Skip to content
2000
Volume 17, Issue 1
  • ISSN: 1874-4672
  • E-ISSN: 1874-4702

Abstract

Introduction

Autism is a neurodevelopmental disorder associated with mitochondrial dysfunction, apoptosis, and neuroinflammation. These factors can lead to the overactivation of c-JNK and p38MAPK.

Methods

In rats, stereotactic intracerebroventricular (ICV) injection of propionic acid (PPA) results in autistic-like characteristics such as poor social interaction, repetitive behaviours, and restricted communication. Research has demonstrated the beneficial effects of phytochemicals derived from plants in treating neurological disorders. Tanshinone-IIA (Tan-IIA) is a chemical found in the root of . It has neuroprotective potential by inhibiting c-JNK and p38MAPK against behavioral and neurochemical alterations in PPA-induced autistic rats. We observe behavioral changes, alterations in apoptotic markers, myelin basic protein (MBP), neurofilament-Light (NEFL), inflammatory cytokines, brain-derived neurotrophic factor (BDNF), and neurotransmitter imbalances using different brain regions (cerebral cortex, hippocampus, striatum), as well as biological samples, cerebrospinal fluid (CSF), and blood plasma.

Results

Persistent administration of 30 mg/kg and 60 mg/kg Tan-IIA intraperitoneal injection reduced these alterations dose-dependently. Anisomycin (3 mg/kg.,) as a SAPK (c-JNK and p38MAPK) agonist was administered to assess the neuroprotective effect of Tan-IIA in autistic rats. Tan-IIA's molecular interactions with c-JNK and p38MAPK were confirmed using silico analysis. We also observed gross morphological, histopathological, and Luxol Fast Blue (LFB) myelin straining changes in whole and coronal brain sections.

Conclusion

Thus, Tan-IIA has a neuroprotective potential by inhibiting the c-JNK and p38MAPK signalling pathways, which reduces the behavioral and neurochemical abnormalities induced by PPA in adult Wistar rats, indicating that current results should be studied further for the diagnosis and treatment of autism.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmp/10.2174/0118761429326799241121104310
2024-11-27
2025-05-06
The full text of this item is not currently available.

References

  1. MaennerM.J. ShawK.A. BakianA.V. BilderD.A. DurkinM.S. EslerA. FurnierS.M. HallasL. Hall-LandeJ. HudsonA. HughesM.M. PatrickM. PierceK. PoynterJ.N. SalinasA. ShenoudaJ. VehornA. WarrenZ. ConstantinoJ.N. DiRienzoM. FitzgeraldR.T. GrzybowskiA. SpiveyM.H. PettygroveS. ZahorodnyW. AliA. AndrewsJ.G. BaroudT. GutierrezJ. HewittA. LeeL.C. LopezM. MancillaK.C. McArthurD. SchwenkY.D. WashingtonA. WilliamsS. CogswellM.E. Prevalence and characteristics of autism spectrum disorder among children aged 8 years — autism and developmental disabilities monitoring network, 11 sites, United States, 2018.MMWR Surveill. Summ.2021701111610.15585/mmwr.ss7011a134855725
    [Google Scholar]
  2. WangS. ChenD. YangY. ZhuL. XiongX. ChenA. Effectiveness of physical activity interventions for core symptoms of autism spectrum disorder: A systematic review and meta‐analysis.Autism Res.20231691811182410.1002/aur.300437539450
    [Google Scholar]
  3. TalantsevaO.I. RomanovaR.S. ShurdovaE.M. DolgorukovaT.A. SologubP.S. TitovaO.S. KleevaD.F. GrigorenkoE.L. The global prevalence of autism spectrum disorder: A three-level meta-analysis.Front. Psychiatry202314107118110.3389/fpsyt.2023.107118136846240
    [Google Scholar]
  4. ShultzS.R. AzizN.A.B. YangL. SunM. MacFabeD.F. O’BrienT.J. Intracerebroventricular injection of propionic acid, an enteric metabolite implicated in autism, induces social abnormalities that do not differ between seizure-prone (FAST) and seizure-resistant (SLOW) rats.Behav. Brain Res.201527854254810.1016/j.bbr.2014.10.05025446754
    [Google Scholar]
  5. SharmaR. RahiS. MehanS. Neuroprotective potential of solanesol in intracerebroventricular propionic acid induced experimental model of autism: Insights from behavioral and biochemical evidence.Toxicol. Rep.201961164117510.1016/j.toxrep.2019.10.01931763180
    [Google Scholar]
  6. TiwariA. KheraR. RahiS. MehanS. MakeenH.A. KhormiY.H. RehmanM.U. KhanA. Neuroprotective effect of α-Mangostin in ameliorating propionic acid-induced experimental model of autism in wistar rats.Brain Sci.202111328810.3390/brainsci1103028833669120
    [Google Scholar]
  7. MehanS. RahiS. TiwariA. KapoorT. RajdevK. SharmaR. KheraH. KoseyS. KukkarU. DudiR. Adenylate cyclase activator forskolin alleviates intracerebroventricular propionic acid-induced mitochondrial dysfunction of autistic rats.Neural Regen. Res.20201561140114910.4103/1673‑5374.27031631823895
    [Google Scholar]
  8. PrataJ. SantosS.G. AlmeidaM.I. CoelhoR. BarbosaM.A. Bridging autism spectrum disorders and schizophrenia through inflammation and biomarkers - pre-clinical and clinical investigations.J. Neuroinflammation201714117910.1186/s12974‑017‑0938‑y28870209
    [Google Scholar]
  9. sherawatK. MehanS. Tanshinone-IIA mediated neuroprotection by modulating neuronal pathways.Naunyn Schmiedebergs Arch. Pharmacol.202339681647166710.1007/s00210‑023‑02476‑837010572
    [Google Scholar]
  10. WuH. ZhaoG. LiuS. ZhangQ. WangP. CaoY. WuL. Supplementation with selenium attenuates autism-like behaviors and improves oxidative stress, inflammation and related gene expression in an autism disease model.J. Nutr. Biochem.202210710903410.1016/j.jnutbio.2022.10903435500829
    [Google Scholar]
  11. IslamF. RoyS. ZehraviM. PaulS. SutradharH. YaidikarL. KumarB.R. DogiparthiL.K. PremaS. NainuF. RabS.O. DoukaniK. EmranT.B. Polyphenols targeting MAP kinase signaling pathway in neurological diseases: Understanding molecular mechanisms and therapeutic targets.Mol. Neurobiol.20246152686270610.1007/s12035‑023‑03706‑z37922063
    [Google Scholar]
  12. GravandiM.M. AbdianS. TahvilianM. IranpanahA. MoradiS.Z. FakhriS. EcheverríaJ. Therapeutic targeting of Ras/Raf/MAPK pathway by natural products: A systematic and mechanistic approach for neurodegeneration.Phytomedicine202311515482110.1016/j.phymed.2023.15482137119761
    [Google Scholar]
  13. GumbarS. BhardwajS. MehanS. KhanZ. NarulaA.S. KalfinR. TabrezS. ZughaibiT.A. WasiS. Renal mitochondrial restoration by gymnemic acid in gentamicin-mediated experimental nephrotoxicity: Evidence from serum, kidney and histopathological alterations.Front. Pharmacol.202314121850610.3389/fphar.2023.121850637521462
    [Google Scholar]
  14. RenB. ZhangY. ZhouH. SunF. ZhangZ. WeiZ. ZhangC. SiD. Tanshinone IIA prevents the loss of nigrostriatal dopaminergic neurons by inhibiting NADPH oxidase and iNOS in the MPTP model of Parkinson’s disease.J. Neurol. Sci.20153481-214215210.1016/j.jns.2014.11.02625491263
    [Google Scholar]
  15. JinH. PengX. HeY. RuganzuJ.B. YangW. Tanshinone IIA suppresses lipopolysaccharide-induced neuroinflammatory responses through NF-κB/MAPKs signaling pathways in human U87 astrocytoma cells.Brain Res. Bull.202016413614510.1016/j.brainresbull.2020.08.01932860868
    [Google Scholar]
  16. BadshahH. AliT. RehmanS. AminF. UllahF. KimT.H. KimM.O. Protective effect of Lupeol against Lipopolysaccharide-Induced neuroinflammation via the p38/c-Jun N-terminal kinase pathway in the adult mouse brain.J. Neuroimmune Pharmacol.2016111486010.1007/s11481‑015‑9623‑z26139594
    [Google Scholar]
  17. MurrayM.L. HsiaY. GlaserK. SimonoffE. MurphyD.G.M. AshersonP.J. EklundH. WongI.C.K. Pharmacological treatments prescribed to people with autism spectrum disorder (ASD) in primary health care.Psychopharmacology (Berl.)201423161011102110.1007/s00213‑013‑3140‑723681164
    [Google Scholar]
  18. RajdevK. SiddiquiE.M. JadaunK.S. MehanS. Neuroprotective potential of solanesol in a combined model of intracerebral and intraventricular hemorrhage in rats.IBRO Rep.2020810111410.1016/j.ibror.2020.03.00132368686
    [Google Scholar]
  19. WuP. DuY. XuZ. ZhangS. LiuJ. AaN. YangZ. Protective effects of sodium tanshinone IIA sulfonate on cardiac function after myocardial infarction in mice.Am. J. Transl. Res.201911135136030787992
    [Google Scholar]
  20. ZhangW. LiuC. LiJ. LuY. LiH. ZhuangJ. RenX. WangM. SunC. Tanshinone IIA: New perspective on the anti-tumor mechanism of a traditional natural medicine.Am. J. Chin. Med.202250120923910.1142/S0192415X2250007034983327
    [Google Scholar]
  21. JiB. ZhouF. HanL. YangJ. FanH. LiS. LiJ. ZhangX. WangX. ChenX. XuY. Sodium tanshinone IIA sulfonate enhances effectiveness Rt-PA treatment in acute ischemic stroke patients associated with ameliorating blood-brain barrier damage.Transl. Stroke Res.20178433434010.1007/s12975‑017‑0526‑628243834
    [Google Scholar]
  22. DingB. LinC. LiuQ. HeY. RuganzuJ.B. JinH. PengX. JiS. MaY. YangW. Tanshinone IIA attenuates neuroinflammation via inhibiting RAGE/NF-κB signaling pathway in vivo and in vitro.J. Neuroinflammation202017130210.1186/s12974‑020‑01981‑433054814
    [Google Scholar]
  23. LiuX. YeM. AnC. PanL. JiL. The effect of cationic albumin-conjugated PEGylated tanshinone IIA nanoparticles on neuronal signal pathways and neuroprotection in cerebral ischemia.Biomaterials201334286893690510.1016/j.biomaterials.2013.05.02123768781
    [Google Scholar]
  24. KhanZ. GuptaG.D. MehanS. Cellular and molecular evidence of multiple sclerosis diagnosis and treatment challenges.J. Clin. Med.20231213427410.3390/jcm1213427437445309
    [Google Scholar]
  25. GongY. LiuY.C. DingX.L. FuY. CuiL.J. YanY.P. Tanshinone IIA ameliorates CNS autoimmunity by promoting the differentiation of regulatory T cells.Neurotherapeutics202017269070310.1007/s13311‑019‑00789‑231845175
    [Google Scholar]
  26. LiaoX. GaoY. LiuJ. TaoL. WangD. XieD. MoS. WangD. XieD. MoS. RETRACTED: Combination of tanshinone IIA and Cisplatin inhibits esophageal cancer by downregulating NF-κB/COX-2/VEGF pathway.Front. Oncol.202010175610.3389/fonc.2020.0175633014864
    [Google Scholar]
  27. KwakA.W. LeeM.J. LeeM.H. YoonG. ChoS.S. ChaeJ.I. ShimJ.H. The 3-deoxysappanchalcone induces ROS-mediated apoptosis and cell cycle arrest via JNK/p38 MAPKs signaling pathway in human esophageal cancer cells.Phytomedicine20218615356410.1016/j.phymed.2021.15356433895649
    [Google Scholar]
  28. LiY. FuY. SunJ. ShenJ. LiuF. NingB. LuZ. WeiL. JiangX. Tanshinone IIA alleviates NLRP3 inflammasome-mediated pyroptosis in Mycobacterium tuberculosis-(H37Ra-) infected macrophages by inhibiting endoplasmic reticulum stress.J. Ethnopharmacol.202228211459510.1016/j.jep.2021.11459534517060
    [Google Scholar]
  29. ZhangX.W. ZhouM. AnL. ZhangP. LiP. ChenJ. Lipophilic extract and tanshinone IIA derived from Salvia miltiorrhiza Attenuate Uric acid nephropathy through suppressing oxidative stress-activated MAPK pathways.Am. J. Chin. Med.20204861455147310.1142/S0192415X2050071832933312
    [Google Scholar]
  30. ZhouH. YangT. LuZ. HeX. QuanJ. LiuS. ChenY. WuK. CaoH. LiuJ. YuL. Liquiritin exhibits anti-acute lung injury activities through suppressing the JNK/Nur77/c-Jun pathway.Chin. Med.20231813510.1186/s13020‑023‑00739‑337013552
    [Google Scholar]
  31. BhallaS. MehanS. 4-hydroxyisoleucine mediated IGF-1/GLP-1 signalling activation prevents propionic acid-induced autism-like behavioural phenotypes and neurochemical defects in experimental rats.Neuropeptides20229610229610.1016/j.npep.2022.10229636307249
    [Google Scholar]
  32. GuptaR. MehanS. SethiP. PrajapatiA. AlshammariA. AlharbiM. Al-MazrouaH.A. NarulaA.S. Smo-Shh agonist purmorphamine prevents neurobehavioral and neurochemical defects in 8-OH-DPAT-Induced experimental model of obsessive-compulsive disorder.Brain Sci.202212334210.3390/brainsci1203034235326298
    [Google Scholar]
  33. MinjE. UpadhayayS. MehanS. Nrf2/HO-1 signaling activator acetyl-11-keto-beta Boswellic Acid (AKBA)-Mediated neuroprotection in methyl mercury-induced experimental model of ALS.Neurochem. Res.202146112867288410.1007/s11064‑021‑03366‑234075522
    [Google Scholar]
  34. ZhengZ. ZhuT. QuY. MuD. Blood glutamate levels in autism spectrum disorder: A systematic review and meta-analysis.PLoS One2016117e015868810.1371/journal.pone.015868827390857
    [Google Scholar]
  35. RahiS. MehanS. Understanding abnormal SMO-SHH signaling in autism spectrum disorder: Potential drug target and therapeutic goals.Cell. Mol. Neurobiol.202242493195310.1007/s10571‑020‑01010‑133206287
    [Google Scholar]
  36. ChhabraS. MehanS. KhanZ. GuptaG.D. NarulaA.S. Matrine mediated neuroprotective potential in experimental multiple sclerosis: Evidence from CSF, blood markers, brain samples and in-silico investigations.J. Neuroimmunol.202338457820010.1016/j.jneuroim.2023.57820037774554
    [Google Scholar]
  37. DallakyanS. OlsonA.J. Small-molecule library screening by docking with PyRxJ. Hum. Values201524325010.1007/978‑1‑4939‑2269‑7_19
    [Google Scholar]
  38. AlbekairiT.H. KamraA. BhardwajS. MehanS. GiriA. SuriM. AlshammariA. AlharbiM. AlasmariA.F. NarulaA.S. KalfinR. Beta-boswellic acid reverses 3-Nitropropionic acid-induced molecular, mitochondrial, and Histopathological defects in experimental rat model of huntington’s disease.Biomedicines20221011286610.3390/biomedicines1011286636359390
    [Google Scholar]
  39. UpadhayayS. MehanS. PrajapatiA. SethiP. SuriM. ZawawiA. AlmashjaryM.N. TabrezS. Nrf2/HO-1 signaling stimulation through Acetyl-11-Keto-Beta-Boswellic Acid (AKBA) provides neuroprotection in ethidium bromide-induced experimental model of multiple sclerosis.Genes2022138132410.3390/genes1308132435893061
    [Google Scholar]
  40. AdelusiT.I. OyedeleA-Q.K. BoyenleI.D. OgunlanaA.T. AdeyemiR.O. UkachiC.D. IdrisM.O. OlaobaO.T. AdedotunI.O. KolawoleO.E. XiaoxingY. Abdul-HammedM. Molecular modeling in drug discovery.Informatics Med. Unlocked20222910088010.1016/j.imu.2022.100880
    [Google Scholar]
  41. KumarS. AbbasF. AliI. GuptaM.K. KumarS. GargM. KumarD. Integrated network pharmacology and in-silico approaches to decipher the pharmacological mechanism of Selaginella tamariscina in the treatment of non-small cell lung cancer.Phytomedicine Plus20233210041910.1016/j.phyplu.2023.100419
    [Google Scholar]
  42. GnanarajC. SekarM. FuloriaS. SwainS.S. GanS.H. ChidambaramK. RaniN.N.I.M. BalanT. StephenieS. LumP.T. JeyabalanS. BegumM.Y. ChandramohanV. ThangaveluL. SubramaniyanV. FuloriaN.K. In silico molecular docking analysis of Karanjin against Alzheimer’s and Parkinson’s diseases as a potential natural lead molecule for new drug design, development and therapy.Molecules2022279283410.3390/molecules2709283435566187
    [Google Scholar]
  43. BowersS. TruongA.P. NeitzR.J. NeitzelM. ProbstG.D. HomR.K. PetersonB. GalemmoR.A.Jr KonradiA.W. ShamH.L. TóthG. PanH. YaoN. ArtisD.R. BrighamE.F. QuinnK.P. SauerJ.M. PowellK. RuslimL. RenZ. BardF. YednockT.A. Griswold-PrennerI. Design and synthesis of a novel, orally active, brain penetrant, tri-substituted thiophene based JNK inhibitor.Bioorg. Med. Chem. Lett.20112161838184310.1016/j.bmcl.2011.01.04621316234
    [Google Scholar]
  44. AngellR.M. AngellT.D. BamboroughP. BamfordM.J. ChungC. CockerillS.G. FlackS.S. JonesK.L. LaineD.I. LongstaffT. LudbrookS. PearsonR. SmithK.J. SmeeP.A. SomersD.O. WalkerA.L. Biphenyl amide p38 kinase inhibitors 4: DFG-in and DFG-out binding modes.Bioorg. Med. Chem. Lett.200818154433443710.1016/j.bmcl.2008.06.02818602262
    [Google Scholar]
  45. CosconatiS. ForliS. PerrymanA.L. HarrisR. GoodsellD.S. OlsonA.J. Virtual screening with AutoDock: Theory and practice.Expert Opin. Drug Discov.20105659760710.1517/17460441.2010.48446021532931
    [Google Scholar]
  46. MorrisG.M. HueyR. LindstromW. SannerM.F. BelewR.K. GoodsellD.S. OlsonA.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility.J. Comput. Chem.200930162785279110.1002/jcc.2125619399780
    [Google Scholar]
  47. O’BoyleN.M. BanckM. JamesC.A. MorleyC. VandermeerschT. HutchisonG.R. Open Babel: An open chemical toolbox.J. Cheminform.2011313310.1186/1758‑2946‑3‑3321982300
    [Google Scholar]
  48. KumarS. SenguptaS. AliI. GuptaM.K. LalhlenmawiaH. AzizovS. KumarD. Identification and exploration of quinazoline-1,2,3-triazole inhibitors targeting EGFR in lung cancer.J. Biomol. Struct. Dyn.20234121113531137210.1080/07391102.2023.220436037114510
    [Google Scholar]
  49. YangY. WangB. ZhongZ. ChenH. DingW. HoiM.P.M. Clonazepam attenuates neurobehavioral abnormalities in offspring exposed to maternal immune activation by enhancing GABAergic neurotransmission.Biochem. Pharmacol.202119211471110.1016/j.bcp.2021.11471134324871
    [Google Scholar]
  50. RudraA. BelmonteM.K. SoniP.K. BanerjeeS. MukerjiS. ChakrabartiB. Prevalence of autism spectrum disorder and autistic symptoms in a school‐based cohort of children in Kolkata, India.Autism Res.201710101597160510.1002/aur.181228544637
    [Google Scholar]
  51. Vaquerizo-SerranoJ. Salazar De PabloG. SinghJ. SantoshP. Catatonia in autism spectrum disorders: A systematic review and meta-analysis.Eur. Psychiatry2022651e410.1192/j.eurpsy.2021.225934906264
    [Google Scholar]
  52. FianiB. SarhadiK.J. SoulaM. ZafarA. QuadriS.A. Current application of cannabidiol (CBD) in the management and treatment of neurological disorders.Neurol. Sci.202041113085309810.1007/s10072‑020‑04514‑232556748
    [Google Scholar]
  53. BranfordD. ShankarR. Antidepressant prescribing for adult people with an intellectual disability living in England.Br. J. Psychiatry2022221248849310.1192/bjp.2022.3435249557
    [Google Scholar]
  54. SubramanianK. BrandenburgC. OrsatiF. SoghomonianJ.J. HussmanJ.P. BlattG.J. Basal ganglia and autism – a translational perspective.Autism Res.201710111751177510.1002/aur.183728730641
    [Google Scholar]
  55. ZhongZ. HeX. GeJ. ZhuJ. YaoC. CaiH. YeX.Y. XieT. BaiR. Discovery of small-molecule compounds and natural products against Parkinson’s disease: Pathological mechanism and structural modification.Eur. J. Med. Chem.202223711437810.1016/j.ejmech.2022.11437835462165
    [Google Scholar]
  56. LuT.C. WuY.H. ChenW.Y. HungY.C. Targeting oxidative stress and endothelial dysfunction using tanshinone IIA for the treatment of tissue inflammation and fibrosis.Oxid. Med. Cell. Longev.2022202212010.1155/2022/281178935432718
    [Google Scholar]
  57. KolodnyT. SchallmoM.P. GerdtsJ. EddenR.A.E. BernierR.A. MurrayS.O. Concentrations of cortical GABA and glutamate in young adults with autism spectrum disorder.Autism Res.20201371111112910.1002/aur.230032297709
    [Google Scholar]
  58. MontanariM. MartellaG. BonsiP. MeringoloM. Autism spectrum disorder: Focus on glutamatergic neurotransmission.Int. J. Mol. Sci.2022237386110.3390/ijms2307386135409220
    [Google Scholar]
  59. ScheggiS. PinnaG. BraccagniG. De MontisM.G. GambaranaC. PPARα signaling: A candidate target in psychiatric disorder management.Biomolecules202212572310.3390/biom1205072335625650
    [Google Scholar]
  60. SinghV.J. SharmaB. ChawlaP.A. Recent developments in mitogen activated protein kinase inhibitors as potential anticancer agents.Bioorg. Chem.202111410516110.1016/j.bioorg.2021.10516134328852
    [Google Scholar]
/content/journals/cmp/10.2174/0118761429326799241121104310
Loading
/content/journals/cmp/10.2174/0118761429326799241121104310
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): Anisomycin; Autism; c-JNK; Neuroprotection; P38MAPK; Propionic acid; Tanshinone-IIA
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test