylation to the prevention of ChREBP-dependent hepatic steatosis in mice.J. Clin. Invest.2010120124316433110.1172/JCI4162421084751
    [Google Scholar]
  4. LiuY. DentinR. ChenD. HedrickS. RavnskjaerK. SchenkS. MilneJ. MeyersD.J. ColeP. IiiJ.Y. OlefskyJ. GuarenteL. MontminyM. A fasting inducible switch modulates gluconeogenesis via activator/coactivator exchange.Nature2008456721926927310.1038/nature0734918849969
    [Google Scholar]
  5. RiegerM.E. ZhouB. SolomonN. SunoharaM. LiC. NguyenC. LiuY. PanJ. MinooP. CrandallE.D. BrodyS.L. KahnM. BorokZ. p300/β-catenin interactions regulate adult progenitor cell differentiation downstream of WNT5a/Protein Kinase C (PKC).J. Biol. Chem.2016291126569658210.1074/jbc.M115.70641626833564
    [Google Scholar]
  6. LaiK.K.Y. HuX. ChosaK. NguyenC. LinD.P. LaiK.K. KatoN. HiguchiY. HighlanderS.K. MelendezE. EriguchiY. FuegerP.T. OuelletteA.J. ChimgeN.O. OnoM. KahnM. p300 Serine 89: A critical signaling integrator and its effects on intestinal homeostasis and repair.Cancers2021136128810.3390/cancers1306128833799418
    [Google Scholar]
  7. GrossmanL.I. SchmidtT.R. WildmanD.E. GoodmanM. Molecular evolution of aerobic energy metabolism in primates.Mol. Phylogenet. Evol.2001181263610.1006/mpev.2000.089011161739
    [Google Scholar]
  8. CáceresM. LachuerJ. ZapalaM.A. RedmondJ.C. KudoL. GeschwindD.H. LockhartD.J. PreussT.M. BarlowC. Elevated gene expression levels distinguish human from non-human primate brains.Proc. Natl. Acad. Sci.200310022130301303510.1073/pnas.213549910014557539
    [Google Scholar]
  9. UddinM. WildmanD.E. LiuG. XuW. JohnsonR.M. HofP.R. KapatosG. GrossmanL.I. GoodmanM. Sister grouping of chimpanzees and humans as revealed by genome-wide phylogenetic analysis of brain gene expression profiles.Proc. Natl. Acad. Sci.200410192957296210.1073/pnas.030872510014976249
    [Google Scholar]
  10. HaygoodR. FedrigoO. HansonB. YokoyamaK.D. WrayG.A. Promoter regions of many neural- and nutrition-related genes have experienced positive selection during human evolution.Nat. Genet.20073991140114410.1038/ng210417694055
    [Google Scholar]
  11. PontzerH. BrownM.H. RaichlenD.A. DunsworthH. HareB. WalkerK. LukeA. DugasL.R. Durazo-ArvizuR. SchoellerD. Plange-RhuleJ. BovetP. ForresterT.E. LambertE.V. ThompsonM.E. ShumakerR.W. RossS.R. Metabolic acceleration and the evolution of human brain size and life history.Nature2016533760339039210.1038/nature1765427144364
    [Google Scholar]
  12. HoyerS. The young-adult and normally aged brain. Its blood flow and oxidative metabolism. A review - part I.Arch. Gerontol. Geriatr.19821210111610.1016/0167‑4943(82)90010‑36821143
    [Google Scholar]
  13. HoyerS. The abnormally aged brain. Its blood flow and oxidative metabolism. A review - Part II.Arch. Gerontol. Geriatr.19821319520710.1016/0167‑4943(82)90021‑86764604
    [Google Scholar]
  14. LuttikK. TejwaniL. JuH. DriessenT. SmeetsC.J.L.M. EdamakantiC.R. KhanA. YunJ. OpalP. LimJ. Differential effects of Wnt-β-catenin signaling in Purkinje cells and Bergmann glia in spinocerebellar ataxia type 1.Proc. Natl. Acad. Sci.202211934e220851311910.1073/pnas.220851311935969780
    [Google Scholar]
  15. HuX. OnoM. ChimgeN.O. ChosaK. NguyenC. MelendezE. LouC.H. LimP. TerminiJ. LaiK.K.Y. FuegerP.T. TeoJ.L. HiguchiY. KahnM. Differential Kat3 usage orchestrates the integration of cellular metabolism with differentiation.Cancers20211323588410.3390/cancers1323588434884992
    [Google Scholar]
  16. TeoJ.L. MaH. NguyenC. LamC. KahnM. Specific inhibition of CBP/β-catenin interaction rescues defects in neuronal differentiation caused by a presenilin-1 mutation.Proc. Natl. Acad. Sci.200510234121711217610.1073/pnas.050460010216093313
    [Google Scholar]
  17. OnoM. LaiK.K.Y. WuK. NguyenC. LinD.P. MuraliR. KahnM. Nuclear receptor/Wnt beta-catenin interactions are regulated via differential CBP/p300 coactivator usage.PLoS One2018137e020071410.1371/journal.pone.020071430020971
    [Google Scholar]
  18. PietrocolaF. GalluzziL. Bravo-San PedroJ.M. MadeoF. KroemerG. Acetyl coenzyme A: A central metabolite and second messenger.Cell Metab.201521680582110.1016/j.cmet.2015.05.01426039447
    [Google Scholar]
  19. MewsP. DonahueG. DrakeA.M. LuczakV. AbelT. BergerS.L. Acetyl-CoA synthetase regulates histone acetylation and hippocampal memory.Nature2017546765838138610.1038/nature2240528562591
    [Google Scholar]
  20. McBurneyM.W. Jones-VilleneuveE.M.V. EdwardsM.K.S. AndersonP.J. Control of muscle and neuronal differentiation in a cultured embryonal carcinoma cell line.Nature1982299587916516710.1038/299165a07110336
    [Google Scholar]
  21. HaradaN. NishiyamaS. KanazawaM. TsukadaH. Development of novel PET probes, [18F]BCPP-EF, [18F]BCPP-BF, and [11C]BCPP-EM for mitochondrial complex 1 imaging in the living brain.J. Labelled Comp. Radiopharm.2013561155356110.1002/jlcr.305624285187
    [Google Scholar]
  22. KahnM. Taking the road less traveled – the therapeutic potential of CBP/β-catenin antagonists.Expert Opin. Ther. Targets202125970171910.1080/14728222.2021.199238634633266
    [Google Scholar]
  23. YuanL.W. GambeeJ.E. Phosphorylation of p300 at serine 89 by protein kinase C.J. Biol. Chem.200027552409464095110.1074/jbc.M00783220011020388
    [Google Scholar]
  24. EgervariG. GlastadK.M. BergerS.L. Food for thought.Science2020370651766066210.1126/science.abb436733154125
    [Google Scholar]
  25. BradshawP.C. Acetyl-CoA metabolism and histone acetylation in the regulation of aging and lifespan.Antioxidants202110457210.3390/antiox1004057233917812
    [Google Scholar]
  26. MishraR. PhanT. KumarP. MorrisseyZ. GuptaM. HollandsC. ShettiA. LopezK.L. Maienschein-ClineM. SuhH. HenR. LazarovO. Augmenting neurogenesis rescues memory impairments in Alzheimer’s disease by restoring the memory-storing neurons.J. Exp. Med.20222199e2022039110.1084/jem.2022039135984475
    [Google Scholar]
  27. ZhouY. SuY. LiS. KennedyB.C. ZhangD.Y. BondA.M. SunY. JacobF. LuL. HuP. ViaeneA.N. HelbigI. KesslerS.K. LucasT. SalinasR.D. GuX. ChenH.I. WuH. KleinmanJ.E. HydeT.M. NauenD.W. WeinbergerD.R. MingG. SongH. Molecular landscapes of human hippocampal immature neurons across lifespan.Nature2022607791952753310.1038/s41586‑022‑04912‑w35794479
    [Google Scholar]
  28. LiX. YuW. QianX. XiaY. ZhengY. LeeJ.H. LiW. LyuJ. RaoG. ZhangX. QianC.N. RozenS.G. JiangT. LuZ. Nucleus-translocated acss2 promotes gene transcription for lysosomal biogenesis and autophagy.Mol. Cell2017665684697.e910.1016/j.molcel.2017.04.02628552616
    [Google Scholar]
  29. BarnettA. BrewerG.J. Autophagy in aging and Alzheimer’s disease: Pathologic or protective?J. Alzheimers Dis.201125338539410.3233/JAD‑2011‑10198921422527
    [Google Scholar]
  30. SettembreC. De CegliR. MansuetoG. SahaP.K. VetriniF. VisvikisO. HuynhT. CarissimoA. PalmerD. Jürgen KlischT. WollenbergA.C. Di BernardoD. ChanL. IrazoquiJ.E. BallabioA. TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop.Nat. Cell Biol.201315664765810.1038/ncb271823604321
    [Google Scholar]
  31. QinW. HaroutunianV. KatselP. CardozoC.P. HoL. BuxbaumJ.D. PasinettiG.M. PGC-1alpha expression decreases in the Alzheimer disease brain as a function of dementia.Arch. Neurol.200966335236110.1001/archneurol.2008.58819273754
    [Google Scholar]
  32. HandschinC. KobayashiY.M. ChinS. SealeP. CampbellK.P. SpiegelmanB.M. PGC-1α regulates the neuromuscular junction program and ameliorates Duchenne muscular dystrophy.Genes Dev.200721777078310.1101/gad.152510717403779
    [Google Scholar]
  33. LesnefskyE.J. HoppelC.L. Oxidative phosphorylation and aging.Ageing Res. Rev.20065440243310.1016/j.arr.2006.04.00116831573
    [Google Scholar]
  34. SebastiánD. PalacínM. ZorzanoA. Mitochondrial dynamics: Coupling mitochondrial fitness with healthy aging.Trends Mol. Med.201723320121510.1016/j.molmed.2017.01.00328188102
    [Google Scholar]
  35. TavallaieM. VoshtaniR. DengX. QiaoY. JiangF. CollmanJ.P. FuL. Moderation of mitochondrial respiration mitigates metabolic syndrome of aging.Proc. Natl. Acad. Sci.2020117189840985010.1073/pnas.191794811732303655
    [Google Scholar]
  36. SharplessN.E. DePinhoR.A. How stem cells age and why this makes us grow old.Nat. Rev. Mol. Cell Biol.20078970371310.1038/nrm224117717515
    [Google Scholar]
  37. MacNeeW. RabinovichR.A. ChoudhuryG. Ageing and the border between health and disease.Eur. Respir. J.20144451332135210.1183/09031936.0013401425323246
    [Google Scholar]
  38. GoodmanA.B. PardeeA.B. Evidence for defective retinoid transport and function in late onset Alzheimer’s disease.Proc. Natl. Acad. Sci.200310052901290510.1073/pnas.043793710012604774
    [Google Scholar]
  39. Pedrero-PrietoC.M. Frontiñán-RubioJ. AlcaínF.J. Durán-PradoM. PeinadoJ.R. Rabanal-RuizY. Biological significance of the protein changes occurring in the cerebrospinal fluid of alzheimer’s disease patients: Getting clues from proteomic studies.Diagnostics2021119165510.3390/diagnostics1109165534573996
    [Google Scholar]
  40. LukaszewiczA.I. NguyenC. MelendezE. LinD.P. TeoJ.L. LaiK.K.Y. HuttnerW.B. ShiS.H. KahnM. The mode of stem cell division is dependent on the differential interaction of β-catenin with the Kat3 coactivators CBP or p300.Cancers201911796210.3390/cancers1107096231324005
    [Google Scholar]
/content/journals/cmp/10.2174/1874467217666230817092415
Loading
/content/journals/cmp/10.2174/1874467217666230817092415
Loading

Data & Media loading...

Supplements


  • Article Type:
    Research Article
Keyword(s): CBP; ICG-001; Kat3; Metabolism; Neurodegeneration; p300
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test