Skip to content
2000
Volume 17, Issue 1
  • ISSN: 1874-4672
  • E-ISSN: 1874-4702

Abstract

Background

This study investigated the role and potential mechanisms of Discoidin domain receptors-1 (DDR1) during liver fibrogenesis.

Methods

Blood and livers were collected from mice. In the experiments, human normal hepatocyte (LO2 cell line) and human hepatoma cells (HepG2 cell line) with overexpressed DDR1 (DDR1-OE) or DDR1 knockdown (DDR1-KD) were constructed by transfecting the corresponding lentivirus. Human hepatic stellate cells (LX2 cell line) were incubated with a conditioned medium (CM) of the above stable transfected cells treated with collagen. The cells and supernatants were collected for molecular and biochemical analyses.

Results

DDR1 expression was increased in hepatocytes from carbon tetrachloride (CCL)-induced fibrotic livers compared to normal livers in wild-type (WT) mice. Liver fibrosis was relieved, and hepatic stellate cells (HSC) activation was decreased in CCL-treated DDR1 knockout (DDR1-KO) mice compared with CCL-treated WT mice. LX2 cells cultured in CM of LO2 DDR1-OE cells revealed increased α-smooth muscle actin (αSMA) and type I collagen (COL1) expressions and cell proliferation. Meanwhile, cell proliferation and the expression levels of αSMA and COL1 in LX2 cells cultured in CM of HepG2 DDR1-KD cells were decreased. Moreover, IL6, TNFα, and TGFβ1 in CM of DDR1-OE cells appeared to promote LX2 cell activation and proliferation, regulated by NF-κB and Akt pathways.

Conclusion

These results indicated that DDR1 in hepatocytes promoted HSC activation and proliferation and that paracrine factors IL6, TNFα, and TGFβ1 induced by DDR1 through activating NF-κB and Akt pathways may be the underlying mechanisms. Our study suggests that collagen-receptor DDR1 may be a potential therapeutic target for hepatic fibrosis.

© 2024 The Author(s). Published by Bentham Open. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmp/10.2174/1874467216666230222124515
2024-01-01
2025-01-23
Loading full text...

Full text loading...

/deliver/fulltext/cmp/17/1/CMP-17-e220223213911.html?itemId=/content/journals/cmp/10.2174/1874467216666230222124515&mimeType=html&fmt=ahah

References

  1. KarsdalM.A. DanielsS.J. Holm NielsenS. BagerC. RasmussenD.G.K. LoombaR. SurabattulaR. VillesenI.F. LuoY. ShevellD. GudmannN.S. NielsenM.J. GeorgeJ. ChristianR. LeemingD.J. SchuppanD. Collagen biology and non‐invasive biomarkers of liver fibrosis.Liver Int.202040473675010.1111/liv.1439031997561
    [Google Scholar]
  2. AsraniS.K. DevarbhaviH. EatonJ. KamathP.S. Burden of liver diseases in the world.J. Hepatol.201970115117110.1016/j.jhep.2018.09.01430266282
    [Google Scholar]
  3. GinèsP. KragA. AbraldesJ.G. SolàE. FabrellasN. KamathP.S. Liver cirrhosis.Lancet2021398103081359137610.1016/S0140‑6736(21)01374‑X34543610
    [Google Scholar]
  4. FriedmanS.L. SheppardD. DuffieldJ.S. VioletteS. Therapy for fibrotic diseases: nearing the starting line.Sci. Transl. Med.20135167167sr110.1126/scitranslmed.300470023303606
    [Google Scholar]
  5. OrgelJ.P.R.O. MadhurapantulaR.S. A structural prospective for collagen receptors such as DDR and their binding of the collagen fibril.Biochim. Biophys. Acta Mol. Cell Res.201918661111847810.1016/j.bbamcr.2019.04.00831004686
    [Google Scholar]
  6. CarafoliF. HohenesterE. Collagen recognition and transmembrane signalling by discoidin domain receptors.Biochim. Biophys. Acta. Proteins Proteomics20131834102187219410.1016/j.bbapap.2012.10.01423128141
    [Google Scholar]
  7. ChenE.A. LinY.S. Using synthetic peptides and recombinant collagen to understand DDR–collagen interactions.Biochim. Biophys. Acta Mol. Cell Res.201918661111845810.1016/j.bbamcr.2019.03.00530880148
    [Google Scholar]
  8. AgarwalG. SmithA.W. JonesB. Discoidin domain receptors: Micro insights into macro assemblies.Biochim. Biophys. Acta Mol. Cell Res.201918661111849610.1016/j.bbamcr.2019.06.01031229648
    [Google Scholar]
  9. LeitingerB. SaltelF. Discoidin domain receptors: multitaskers for physiological and pathological processes.Cell Adhes. Migr.20181241210.1080/19336918.2018.149149529969346
    [Google Scholar]
  10. LeitingerB. Discoidin domain receptor functions in physiological and pathological conditions.Int. Rev. Cell Mol. Biol.2014310398710.1016/B978‑0‑12‑800180‑6.00002‑524725424
    [Google Scholar]
  11. FlamantM. PlacierS. RodenasA. CuratC.A. VogelW.F. ChatziantoniouC. DussauleJ.C. Discoidin domain receptor 1 null mice are protected against hypertension-induced renal disease.J. Am. Soc. Nephrol.200617123374338110.1681/ASN.200606067717093065
    [Google Scholar]
  12. Avivi-GreenC. SingalM. VogelW.F. Discoidin domain receptor 1-deficient mice are resistant to bleomycin-induced lung fibrosis.Am. J. Respir. Crit. Care Med.2006174442042710.1164/rccm.200603‑333OC16690978
    [Google Scholar]
  13. SongS. ShackelN.A. WangX.M. AjamiK. McCaughanG.W. GorrellM.D. Discoidin domain receptor 1: isoform expression and potential functions in cirrhotic human liver.Am. J. Pathol.201117831134114410.1016/j.ajpath.2010.11.06821356365
    [Google Scholar]
  14. YuB. JinG. MaM. LiangH. ZhangB. ChenX. DingZ. Taurocholate induces connective tissue growth factor expression in hepatocytes through ERK-YAP signaling.Cell. Physiol. Biochem.20185051711172510.1159/00049479030384360
    [Google Scholar]
  15. TorglerR. BongfenS.E. RomeroJ.C. TardivelA. ThomeM. CorradinG. Sporozoite-mediated hepatocyte wounding limits Plasmodium parasite development via MyD88-mediated NF-kappa B activation and inducible NO synthase expression.J. Immunol.200818063990399910.4049/jimmunol.180.6.399018322208
    [Google Scholar]
  16. AbiruS. NakaoK. IchikawaT. MigitaK. ShigenoM. SakamotoM. IshikawaH. HamasakiK. NakataK. EguchiK. Aspirin and NS-398 inhibit hepatocyte growth factor-induced invasiveness of human hepatoma cells.Hepatology20023551117112410.1053/jhep.2002.3267611981761
    [Google Scholar]
  17. CaligiuriA. GentiliniA. PastoreM. GittoS. MarraF. Cellular and molecular mechanisms underlying liver fibrosis regression.Cells20211010275910.3390/cells1010275934685739
    [Google Scholar]
  18. JunJ.I. LauL.F. Resolution of organ fibrosis.J. Clin. Invest.201812819710710.1172/JCI9356329293097
    [Google Scholar]
  19. HammelP. CouvelardA. O’TooleD. RatouisA. SauvanetA. FléjouJ.F. DegottC. BelghitiJ. BernadesP. VallaD. RuszniewskiP. LévyP. Regression of liver fibrosis after biliary drainage in patients with chronic pancreatitis and stenosis of the common bile duct.N. Engl. J. Med.2001344641842310.1056/NEJM20010208344060411172178
    [Google Scholar]
  20. MarcellinP. GaneE. ButiM. AfdhalN. SievertW. JacobsonI.M. WashingtonM.K. GermanidisG. FlahertyJ.F. SchallR.A. BornsteinJ.D. KitrinosK.M. SubramanianG.M. McHutchisonJ.G. HeathcoteE.J. Regression of cirrhosis during treatment with tenofovir disoproxil fumarate for chronic hepatitis B: a 5-year open-label follow-up study.Lancet2013381986546847510.1016/S0140‑6736(12)61425‑123234725
    [Google Scholar]
  21. KisselevaT. BrennerD.A. Mechanisms of Fibrogenesis.Exp. Biol. Med. (Maywood)2008233210912210.3181/0707‑MR‑19018222966
    [Google Scholar]
  22. TsuchidaT. FriedmanS.L. Mechanisms of hepatic stellate cell activation.Nat. Rev. Gastroenterol. Hepatol.201714739741110.1038/nrgastro.2017.3828487545
    [Google Scholar]
  23. GaulS. LeszczynskaA. AlegreF. KaufmannB. JohnsonC.D. AdamsL.A. WreeA. DammG. SeehoferD. CalventeC.J. PoveroD. KisselevaT. EguchiA. McGeoughM.D. HoffmanH.M. PelegrinP. LaufsU. FeldsteinA.E. Hepatocyte pyroptosis and release of inflammasome particles induce stellate cell activation and liver fibrosis.J. Hepatol.202174115616710.1016/j.jhep.2020.07.04132763266
    [Google Scholar]
  24. MooringM. FowlB.H. LumS.Z.C. LiuY. YaoK. SofticS. KirchnerR. BernsteinA. SinghiA.D. JayD.G. KahnC.R. CamargoF.D. YimlamaiD. Hepatocyte stress increases expression of yes‐associated protein and transcriptional coactivator with PDZ‐binding motif in hepatocytes to promote parenchymal inflammation and fibrosis.Hepatology20207151813183010.1002/hep.3092831505040
    [Google Scholar]
  25. YangF. LiH. LiY. HaoY. WangC. JiaP. ChenX. MaS. XiaoZ. Crosstalk between hepatic stellate cells and surrounding cells in hepatic fibrosis.Int. Immunopharmacol.20219910805110.1016/j.intimp.2021.10805134426110
    [Google Scholar]
  26. BatallerR. BrennerD.A. Liver fibrosis.J. Clin. Invest.2005115220921810.1172/JCI2428215690074
    [Google Scholar]
  27. CalabroS.R. MaczurekA.E. MorganA.J. TuT. WenV.W. YeeC. MridhaA. LeeM. d’AvigdorW. LocarniniS.A. McCaughanG.W. WarnerF.J. McLennanS.V. ShackelN.A. Hepatocyte produced matrix metalloproteinases are regulated by CD147 in liver fibrogenesis.PLoS One201497e9057110.1371/journal.pone.009057125076423
    [Google Scholar]
  28. del Carmen Garcíade LeónM. MontfortI. Tello MontesE. López VancellR. Olivos GarcíaA. González CantoA. Nequiz-AvendañoM. Pérez-TamayoR. Hepatocyte production of modulators of extracellular liver matrix in normal and cirrhotic rat liver.Exp. Mol. Pathol.20068019710810.1016/j.yexmp.2005.03.00816332368
    [Google Scholar]
  29. GuerrotD. KerrochM. PlacierS. VandermeerschS. TrivinC. Mael-AininM. ChatziantoniouC. DussauleJ.C. Discoidin domain receptor 1 is a major mediator of inflammation and fibrosis in obstructive nephropathy.Am. J. Pathol.20111791839110.1016/j.ajpath.2011.03.02321640971
    [Google Scholar]
  30. FrancoC. HouG. AhmadP.J. FuE.Y.K. KohL. VogelW.F. BendeckM.P. Discoidin domain receptor 1 (ddr1) deletion decreases atherosclerosis by accelerating matrix accumulation and reducing inflammation in low-density lipoprotein receptor-deficient mice.Circ. Res.2008102101202121110.1161/CIRCRESAHA.107.17066218451340
    [Google Scholar]
  31. MatsuyamaW. WangL. FarrarW.L. FaureM. YoshimuraT. Activation of discoidin domain receptor 1 isoform b with collagen up-regulates chemokine production in human macrophages: Role of p38 mitogen-activated protein kinase and NF-kappa B.J. Immunol.200417242332234010.4049/jimmunol.172.4.233214764702
    [Google Scholar]
  32. LacourS. GautierJ.C. PallardyM. RobertsR. Cytokines as potential biomarkers of liver toxicity.Cancer Biomark.200511293910.3233/CBM‑2005‑110517192030
    [Google Scholar]
  33. MackM. Inflammation and fibrosis.Matrix Biol.201868-6910612110.1016/j.matbio.2017.11.01029196207
    [Google Scholar]
  34. DewidarB. MeyerC. DooleyS. Meindl-BeinkerA.N. TGF-β in hepatic stellate cell activation and liver fibrogenesis—updated 2019.Cells2019811141910.3390/cells811141931718044
    [Google Scholar]
  35. DooleyS. HamzaviJ. CiuclanL. GodoyP. IlkavetsI. EhnertS. UeberhamE. GebhardtR. KanzlerS. GeierA. BreitkopfK. WengH. MertensP.R. Hepatocyte-specific Smad7 expression attenuates TGF-beta-mediated fibrogenesis and protects against liver damage.Gastroenterology20081352642659.e4610.1053/j.gastro.2008.04.03818602923
    [Google Scholar]
  36. GadiyaM. ChakrabortyG. Signaling by discoidin domain receptor 1 in cancer metastasis.Cell Adhes. Migr.20181241910.1080/19336918.2018.152055630187813
    [Google Scholar]
  37. SeoM.C. KimS. KimS.H. ZhengL.T. ParkE.K. LeeW.H. SukK. Discoidin domain receptor 1 mediates collagen-induced inflammatory activation of microglia in culture.J. Neurosci. Res.20088651087109510.1002/jnr.2155217969104
    [Google Scholar]
  38. VogelW.F. AbdulhusseinR. FordC.E. Sensing extracellular matrix: An update on discoidin domain receptor function.Cell. Signal.20061881108111610.1016/j.cellsig.2006.02.01216626936
    [Google Scholar]
  39. MollS. YasuiY. AbedA. MurataT. ShimadaH. MaedaA. FukushimaN. KanamoriM. UhlesS. BadiL. CagarelliT. FormentiniI. DrawnelF. GeorgesG. BergauerT. GasserR. BonfilR.D. FridmanR. RichterH. FunkJ. MoellerM.J. ChatziantoniouC. PrunottoM. Selective pharmacological inhibition of DDR1 prevents experimentally-induced glomerulonephritis in prevention and therapeutic regime.J. Transl. Med.201816114810.1186/s12967‑018‑1524‑529859097
    [Google Scholar]
  40. TaoJ. ZhangM. WenZ. WangB. ZhangL. OuY. TangX. YuX. JiangQ. Inhibition of EP300 and DDR1 synergistically alleviates pulmonary fibrosis in vitro and in vivo.Biomed. Pharmacother.20181061727173310.1016/j.biopha.2018.07.13230119248
    [Google Scholar]
/content/journals/cmp/10.2174/1874467216666230222124515
Loading
/content/journals/cmp/10.2174/1874467216666230222124515
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test