Skip to content
2000
Volume 17, Issue 1
  • ISSN: 1874-4672
  • E-ISSN: 1874-4702

Abstract

Background

Diabetic mellitus is responsible for triggering many conditions, such as neuropathy, nephropathy, and retinopathy. Hyperglycemia leads to the development of oxidative stress conditions, activation of pathways, and generation of metabolites, leading to complications like neuropathy and nephropathy.

Objective

This paper aims to discuss the mechanism of actions, pathways, and metabolites triggered due to the development of neuropathy and nephropathy post-long-haul diabetes in patients. The therapeutic targets are also highlighted, proving to be a potential cure for such conditions.

Methods

Research works were searched from international and national databases with keywords like “diabetes,” “diabetic nephropathy,” “NADPH,” “oxidative stress,” “PKC,” “Molecular mechanisms,” “ cellular mechanisms,” “complications of diabetes,” and “factors.” The databases searched were PubMed, Scopus, Directory of open access journals, Semantic Scholar, Core, Europe PMC, EMBASE, Nutrition, FSTA- Food Science and Technology, Merck Index, Google Scholar, PubMed, Science Open, MedlinePlus, Indian citation index, World Wide Science, and Shodhganga.

Results

Pathways causing protein kinase C (PKC) activation, free radical injury, oxidative stress, and aggravating the conditions of neuropathy and nephropathy were discussed. In diabetic neuropathy and nephropathy, neurons and nephrons are affected to the extent that their normal physiology is disturbed, thus leading to further complications and conditions of loss of nerve sensation in diabetic neuropathy and kidney failure in diabetic nephropathy.

Current treatment options available for the management of diabetic neuropathy are anticonvulsants, antidepressants, and topical medications, including capsaicin. According to AAN guidelines, pregabalin is recommended as the first line of therapy, whereas other drugs currently used for treatment are gabapentin, venlafaxine, opioids, amitriptyline, and valproate.

Drug targets for treating diabetic neuropathy must suppress the activated polyol pathways, kinase C, hexosamine, and other pathways, which amplify neuroinflammation. Targeted therapy must focus on the reduction of oxidative stress and proinflammatory cytokines and suppression of neuroinflammation, NF-B, AP-1, .

Conclusion

Potential drug targets must be considered for new research on the treatment of neuropathy and nephropathy conditions.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmp/10.2174/1874467217666230328084215
2023-05-12
2024-11-23
Loading full text...

Full text loading...

/deliver/fulltext/cmp/17/1/CMP-17-E280323215026.html?itemId=/content/journals/cmp/10.2174/1874467217666230328084215&mimeType=html&fmt=ahah

References

  1. TangH. JiangA. MaJ. WangF. ShenG. Understanding the signaling pathways related to the mechanism and treatment of diabetic peripheral neuropathy.Endocrinology201916092119212710.1210/en.2019‑0031131318414
    [Google Scholar]
  2. PerkinsB.A. LovblomL.E. LanctôtS.O. LambK. CherneyD.Z.I. Discoveries from the study of longstanding type 1 diabetes.Diabetologia20216461189120010.1007/s00125‑021‑05403‑933661335
    [Google Scholar]
  3. DaviesM.J. ArodaV.R. CollinsB.S. GabbayR.A. GreenJ. MaruthurN.M. RosasS.E. Del PratoS. MathieuC. MingroneG. RossingP. TankovaT. TsapasA. BuseJ.B. Management of hyperglycaemia in type 2 diabetes, 2022. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD).Diabetologia202265121925196610.1007/s00125‑022‑05787‑236151309
    [Google Scholar]
  4. NathanD.M. LachinJ.M. BalasubramanyamA. BurchH.B. BuseJ.B. ButeraN.M. CohenR.M. CrandallJ.P. KahnS.E. Krause-SteinraufH. LarkinM.E. RasouliN. TiktinM. WexlerD.J. YounesN. Glycemia Reduction in Type 2 Diabetes — Glycemic Outcomes.N. Engl. J. Med.2022387121063107410.1056/NEJMoa220043336129996
    [Google Scholar]
  5. American Diabetes Association Professional Practice Committee3. Prevention or delay of type 2 diabetes and associated comorbidities: Standards of Medical Care in Diabetes—2022.Diabetes Care202245Suppl. 1S39S4510.2337/dc22‑S00334964876
    [Google Scholar]
  6. NicholsG.A. HillierT.A. BrownJ.B. Progression from newly acquired impaired fasting glusose to type 2 diabetes.Diabetes Care200730222823310.2337/dc06‑139217259486
    [Google Scholar]
  7. SloanG. AlamU. SelvarajahD. TesfayeS. The treatment of painful diabetic neuropathy.Curr. Diabetes Rev.2022185e07072119455610.2174/157339981766621070711241334238163
    [Google Scholar]
  8. SmithS. NormahaniP. LaneT. Hohenschurz-SchmidtD. OliverN. DaviesA.H. Prevention and management strategies for diabetic neuropathy.Life2022128118510.3390/life1208118536013364
    [Google Scholar]
  9. American Diabetes Association Standards of Medical Care in Diabetes—2022 Abridged for primary care providers.Clin. Diabetes2022401103810.2337/cd22‑as0135221470
    [Google Scholar]
  10. SkapekS.X. FerrariA. GuptaA.A. LupoP.J. ButlerE. ShipleyJ. BarrF.G. HawkinsD.S. ViswanathanV. Rhabdomyosarcoma.Nat. Rev. Dis. Primers20195111810.1038/s41572‑018‑0051‑230617281
    [Google Scholar]
  11. Pop-BusuiR. AngL. BoultonA. FeldmanE. MarcusR. Mizokami-StoutK. SingletonJ.R. ZieglerD. Diagnosis and treatment of painful diabetic peripheral neuropathy.ADA Clinical Compendia20222022113210.2337/db2022‑0135544662
    [Google Scholar]
  12. BaronR. Capsaicin and nociception: From basic mechanisms to novel drugs.Lancet2000356923278578710.1016/S0140‑6736(00)02649‑011022922
    [Google Scholar]
  13. SmithS. NormahaniP. LaneT. Hohenschurz-SchmidtD. OliverN. DaviesA.H. Pathogenesis of distal symmetrical polyneuropathy in diabetes.Life2022127107410.3390/life1207107435888162
    [Google Scholar]
  14. OatesP.J. Polyol pathway and diabetic peripheral neuropathy.Int. Rev. Neurobiol.20025032539210.1016/S0074‑7742(02)50082‑912198816
    [Google Scholar]
  15. ThornalleyP.J. Glycation in diabetic neuropathy: Characteristics, consequences, causes, and therapeutic options.Int. Rev. Neurobiol.200250375710.1016/S0074‑7742(02)50072‑612198817
    [Google Scholar]
  16. SugimotoK. YasujimaM. YagihashiS. Role of advanced glycation end products in diabetic neuropathy.Curr. Pharm. Des.2008141095396110.2174/13816120878413977418473845
    [Google Scholar]
  17. YagihashiS. The pathogenesis of diabetic neuropathy.Diabetes Metab. Res. Rev.19951119322510.1002/dmr.5610110304
    [Google Scholar]
  18. SugimotoK. YagihashiS. Effects of aminoguanidine on structural alterations of microvessels in peripheral nerve of streptozotocin diabetic rats.Microvasc. Res.199753210511210.1006/mvre.1996.20029143541
    [Google Scholar]
  19. PurwataT. High TNF-alpha plasma levels and macrophages iNOS and TNF-alpha expression as risk factors for painful diabetic neuropathy.J. Pain Res.2011416917510.2147/JPR.S2175121811392
    [Google Scholar]
  20. NavarroJ.F. MoraC. MurosM. GarcíaJ. Urinary tumour necrosis factor- excretion independently correlates with clinical markers of glomerular and tubulointerstitial injury in type 2 diabetic patients.Nephrol. Dial. Transplant.200621123428343410.1093/ndt/gfl46916935891
    [Google Scholar]
  21. ApfelS.C. KesslerJ.A. Neurotrophic factors in the therapy of peripheral neuropathy.Baillieres Clin. Neurol.1995435936068599726
    [Google Scholar]
  22. QuanY. JiangC. XueB. ZhuS. WangX. High glucose stimulates TNFα and MCP-1 expression in rat microglia via ROS and NF-κB pathways.Acta Pharmacol. Sin.201132218819310.1038/aps.2010.17421293471
    [Google Scholar]
  23. KhanraR. BhattacharjeeN. DuaT.K. NandyA. SahaA. KalitaJ. MannaP. DewanjeeS. Taraxerol, a pentacyclic triterpenoid, from Abroma augusta leaf attenuates diabetic nephropathy in type 2 diabetic rats.Biomed. Pharmacother.20179472674110.1016/j.biopha.2017.07.11228802226
    [Google Scholar]
  24. SchiekoferS. AndrassyM. ChenJ. RudofskyG. SchneiderJ. WendtT. StefanN. HumpertP. FritscheA. StumvollM. SchleicherE. HäringH.U. NawrothP.P. BierhausA. Acute hyperglycemia causes intracellular formation of CML and activation of ras, p42/44 MAPK, and nuclear factor kappaB in PBMCs.Diabetes200352362163310.2337/diabetes.52.3.62112606501
    [Google Scholar]
  25. BierhausA. HaslbeckK.M. HumpertP.M. LiliensiekB. DehmerT. MorcosM. SayedA.A.R. AndrassyM. SchiekoferS. SchneiderJ.G. SchulzJ.B. HeussD. NeundörferB. DierlS. HuberJ. TritschlerH. SchmidtA.M. SchwaningerM. HaeringH.U. SchleicherE. KasperM. SternD.M. ArnoldB. NawrothP.P. Loss of pain perception in diabetes is dependent on a receptor of the immunoglobulin superfamily.J. Clin. Invest.2004114121741175110.1172/JCI1805815599399
    [Google Scholar]
  26. HaslbeckK.M. SchleicherE. BierhausA. NawrothP. HaslbeckM. NeundörferB. HeussD. The AGE/RAGE/NF-(kappa)B pathway may contribute to the pathogenesis of polyneuropathy in impaired glucose tolerance (IGT).Exp. Clin. Endocrinol. Diabetes2005113528829110.1055/s‑2005‑86560015926115
    [Google Scholar]
  27. SekidoH. SuzukiT. JomoriT. TakeuchiM. Yabe-NishimuraC. YagihashiS. Reduced cell replication and induction of apoptosis by advanced glycation end products in rat Schwann cells.Biochem. Biophys. Res. Commun.2004320124124810.1016/j.bbrc.2004.05.15915207727
    [Google Scholar]
  28. HaH.C. HesterL.D. SnyderS.H. Poly(ADP-ribose) polymerase-1 dependence of stress-induced transcription factors and associated gene expression in glia.Proc. Natl. Acad. Sci. USA20029953270327510.1073/pnas.05271239911854472
    [Google Scholar]
  29. YangS.H. SharrocksA.D. WhitmarshA.J. Transcriptional regulation by the MAP kinase signaling cascades.Gene200332032110.1016/S0378‑1119(03)00816‑314597384
    [Google Scholar]
  30. AndorferB. KieseierB.C. MatheyE. ArmatiP. PollardJ. OkaN. HartungH.P. Expression and distribution of transcription factor NF-κB and inhibitor IκB in the inflamed peripheral nervous system.J. Neuroimmunol.2001116222623210.1016/S0165‑5728(01)00306‑X11438178
    [Google Scholar]
  31. VarjosaloM. TaipaleJ. Hedgehog: Functions and mechanisms.Genes Dev.200822182454247210.1101/gad.169360818794343
    [Google Scholar]
  32. ParmantierE. LynnB. LawsonD. TurmaineM. NaminiS.S. ChakrabartiL. McMahonA.P. JessenK.R. MirskyR. Schwann cell-derived Desert hedgehog controls the development of peripheral nerve sheaths.Neuron199923471372410.1016/S0896‑6273(01)80030‑110482238
    [Google Scholar]
  33. CalcuttN.A. AllendoerferK.L. MizisinA.P. MiddlemasA. FreshwaterJ.D. BurgersM. RanciatoR. DelcroixJ.D. TaylorF.R. ShapiroR. StrauchK. DudekH. EngberT.M. GaldesA. RubinL.L. TomlinsonD.R. Therapeutic efficacy of sonic hedgehog protein in experimental diabetic neuropathy.J. Clin. Invest.2003111450751410.1172/JCI20031579212588889
    [Google Scholar]
  34. ChapoulyC. YaoQ. VandierdonckS. Larrieu-LahargueF. MarianiJ.N. GadeauA.P. RenaultM.A. Impaired Hedgehog signalling-induced endothelial dysfunction is sufficient to induce neuropathy: Implication in diabetes.Cardiovasc. Res.2016109221722710.1093/cvr/cvv26326645982
    [Google Scholar]
  35. OhS.B. TranP.B. GillardS.E. HurleyR.W. HammondD.L. MillerR.J. Chemokines and glycoprotein120 produce pain hypersensitivity by directly exciting primary nociceptive neurons.J. Neurosci.200121145027503510.1523/JNEUROSCI.21‑14‑05027.200111438578
    [Google Scholar]
  36. WegnerM. AraszkiewiczA. Piorunska-StolzmannM. Wierusz-WysockaB. Zozulinska-ZiolkiewiczD. Association between IL-6 concentration and diabetes-related variables in DM1 patients with and without microvascular complications.Inflammation201336372372810.1007/s10753‑013‑9598‑y23371411
    [Google Scholar]
  37. SalehA. Roy ChowdhuryS.K. SmithD.R. BalakrishnanS. TesslerL. SchartnerE. BilodeauA. Van Der PloegR. FernyhoughP. Diabetes impairs an interleukin-1β-dependent pathway that enhances neurite outgrowth through JAK/STAT3 modulation of mitochondrial bioenergetics in adult sensory neurons.Mol. Brain2013614510.1186/1756‑6606‑6‑4524152426
    [Google Scholar]
  38. BishnoiM. BosgraafC.A. Abooj ZhongL. PremkumarL.S. Streptozotocin-induced early thermal hyperalgesia is independent of glycemic state of rats: role of transient receptor potential vanilloid 1(TRPV1) and inflammatory mediators.Mol. Pain201171744-8069-7-5210.1186/1744‑8069‑7‑5221794120
    [Google Scholar]
  39. SallamA.A.W. El-SharawyA.M.H. Role of interleukin-6 (IL-6) and indicators of inflammation in the pathogenesis of diabetic foot ulcers.Aust. J. Basic Appl. Sci.20126430435
    [Google Scholar]
  40. WuK.K. Inducible cyclooxygenase and nitric oxide synthase. Advances in Pharmacology 33. AugustJ.T. AndersM.W. MuradF. CoyleJ.T. Academic Press1995179207
    [Google Scholar]
  41. CohnJ.N. TognoniG. A randomized trial of the angiotensin-receptor blocker valsartan in chronic heart failure.N. Engl. J. Med.2001345231667167510.1056/NEJMoa01071311759645
    [Google Scholar]
  42. CosentinoF. EtoM. De PaolisP. van der LooB. BachschmidM. UllrichV. KouroedovA. Delli GattiC. JochH. VolpeM. LüscherT.F. High glucose causes upregulation of cyclooxygenase-2 and alters prostanoid profile in human endothelial cells: Role of protein kinase C and reactive oxygen species.Circulation200310771017102310.1161/01.CIR.0000051367.92927.0712600916
    [Google Scholar]
  43. Pop-BusuiR. MarinescuV. Van HuysenC. LiF. SullivanK. GreeneD.A. LarkinD. StevensM.J. Dissection of metabolic, vascular, and nerve conduction interrelationships in experimental diabetic neuropathy by cyclooxygenase inhibition and acetyl-L-carnitine administration.Diabetes20025182619262810.2337/diabetes.51.8.261912145179
    [Google Scholar]
  44. HarrisR.E. Cyclooxygenase-2 (cox-2) and the inflammogenesis of cancer.Subcell. Biochem.2007429312610.1007/1‑4020‑5688‑5_417612047
    [Google Scholar]
  45. KelloggA.P. WigginT.D. LarkinD.D. HayesJ.M. StevensM.J. Pop-BusuiR. Protective effects of cyclooxygenase-2 gene inactivation against peripheral nerve dysfunction and intraepidermal nerve fiber loss in experimental diabetes.Diabetes200756122997300510.2337/db07‑074017720896
    [Google Scholar]
  46. KelloggA.P. Pop-BusuiR. Peripheral nerve dysfunction in experimental diabetes is mediated by cyclooxygenase-2 and oxidative stress.Antioxid. Redox Signal.2005711-121521152910.1089/ars.2005.7.152116356116
    [Google Scholar]
  47. XuS. MueserT.C. MarnettL.J. FunkM.O.Jr Crystal structure of 12-lipoxygenase catalytic-domain-inhibitor complex identifies a substrate-binding channel for catalysis.Structure20122091490149710.1016/j.str.2012.06.00322795085
    [Google Scholar]
  48. ReillyK.B. SrinivasanS. HatleyM.E. PatriciaM.K. LanniganJ. BolickD.T. VandenhoffG. PeiH. NatarajanR. NadlerJ.L. HedrickC.C. 12/15-Lipoxygenase activity mediates inflammatory monocyte/endothelial interactions and atherosclerosis in vivo.J. Biol. Chem.2004279109440945010.1074/jbc.M30385720014676201
    [Google Scholar]
  49. NatarajanR. NadlerJ.L. Lipid inflammatory mediators in diabetic vascular disease.Arterioscler. Thromb. Vasc. Biol.20042491542154810.1161/01.ATV.0000133606.69732.4c15166011
    [Google Scholar]
  50. NatarajanR. NadlerJ.L. Lipoxygenases and lipid signaling in vascular cells in diabetes.Front. Biosci.200386114410.2741/114412957878
    [Google Scholar]
  51. KangS.W. NatarajanR. ShahedA. NastC.C. LaPageJ. MundelP. KashtanC. AdlerS.G. Role of 12-lipoxygenase in the stimulation of p38 mitogen-activated protein kinase and collagen alpha5(IV) in experimental diabetic nephropathy and in glucose-stimulated podocytes.J. Am. Soc. Nephrol.200314123178318710.1097/01.ASN.0000099702.16315.DE14638916
    [Google Scholar]
  52. BolickD.T. OrrA.W. WhetzelA. SrinivasanS. HatleyM.E. SchwartzM.A. HedrickC.C. 12/15-lipoxygenase regulates intercellular adhesion molecule-1 expression and monocyte adhesion to endothelium through activation of RhoA and nuclear factor-kappaB.Arterioscler. Thromb. Vasc. Biol.200525112301230710.1161/01.ATV.0000186181.19909.a616166569
    [Google Scholar]
  53. ObrosovaI.G. DrelV.R. OltmanC.L. MashtalirN. TibrewalaJ. GrovesJ.T. YorekM.A. Role of nitrosative stress in early neuropathy and vascular dysfunction in streptozotocin-diabetic rats.Am. J. Physiol. Endocrinol. Metab.20072936E1645E165510.1152/ajpendo.00479.200717911342
    [Google Scholar]
  54. ReddyM.A. ThimmalapuraP.R. LantingL. NadlerJ.L. FatimaS. NatarajanR. The oxidized lipid and lipoxygenase product 12(S)-hydroxyeicosatetraenoic acid induces hypertrophy and fibronectin transcription in vascular smooth muscle cells via p38 MAPK and cAMP response element-binding protein activation. Mediation of angiotensin II effects.J. Biol. Chem.2002277129920992810.1074/jbc.M11130520011786549
    [Google Scholar]
  55. NatarajanR. ReddyM.A. MalikK.U. FatimaS. KhanB.V. Signaling mechanisms of nuclear factor-kappab-mediated activation of inflammatory genes by 13-hydroperoxyoctadecadienoic acid in cultured vascular smooth muscle cells.Arterioscler. Thromb. Vasc. Biol.20012191408141310.1161/hq0901.09527811557664
    [Google Scholar]
  56. ObrosovaI.G. MaksimchykY. PacherP. AgardhE. SmithM.L. El-RemessyA.B. AgardhC.D. Evaluation of the aldose reductase inhibitor fidarestat on ischemia-reperfusion injury in rat retina.Int. J. Mol. Med.201026113514210.3892/ijmm_0000044520514433
    [Google Scholar]
  57. KühnH. O’DonnellV.B. Inflammation and immune regulation by 12/15-lipoxygenases.Prog. Lipid Res.200645433435610.1016/j.plipres.2006.02.00316678271
    [Google Scholar]
  58. HenriquesA. PitzerC. SchneiderA. Neurotrophic growth factors for the treatment of amyotrophic lateral sclerosis: Where do we stand?Front. Neurosci.201043210.3389/fnins.2010.0003220592948
    [Google Scholar]
  59. ApfelS.C. Neurotrophic factors in peripheral neuropathies: Tissueherapeutic implications.Brain Pathol.19999239341310.1111/j.1750‑3639.1999.tb00234.x10219753
    [Google Scholar]
  60. ApfelS.C. Nerve growth factor for the treatment of diabetic neuropathy: What went wrong, what went right, and what does the future hold?Int. Rev. Neurobiol.20025039341310.1016/S0074‑7742(02)50083‑012198818
    [Google Scholar]
  61. SteinbacherB.C.Jr NadelhaftI. Increased levels of nerve growth factor in the urinary bladder and hypertrophy of dorsal root ganglion neurons in the diabetic rat.Brain Res.19987821-225526010.1016/S0006‑8993(97)01287‑09519271
    [Google Scholar]
  62. DiemelL.T. StevensE.J. WillarsG.B. TomlinsonD.R. Depletion of substance P and calcitonin gene-related peptide in sciatic nerve of rats with experimental diabetes; effects of insulin and aldose reductase inhibition.Neurosci. Lett.1992137225325610.1016/0304‑3940(92)90416‑51374869
    [Google Scholar]
  63. GarrettN.E. KiddB.L. CruWysS.C. TomlinsonD.R. Streptozotocin-induced diabetes decreases substance P levels in experimental arthritis in the rat knee.Neurosci. Lett.1995187320120410.1016/0304‑3940(95)11376‑87542756
    [Google Scholar]
  64. TomlinsonD.R. FernyhoughP. DiemelL.T. Role of neurotrophins in diabetic neuropathy and treatment with nerve growth factors.Diabetes199746Suppl. 2S43S4910.2337/diab.46.2.S439285498
    [Google Scholar]
  65. HimesB.T. TesslerA. Death of some dorsal root ganglion neurons and plasticity of others following sciatic nerve section in adult and neonatal rats.J. Comp. Neurol.1989284221523010.1002/cne.9028402062474003
    [Google Scholar]
  66. RobinsonJ.P. WillarsG.B. TomlinsonD.R. KeenP. Axonal transport and tissue contents of substance P in rats with long-term streptozotocin-diabetes. Effects of the aldose reductase inhibitor ‘statil’.Brain Res.1987426233934810.1016/0006‑8993(87)90887‑02446712
    [Google Scholar]
  67. OrdoñezG. FernandezA. PerezR. SoteloJ. Low contents of nerve growth factor in serum and submaxillary gland of diabetic mice.J. Neurol. Sci.1994121216316610.1016/0022‑510X(94)90346‑88158209
    [Google Scholar]
  68. HellwegR. WöhrleM. HartungH.D. StrackeH. HockC. FederlinK. Diabetes mellitus-associated decrease in nerve growth factor levels is reversed by allogeneic pancreatic islet transplantation.Neurosci. Lett.199112511410.1016/0304‑3940(91)90114‑91857552
    [Google Scholar]
  69. AnandP. TerenghiG. WarnerG. KopelmanP. Williams-ChestnutR.E. SinicropiD.V. The role of endogenous nerve growth factor in human diabetic neuropathy.Nat. Med.19962670370710.1038/nm0696‑7038640566
    [Google Scholar]
  70. IedaM. KanazawaH. IedaY. KimuraK. MatsumuraK. TomitaY. YagiT. OnizukaT. ShimojiK. OgawaS. MakinoS. SanoM. FukudaK. Nerve growth factor is critical for cardiac sensory innervation and rescues neuropathy in diabetic hearts.Circulation2006114222351236310.1161/CIRCULATIONAHA.106.62758817101855
    [Google Scholar]
  71. SposatoV. ManniL. ChaldakovG.N. AloeL. Streptozotocin-induced diabetes is associated with changes in NGF levels in pancreas and brain.Arch. Ital. Biol.20071452879717639781
    [Google Scholar]
  72. TerenghiG. MannD. KopelmanP.G. AnandP. trkA and trkC expression is increased in human diabetic skin. Neurosci. Lett. 228, 33–36. Tesfaye, S., 2006. Neuropathy in diabetes.Medicine1997349194
    [Google Scholar]
  73. JanssenJ.A. LambertsS.W. Circulating IGF-I and its protective role in the pathogenesis of diabetic angiopathy.Clin. Endocrinol.20005211910.1046/j.1365‑2265.2000.00922.x10651746
    [Google Scholar]
  74. KazanisI. GiannakopoulouM. PhilippidisH. StylianopoulouF. Alterations in IGF-I, BDNF and NT-3 levels following experimental brain trauma and the effect of IGF-I administration.Exp. Neurol.2004186222123410.1016/j.expneurol.2003.12.00415026258
    [Google Scholar]
  75. LoganC.Y. NusseR. The Wnt signaling pathway in development and disease.Annu. Rev. Cell Dev. Biol.200420178181010.1146/annurev.cellbio.20.010403.11312615473860
    [Google Scholar]
  76. KühlM. SheldahlL.C. MalbonC.C. MoonR.T. Ca(2+)/calmodulin-dependent protein kinase II is stimulated by Wnt and Frizzled homologs and promotes ventral cell fates in Xenopus.J. Biol. Chem.200027517127011271110.1074/jbc.275.17.1270110777564
    [Google Scholar]
  77. NusseR. Wnt signaling and stem cell control.Cell Res.200818552352710.1038/cr.2008.4718392048
    [Google Scholar]
  78. FolestadA. ÅlundM. AstebergS. FowelinJ. AurellY. GöthlinJ. CassutoJ. Role of Wnt/β-catenin and RANKL/OPG in bone healing of diabetic Charcot arthropathy patients.Acta Orthop.201586441542510.3109/17453674.2015.103360625811776
    [Google Scholar]
  79. RowlandT.J. SweetM.E. MestroniL. TaylorM.R.G. Danon disease-dysregulation of autophagy in a multisystem disorder with cardiomyopathy.J. Cell Sci.201612911jcs.18477010.1242/jcs.18477027165304
    [Google Scholar]
  80. ChingJ.K. ElizabethS.V. JuJ.S. LuskC. PittmanS.K. WeihlC.C. mTOR dysfunction contributes to vacuolar pathology and weakness in valosin-containing protein associated inclusion body myopathy.Hum. Mol. Genet.20132261167117910.1093/hmg/dds52423250913
    [Google Scholar]
  81. JuJ.S. FuentealbaR.A. MillerS.E. JacksonE. Piwnica-WormsD. BalohR.H. WeihlC.C. Valosin-containing protein (VCP) is required for autophagy and is disrupted in VCP disease.J. Cell Biol.2009187687588810.1083/jcb.20090811520008565
    [Google Scholar]
  82. SridharS. PatelB. AphkhazavaD. MacianF. SantambrogioL. ShieldsD. CuervoA.M. The lipid kinase PI4KIIIβ preserves lysosomal identity.EMBO J.201232332433910.1038/emboj.2012.34123258225
    [Google Scholar]
  83. KonM. CuervoA.M. Chaperone-mediated autophagy in health and disease.FEBS Lett.201058471399140410.1016/j.febslet.2009.12.02520026330
    [Google Scholar]
  84. YuL.Y. JokitaloE. SunY.F. MehlenP. LindholmD. SaarmaM. ArumäeU. GDNF-deprived sympathetic neurons die via a novel nonmitochondrial pathway.J. Cell Biol.2003163598799710.1083/jcb.20030508314657232
    [Google Scholar]
  85. OsmanA.A.M. DahlinL.B. ThomsenN.O.B. MohseniS. Autophagy in the posterior interosseous nerve of patients with type 1 and type 2 diabetes mellitus: an ultrastructural study.Diabetologia201558362563210.1007/s00125‑014‑3477‑425523623
    [Google Scholar]
  86. GonzalezC.D. LeeM.S. MarchettiP. PietropaoloM. TownsR. VaccaroM.I. WatadaH. WileyJ.W. The emerging role of autophagy in the pathophysiology of diabetes mellitus.Autophagy20117121110.4161/auto.7.1.1304420935516
    [Google Scholar]
  87. WeiY. ZouZ. BeckerN. AndersonM. SumpterR. XiaoG. KinchL. KoduruP. ChristudassC.S. VeltriR.W. GrishinN.V. PeytonM. MinnaJ. BhagatG. LevineB. EGFR-mediated Beclin 1 phosphorylation in autophagy suppression, tumor progression, and tumor chemoresistance.Cell201315461269128410.1016/j.cell.2013.08.01524034250
    [Google Scholar]
  88. MohseniS. Autophagy in insulin-induced hypoglycaemic neuropathy.Pathology201143325426010.1097/PAT.0b013e328343c99221436636
    [Google Scholar]
  89. TownsR. GuoC. ShangguanY. HongS. WileyJ.W. Type 2 diabetes with neuropathy: Autoantibody stimulation of autophagy via Fas.Neuroreport200819326526910.1097/WNR.0b013e3282f4cb5018303564
    [Google Scholar]
  90. SedeekM. HébertR.L. KennedyC.R. BurnsK.D. TouyzR.M. Molecular mechanisms of hypertension: Role of nox family NADPH oxidases.Curr. Opin. Nephrol. Hypertens.200918212212710.1097/MNH.0b013e32832923c319430333
    [Google Scholar]
  91. JonesS.A. HancockJ.T. JonesO.T. NeubauerA. TopleyN. The expression of NADPH oxidase components in human glomerular mesangial cells.J. Am. Soc. Nephrol.1995571483149110.1681/ASN.V5714837703387
    [Google Scholar]
  92. BabiorB.M. NADPH oxidase.Curr. Opin. Immunol.2004161424710.1016/j.coi.2003.12.00114734109
    [Google Scholar]
  93. ShioseA. KurodaJ. TsuruyaK. HiraiM. HirakataH. NaitoS. HattoriM. SakakiY. SumimotoH. A novel superoxide-producing NAD(P)H oxidase in kidney.J. Biol. Chem.200127621417142310.1074/jbc.M00759720011032835
    [Google Scholar]
  94. GorinY. RiconoJ.M. KimN.H. BhandariB. ChoudhuryG.G. AbboudH.E. Nox4 mediates angiotensin II-induced activation of Akt/protein kinase B in mesangial cells.Am. J. Physiol. Renal Physiol.20032852F219F22910.1152/ajprenal.00414.200212842860
    [Google Scholar]
  95. LiJ.M. ShahA.M. ROS generation by nonphagocytic NADPH oxidase: Potential relevance in diabetic nephropathy.J. Am. Soc. Nephrol.2003148Suppl. 3S221S22610.1097/01.ASN.0000077406.67663.E712874435
    [Google Scholar]
  96. EtohT. InoguchiT. KakimotoM. SonodaN. KobayashiK. KurodaJ. SumimotoH. NawataH. Increased expression of NAD(P)H oxidase subunits, NOX4 and p22phox, in the kidney of streptozotocin-induced diabetic rats and its reversibity by interventive insulin treatment.Diabetologia200346101428143710.1007/s00125‑003‑1205‑613680125
    [Google Scholar]
  97. XiaL. WangH. GoldbergH.J. MunkS. FantusI.G. WhitesideC.I. Mesangial cell NADPH oxidase upregulation in high glucose is protein kinase C dependent and required for collagen IV expression.Am. J. Physiol. Renal Physiol.20062902F345F35610.1152/ajprenal.00119.200516131649
    [Google Scholar]
  98. LeeH.B. YuM.R. YangY. JiangZ. HaH. Reactive oxygen species-regulated signaling pathways in diabetic nephropathy.J. Am. Soc. Nephrol.2003148 Suppl 3S241S24510.1097/01.ASN.0000077410.66390.0F12874439
    [Google Scholar]
  99. Vásquez-VivarJ. KalyanaramanB. Generation of superoxide from nitric oxide synthase.FEBS Lett.2000481330530610.1016/S0014‑5793(00)02001‑911041680
    [Google Scholar]
  100. AsabaK. TojoA. OnozatoM.L. GotoA. QuinnM.T. FujitaT. WilcoxC.S. Effects of NADPH oxidase inhibitor in diabetic nephropathy.Kidney Int.20056751890189810.1111/j.1523‑1755.2005.00287.x15840036
    [Google Scholar]
  101. NamS.M. LeeM.Y. KohJ.H. ParkJ.H. ShinJ.Y. ShinY.G. KohS.B. LeeE.Y. ChungC.H. Effects of NADPH oxidase inhibitor on diabetic nephropathy in OLETF rats: The role of reducing oxidative stress in its protective property.Diabetes Res. Clin. Pract.200983217618210.1016/j.diabres.2008.10.00719111363
    [Google Scholar]
  102. SedeekM. CalleraG. MontezanoA. GutsolA. HeitzF. SzyndralewiezC. PageP. KennedyC.R.J. BurnsK.D. TouyzR.M. HébertR.L. Critical role of Nox4-based NADPH oxidase in glucose-induced oxidative stress in the kidney: implications in type 2 diabetic nephropathy.Am. J. Physiol. Renal Physiol.20102996F1348F135810.1152/ajprenal.00028.201020630933
    [Google Scholar]
  103. KitadaM. KoyaD. SugimotoT. IsonoM. ArakiS. KashiwagiA. HanedaM. Translocation of glomerular p47phox and p67phox by protein kinase C-beta activation is required for oxidative stress in diabetic nephropathy.Diabetes200352102603261410.2337/diabetes.52.10.260314514646
    [Google Scholar]
  104. RibaldoP.D.B. SouzaD.S. BiswasS.K. BlockK. Lopes de FariaJ.M. Lopes de FariaJ.B. Green tea (Camellia sinensis) attenuates nephropathy by downregulating Nox4 NADPH oxidase in diabetic spontaneously hypertensive rats.J. Nutr.200913919610010.3945/jn.108.09501819056645
    [Google Scholar]
  105. GorinY. BlockK. HernandezJ. BhandariB. WagnerB. BarnesJ.L. AbboudH.E. Nox4 NAD(P)H oxidase mediates hypertrophy and fibronectin expression in the diabetic kidney.J. Biol. Chem.200528047396163962610.1074/jbc.M50241220016135519
    [Google Scholar]
  106. TabetF. SchiffrinE.L. CalleraG.E. HeY. YaoG. ÖstmanA. KappertK. TonksN.K. TouyzR.M. Redox-sensitive signaling by angiotensin II involves oxidative inactivation and blunted phosphorylation of protein tyrosine phosphatase SHP-2 in vascular smooth muscle cells from SHR.Circ. Res.2008103214915810.1161/CIRCRESAHA.108.17860818566342
    [Google Scholar]
  107. ZhangS. ZhangY. WeiX. ZhenJ. WangZ. LiM. MiaoW. DingH. DuP. ZhangW. HeM. YiF. Expression and regulation of a novel identified TNFAIP8 family is associated with diabetic nephropathy.Biochim. Biophys. Acta Mol. Basis Dis.20101802111078108610.1016/j.bbadis.2010.08.00320699119
    [Google Scholar]
  108. YamagishiS. InagakiY. OkamotoT. AmanoS. KogaK. TakeuchiM. MakitaZ. Advanced glycation end product-induced apoptosis and overexpression of vascular endothelial growth factor and monocyte chemoattractant protein-1 in human-cultured mesangial cells.J. Biol. Chem.200227723203092031510.1074/jbc.M20263420011912219
    [Google Scholar]
  109. SchlondorffD. The glomerular mesangial cell: An expanding role for a specialized pericyte.FASEB J.19871427228110.1096/fasebj.1.4.33086113308611
    [Google Scholar]
  110. De VrieseS. TiltonR.G. ElgerM. StephanC.C. KrizW. LameireN.H. Antibodies against vascular endothelial growth factor improve early renal dysfunction in experimental diabetes.J. Am. Soc. Nephrol.2001125993100010.1681/ASN.V12599311316858
    [Google Scholar]
  111. SchrijversB.F. FlyvbjergA. TiltonR.G. LameireN.H. De VrieseA.S. A neutralizing VEGF antibody prevents glomerular hypertrophy in a model of obese type 2 diabetes, the Zucker diabetic fatty rat.Nephrol. Dial. Transplant.200621232432910.1093/ndt/gfi21716249198
    [Google Scholar]
  112. KimN.H. OhJ.H. SeoJ.A. LeeK.W. KimS.G. ChoiK.M. BaikS.H. ChoiD.S. KangY.S. HanS.Y. HanK.H. JiY.H. ChaD.R. Vascular endothelial growth factor (VEGF) and soluble VEGF receptor FLT-1 in diabetic nephropathy.Kidney Int.200567116717710.1111/j.1523‑1755.2005.00067.x15610240
    [Google Scholar]
  113. YamagishiS.I. InagakiY. OkamotoT. AmanoS. KogaK. TakeuchiM. Advanced glycation end products inhibit de novo protein synthesis and induce TGF-β overexpression in proximal tubular cells.Kidney Int.200363246447310.1046/j.1523‑1755.2003.00752.x12631112
    [Google Scholar]
  114. BanbaN. NakamuraT. MatsumuraM. KurodaH. HattoriY. KasaiK. Possible relationship of monocyte chemoattractant protein-1 with diabetic nephropathy.Kidney Int.200058268469010.1046/j.1523‑1755.2000.00214.x10916091
    [Google Scholar]
  115. ChiarelliF. CipolloneF. MohnA. MariniM. IezziA. FaziaM. TuminiS. De CesareD. PomilioM. PierdomenicoS.D. Di GioacchinoM. CuccurulloF. MezzettiA. Circulating monocyte chemoattractant protein-1 and early development of nephropathy in type 1 diabetes.Diabetes Care200225101829183410.2337/diacare.25.10.182912351486
    [Google Scholar]
  116. SilbigerS. CrowleyS. ShanZ. BrownleeM. SatrianoJ. SchlondorffD. Nonenzymatic glycation of mesangial matrix and prolonged exposure of mesangial matrix to elevated glucose reduces collagen synthesis and proteoglycan charge.Kidney Int.199343485386410.1038/ki.1993.1208479121
    [Google Scholar]
  117. MottJ.D. KhalifahR.G. NagaseH. ShieldC.F.III HudsonJ.K. HudsonB.G. Nonenzymatic glycation of type IV collagen and matrix metalloproteinase susceptibility.Kidney Int.19975251302131210.1038/ki.1997.4559350653
    [Google Scholar]
  118. BrownleeM. Lilly Lecture 1993. Glycation and diabetic complications.Diabetes199443683684110.2337/diab.43.6.8368194672
    [Google Scholar]
  119. YamagishiS. ImaizumiT. Diabetic vascular complications: Pathophysiology, biochemical basis and potential therapeutic strategy.Curr. Pharm. Des.200511182279229910.2174/138161205436730016022668
    [Google Scholar]
  120. WendtT.M. TanjiN. GuoJ. KislingerT.R. QuW. LuY. BucciarelliL.G. RongL.L. MoserB. MarkowitzG.S. SteinG. BierhausA. LiliensiekB. ArnoldB. NawrothP.P. SternD.M. D’AgatiV.D. SchmidtA.M. RAGE drives the development of glomerulosclerosis and implicates podocyte activation in the pathogenesis of diabetic nephropathy.Am. J. Pathol.200316241123113710.1016/S0002‑9440(10)63909‑012651605
    [Google Scholar]
  121. ZiyadehF.N. HoffmanB.B. HanD.C. Iglesias-de la CruzM.C. HongS.W. IsonoM. ChenS. McGowanT.A. SharmaK. Long-term prevention of renal insufficiency, excess matrix gene expression, and glomerular mesangial matrix expansion by treatment with monoclonal antitransforming growth factor-β antibody in db/db diabetic mice.Proc. Natl. Acad. Sci. USA200097148015802010.1073/pnas.12005509710859350
    [Google Scholar]
  122. YangC.W. VlassaraH. PetenE.P. HeC.J. StrikerG.E. StrikerL.J. Advanced glycation end products up-regulate gene expression found in diabetic glomerular disease.Proc. Natl. Acad. Sci. USA199491209436944010.1073/pnas.91.20.94367937785
    [Google Scholar]
  123. VlassaraH. StrikerL.J. TeichbergS. FuhH. LiY.M. SteffesM. Advanced glycation end products induce glomerular sclerosis and albuminuria in normal rats.Proc. Natl. Acad. Sci. USA19949124117041170810.1073/pnas.91.24.117047972128
    [Google Scholar]
  124. KoyaD. JirousekM.R. LinY.W. IshiiH. KubokiK. KingG.L. Characterization of protein kinase C beta isoform activation on the gene expression of transforming growth factor-beta, extracellular matrix components, and prostanoids in the glomeruli of diabetic rats.J. Clin. Invest.1997100111512610.1172/JCI1195039202063
    [Google Scholar]
  125. WhitesideC.I. DlugoszJ.A. Mesangial cell protein kinase C isozyme activation in the diabetic milieu.Am. J. Physiol. Renal Physiol.20022826F975F98010.1152/ajprenal.00014.200211997313
    [Google Scholar]
  126. RasmussenH. ForderJ. KojimaI. ScriabineA. TPA-induced contraction of isolated rabbit vascular smooth muscle.Biochem. Biophys. Res. Commun.1984122277678410.1016/S0006‑291X(84)80101‑16431975
    [Google Scholar]
  127. HuhtalaP. ChowL.T. TryggvasonK. Structure of the human type IV collagenase gene.J. Biol. Chem.199026519110771108210.1016/S0021‑9258(19)38559‑X2162831
    [Google Scholar]
  128. YaoL. WangJ. MaoY. ZhuH. DengA. ZhuZ. Different expressions of protein kinase C-α, βI and βII in glomeruli of diabetic nephropathy patients.J. Huazhong Univ. Sci. Technolog. Med. Sci.200626665165310.1007/s11596‑006‑0605‑517357479
    [Google Scholar]
  129. OhshiroY. MaR.C. YasudaY. Hiraoka-YamamotoJ. ClermontA.C. IsshikiK. YagiK. ArikawaE. KernT.S. KingG.L. Reduction of diabetes-induced oxidative stress, fibrotic cytokine expression, and renal dysfunction in protein kinase Cbeta-null mice.Diabetes200655113112312010.2337/db06‑089517065350
    [Google Scholar]
  130. XiaL. WangH. MunkS. FreckerH. GoldbergH.J. FantusI.G. WhitesideC.I. Reactive oxygen species, PKC-β 1, and PKC-ζ mediate high-glucose-induced vascular endothelial growth factor expression in mesangial cells.Am. J. Physiol. Endocrinol. Metab.20072935E1280E128810.1152/ajpendo.00223.200717711990
    [Google Scholar]
  131. KolczynskaK. Loza-ValdesA. HawroI. SumaraG. Diacylglycerol-evoked activation of PKC and PKD isoforms in regulation of glucose and lipid metabolism: A review.Lipids Health Dis.202019111310.1186/s12944‑020‑01286‑832466765
    [Google Scholar]
  132. HayashidaT. SchnaperH.W. High ambient glucose enhances sensitivity to TGF-β1 via extracellular signal--regulated kinase and protein kinase Cdelta activities in human mesangial cells.J. Am. Soc. Nephrol.20041582032204110.1097/01.ASN.0000133198.74973.6015284289
    [Google Scholar]
  133. MenneJ. ParkJ.K. BoehneM. ElgerM. LindschauC. KirschT. MeierM. GuelerF. FiebelerA. BahlmannF.H. LeitgesM. HallerH. Diminished loss of proteoglycans and lack of albuminuria in protein kinase C-alpha-deficient diabetic mice.Diabetes20045382101210910.2337/diabetes.53.8.210115277392
    [Google Scholar]
  134. MeierM. ParkJ.K. OverheuD. KirschT. LindschauC. GuelerF. LeitgesM. MenneJ. HallerH. Deletion of protein kinase C-beta isoform in vivo reduces renal hypertrophy but not albuminuria in the streptozotocin-induced diabetic mouse model.Diabetes200756234635410.2337/db06‑089117259378
    [Google Scholar]
  135. TuttleK.R. BakrisG.L. TotoR.D. McGillJ.B. HuK. AndersonP.W. The effect of ruboxistaurin on nephropathy in type 2 diabetes.Diabetes Care200528112686269010.2337/diacare.28.11.268616249540
    [Google Scholar]
  136. Thallas-BonkeV. ThorpeS.R. CoughlanM.T. FukamiK. YapF.Y.T. SourrisK.C. PenfoldS.A. BachL.A. CooperM.E. ForbesJ.M. Inhibition of NADPH oxidase prevents advanced glycation end product-mediated damage in diabetic nephropathy through a protein kinase C-alpha-dependent pathway.Diabetes200857246046910.2337/db07‑111917959934
    [Google Scholar]
  137. DarnellJ.E.Jr KerrM. StarkG.R. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins.Science199426451641415142110.1126/science.81974558197455
    [Google Scholar]
  138. WangX. ShawS. AmiriF. EatonD.C. MarreroM.B. Inhibition of the Jak/STAT signaling pathway prevents the high glucose-induced increase in tgf-beta and fibronectin synthesis in mesangial cells.Diabetes200251123505350910.2337/diabetes.51.12.350512453907
    [Google Scholar]
  139. AmiriF. ShawS. WangX. TangJ. WallerJ.L. EatonD.C. MarreroM.B. Angiotensin II activation of the JAK/STAT pathway in mesangial cells is altered by high glucose.Kidney Int.20026151605161610.1046/j.1523‑1755.2002.00311.x11967010
    [Google Scholar]
  140. HuangJ.S. GuhJ.Y. HungW.C. YangM.L. LaiY.H. ChenH.C. ChuangL.Y. Role of the Janus kinase (JAK)/signal transducters and activators of transcription (STAT) cascade in advanced glycation end-product-induced cellular mitogenesis in NRK-49F cells.Biochem. J.1999342123123810.1042/bj342023110432321
    [Google Scholar]
  141. WangH. LiY. LiuH. LiuS. LiuQ. WangX.M. ShiY. DuanH. Peroxynitrite mediates glomerular lesion of diabetic rat via JAK/STAT signaling pathway.J. Endocrinol. Invest.2009321084485110.1007/BF0334575619636222
    [Google Scholar]
  142. LuT.C. WangZ.H. FengX. ChuangP.Y. FangW. ShenY. LevyD.E. XiongH. ChenN. HeJ.C. Knockdown of Stat3 activity in vivo prevents diabetic glomerulopathy.Kidney Int.2009761637110.1038/ki.2009.9819357722
    [Google Scholar]
  143. BerthierC.C. ZhangH. SchinM. HengerA. NelsonR.G. YeeB. BoucherotA. NeusserM.A. CohenC.D. Carter-SuC. ArgetsingerL.S. RastaldiM.P. BrosiusF.C. KretzlerM. Enhanced expression of Janus kinase-signal transducer and activator of transcription pathway members in human diabetic nephropathy.Diabetes200958246947710.2337/db08‑132819017763
    [Google Scholar]
  144. DiStefanoP.S. FriedmanB. RadziejewskiC. AlexanderC. BolandP. SchickC.M. LindsayR.M. WiegandS.J. The neurotrophins BDNF, NT-3, and NGF display distinct patterns of retrograde axonal transport in peripheral and central neurons.Neuron19928598399310.1016/0896‑6273(92)90213‑W1375039
    [Google Scholar]
  145. BilirB. TulubasF. BilirB.E. AtileN.S. KaraS.P. YildirimT. GumustasS.A. TopcuB. KaymazO. AydinM. The association of vitamin D with inflammatory cytokines in diabetic peripheral neuropathy.J. Phys. Ther. Sci.20162872159216310.1589/jpts.28.215927512288
    [Google Scholar]
  146. YamakawaI. KojimaH. TerashimaT. KatagiM. OiJ. UrabeH. SanadaM. KawaiH. ChanL. YasudaH. MaegawaH. KimuraH. Inactivation of TNF-α ameliorates diabetic neuropathy in mice.Am. J. Physiol. Endocrinol. Metab.20113015E844E85210.1152/ajpendo.00029.201121810933
    [Google Scholar]
  147. AmeenudeenS. KashifM. BanerjeeS. SrinivasanH. PanduranganA.K. WaseemM. Cellular and molecular machinery of neuropathic pain: An emerging insight.Curr. Pharmacol. Rep.20228422723510.1007/s40495‑022‑00294‑935646513
    [Google Scholar]
  148. SloanG. SelvarajahD. TesfayeS. Pathogenesis, diagnosis and clinical management of diabetic sensorimotor peripheral neuropathy.Nat. Rev. Endocrinol.202117740042010.1038/s41574‑021‑00496‑z34050323
    [Google Scholar]
/content/journals/cmp/10.2174/1874467217666230328084215
Loading
/content/journals/cmp/10.2174/1874467217666230328084215
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test