Skip to content
2000
Volume 17, Issue 1
  • ISSN: 1874-4672
  • E-ISSN: 1874-4702
side by side viewer icon HTML

Abstract

Background

Finasteride and doxazosin are used for the treatment of benign prostatic hyperplasia (BPH) and lower urinary tract symptoms (LUTS). Epithelial–mesenchymal transition (EMT) and TGF-β/Smad signaling pathway play an important role in BPH, little is known about the growth inhibition and anti-fibrosis effects of doxazosin on the regulation of EMT and morphology in the prostate.

Objectives

The present study examined the effects of doxazosin on testosterone propionate (TP)-induced prostate growth and and its impact on the EMT and TGF-β/Smad signaling pathway.

Methods

Mice were treated with TP. Doxazosin (5 or 10 mg/kg) and finasteride (10 mg/kg) were administered orally for 28 days in TP-induced mice. The prostate index (prostate/body weight ratio), morphological characteristics and the protein expression of the prostate were examined. We further examined the effects of doxazosin and finasteride on the EMT and TGF-β/Smad signaling pathway in mice and in human prostate stroma cell (WPMY-1). The protein expressions of TGF-β1, TGFBR2, p-Smad2/3, N-cadherin, vimentin, fibronectin and α-SMA, E-cadherin and prostate specific antigen (PSA) were determined after treatment by western blot.

Results

The prostate wet weight, prostate index decreased after treatment. Doxazosin (5 or 10 mg/kg), finasteride (10 mg/kg) or a combination treatment (doxazosin 10 mg/kg + finasteride 10 mg/kg) were shown to reverse the pathological and morphological characteristics of the prostate. Doxazosin and finasteride inhibited TP-induced prostate growth, EMT, and the TGF-β/Smad signaling pathway by downregulating the expression of TGF-β1, TGFBR2, p-Smad2/3, N-cadherin, vimentin, fibronectin and α-SMA, whereas expression of E-cadherin was increased after treatment with either doxazosin or finasteride. Doxazosin (1-50 μM) inhibited normal human prostate stroma cell growth (WPMY-1) after 48 h with or without testosterone treatment. Doxazosin also regulated the EMT and proteins related to the TGF-β/Smad signaling pathway in WPMY-1 cells after 24 h. Additionally, doxazosin decreased protein expression of the PSA both and .

Conclusion

This study demonstrated that doxazosin inhibits prostate growth by regulating the EMT and TGF-β/Smad signaling pathways in the prostate. This finding suggests that doxazosin has potential as a new signaling pathway for the treatment of BPH.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmp/10.2174/0118761429315125240919033502
2024-01-01
2025-06-19
The full text of this item is not currently available.

References

  1. CannarellaR. CondorelliR.A. BarbagalloF. La VigneraS. CalogeroA.E. Endocrinology of the aging prostate: Current concepts.Front. Endocrinol.20211255407810.3389/fendo.2021.55407833692752
    [Google Scholar]
  2. FooK.T. What is a disease? What is the disease clinical benign prostatic hyperplasia (BPH)?World J. Urol.20193771293129610.1007/s00345‑019‑02691‑030805683
    [Google Scholar]
  3. ChughtaiB. FordeJ.C. ThomasD.D.M. LaorL. HossackT. WooH.H. TeA.E. KaplanS.A. Benign prostatic hyperplasia.Nat. Rev. Dis. Primers2016211603110.1038/nrdp.2016.3127147135
    [Google Scholar]
  4. PlochockiA. KingB. Medical treatment of benign prostatic hyperplasia.Urol. Clin. North Am.202249223123810.1016/j.ucl.2021.12.00335428429
    [Google Scholar]
  5. LeeK.L. PeehlD.M. Molecular and cellular pathogenesis of benign prostatic hyperplasia.J. Urol.200417251784179110.1097/01.ju.0000133655.71782.1415540721
    [Google Scholar]
  6. GacciM. CoronaG. VignozziL. SalviM. SerniS. De NunzioC. TubaroA. OelkeM. CariniM. MaggiM. Metabolic syndrome and benign prostatic enlargement: A systematic review and meta-analysis.BJU Int.20151151243110.1111/bju.1272824602293
    [Google Scholar]
  7. SlabákováE. PernicováZ. SlavíčkováE. StaršíchováA. KozubíkA. SoučekK. TGF-β1-induced EMT of non-transformed prostate hyperplasia cells is characterized by early induction of SNAI2/Slug.Prostate201171121332134310.1002/pros.2135021321977
    [Google Scholar]
  8. YilmazM. ChristoforiG. EMT, the cytoskeleton, and cancer cell invasion.Cancer Metastasis Rev2009281-2153310.1007/s10555‑008‑9169‑0
    [Google Scholar]
  9. MarconiG.D. FonticoliL. RajanT.S. PierdomenicoS.D. TrubianiO. PizzicannellaJ. DiomedeF. Epithelial-Mesenchymal Transition (EMT): The Type-2 EMT in Wound Healing, Tissue Regeneration and Organ Fibrosis.Cells2021107158710.3390/cells1007158734201858
    [Google Scholar]
  10. NietoM.A. HuangR.Y.J. JacksonR.A. ThieryJ.P. EMT: 2016.Cell20161661214510.1016/j.cell.2016.06.02827368099
    [Google Scholar]
  11. LodygaM. HinzB. TGF-β1 – A truly transforming growth factor in fibrosis and immunity.Semin. Cell Dev. Biol.202010112313910.1016/j.semcdb.2019.12.01031879265
    [Google Scholar]
  12. ZhouW. ParkI. PinsM. KozlowskiJ.M. JovanovicB. ZhangJ. LeeC. IlioK. Dual regulation of proliferation and growth arrest in prostatic stromal cells by transforming growth factor-beta1.Endocrinology2003144104280428410.1210/en.2003‑055412959966
    [Google Scholar]
  13. IlioK.Y. ParkI.I. PinsM.R. KozlowskiJ.M. LeeC. Apoptotic activity of doxazosin on prostate stroma in vitro is mediated through an autocrine expression of TGF-β1.Prostate200148313113510.1002/pros.109111494328
    [Google Scholar]
  14. HuS. YuW. LvT.J. ChangC.S. LiX. JinJ. Evidence of TGF- β 1 mediated epithelial-mesenchymal transition in immortalized benign prostatic hyperplasia cells.Mol. Membr. Biol.2014312-310311010.3109/09687688.2014.89421124650126
    [Google Scholar]
  15. ZhouJ. LeiY. ChenJ. ZhouX. Potential ameliorative effects of epigallocatechin‑3‑gallate against testosterone-induced benign prostatic hyperplasia and fibrosis in rats.Int. Immunopharmacol.20186416216910.1016/j.intimp.2018.08.03830179845
    [Google Scholar]
  16. WeiP. LinD. ZhangM. LuoC. WuX. DengB. CuiK. ChenZ. Cryptotanshinone modulates proliferation, apoptosis, and fibrosis through inhibiting AR and EGFR/STAT3 axis to ameliorate benign prostatic hyperplasia progression.Eur. J. Pharmacol.202393817543410.1016/j.ejphar.2022.17543436462735
    [Google Scholar]
  17. ChenW. HuangX. PengA. ChenT. YangR. HuangY. YangZ. XiS. Kangquan recipe regulates the expression of BAMBI protein via the TGF- β /Smad signaling pathway to inhibit benign prostatic hyperplasia in rats.Evid. Based Complement. Alternat. Med.2019201911210.1155/2019/628181931186664
    [Google Scholar]
  18. KimH.J. JinB.R. AnH.J. Hesperidin ameliorates benign prostatic hyperplasia by attenuating cell proliferation, inflammatory response, and epithelial-mesenchymal transition via the TGF-β1/Smad signaling pathway.Biomed. Pharmacother.202316011438910.1016/j.biopha.2023.11438936791565
    [Google Scholar]
  19. LiuC.M. ShaoZ. ChenX. ChenH. SuM. ZhangZ. WuZ. ZhangP. AnL. JiangY. OuyangA.J. Neferine attenuates development of testosterone-induced benign prostatic hyperplasia in mice by regulating androgen and TGF-beta/Smad signaling pathways.Saudi Pharm J20233171219122810.1016/j.jsps.2023.05.00437293563
    [Google Scholar]
  20. Alonso-MagdalenaP. BrössnerC. ReinerA. ChengG. SugiyamaN. WarnerM. GustafssonJ.Å. A role for epithelial-mesenchymal transition in the etiology of benign prostatic hyperplasia.Proc. Natl. Acad. Sci. USA200910682859286310.1073/pnas.081266610619196965
    [Google Scholar]
  21. ZhengY. LiP. HuangH. YeX. ChenW. XuG. ZhangF. Androgen receptor regulates eIF5A2 expression and promotes prostate cancer metastasis via EMT.Cell Death Discov.20217137310.1038/s41420‑021‑00764‑x34864817
    [Google Scholar]
  22. TianH.L. ZhaoD. RenL.M. SuX.H. KangY.H. Effects of (-)doxazosin on histomorphologic and cell apoptotic changes of the hyperplastic prostate in castrated rats.Am. J. Med. Sci.2009338319620010.1097/MAJ.0b013e3181a6b14d19745610
    [Google Scholar]
  23. ChonJ.K. BorkowskiA. PartinA.W. IsaacsJ.T. JacobsS.C. KyprianouN. Alpha 1-adrenoceptor antagonists terazosin and doxazosin induce prostate apoptosis without affecting cell proliferation in patients with benign prostatic hyperplasia.J. Urol.199916162002200810.1016/S0022‑5347(05)68873‑810332490
    [Google Scholar]
  24. GarrisonJ.B. KyprianouN. Doxazosin induces apoptosis of benign and malignant prostate cells via a death receptor-mediated pathway.Cancer Res.200666146447210.1158/0008‑5472.CAN‑05‑203916397262
    [Google Scholar]
  25. ZhaoH. LaiF. NonnL. BrooksJ.D. PeehlD.M. Molecular targets of doxazosin in human prostatic stromal cells.Prostate200562440041010.1002/pros.2016115378519
    [Google Scholar]
  26. ChoiY.J. KimE.K. FanM. TangY. HwangY.J. SungS.H. Effect of Paecilomyces tenuipes extract on testosterone-induced benign prostatic hyperplasia in sprague–dawley rats.Int. J. Environ. Res. Public Health20191619376410.3390/ijerph1619376431591335
    [Google Scholar]
  27. DelellaF.K. LacorteL.M. AlmeidaF.L.A. PaiM.D. FelisbinoS.L. Fibrosis-related gene expression in the prostate is modulated by doxazosin treatment.Life Sci.20129125-261281128710.1016/j.lfs.2012.09.01723069578
    [Google Scholar]
  28. SchwartzC.L. VinggaardA.M. ChristiansenS. DardeT.A. ChalmelF. SvingenT. Distinct transcriptional profiles of the female, male, and finasteride-induced feminized male anogenital region in rat fetuses.Toxicol. Sci.2019169130331110.1093/toxsci/kfz04630768126
    [Google Scholar]
  29. JustulinL.A.Jr AcquaroC. CarvalhoR.F. SilvaM.D.P. FelisbinoS.L. Combined effect of the finasteride and doxazosin on rat ventral prostate morphology and physiology.Int. J. Androl.201033348949910.1111/j.1365‑2605.2009.00963.x19490185
    [Google Scholar]
  30. HuangY. ChenH. ZhouX. WuX. HuE. JiangZ. Inhibition effects of chlorogenic acid on benign prostatic hyperplasia in mice.Eur. J. Pharmacol.201780919119510.1016/j.ejphar.2017.04.01728416373
    [Google Scholar]
  31. SolankiA. PatelS. SolankiN. ShahU. Inhibitory effect of artemisinin on testosterone propionate induced benign prostatic hyperplasia.Curr. Drug Discov. Technol.202118451852410.2174/157016381766620061215115032532194
    [Google Scholar]
  32. ZouY. AboshoraW. LiJ. XiaoT. ZhangL. Protective effects of Lepidium meyenii (Maca) aqueous extract and lycopene on testosterone propionate-induced prostatic hyperplasia in mice.Phytother. Res.20173181192119810.1002/ptr.583828635053
    [Google Scholar]
  33. GuM. LiuC. YangT. ZhanM. CaiZ. ChenY. ChenQ. WangZ. High-fat diet induced gut microbiota alterations associating with ghrelin/jak2/stat3 up-regulation to promote benign prostatic hyperplasia development.Front. Cell Dev. Biol.2021961592810.3389/fcell.2021.61592834249898
    [Google Scholar]
  34. WangZ. ZhangY. ZhaoC. LiY. HuX. WuL. ChenM. TongS. The miR-223-3p/MAP1B axis aggravates TGF-β-induced proliferation and migration of BPH-1 cells.Cell. Signal.20218411000410.1016/j.cellsig.2021.11000433839256
    [Google Scholar]
  35. ZhangB. ChenX. XieC. ChenZ. LiuY. RuF. HeY. Leptin promotes epithelial-mesenchymal transition in benign prostatic hyperplasia through downregulation of BAMBI.Exp. Cell Res.2020387111175410.1016/j.yexcr.2019.11175431805276
    [Google Scholar]
  36. LiY. ShiB. DongF. ZhuX. LiuB. LiuY. Effects of inflammatory responses, apoptosis, and STAT3/NF-κB- and Nrf2-mediated oxidative stress on benign prostatic hyperplasia induced by a high-fat diet.Aging201911155570557810.18632/aging.10213831412319
    [Google Scholar]
  37. LeporH. KaplanS.A. KlimbergI. MobleyD.F. FawzyA. GaffneyM. IceK. DiasN. The Multicenter Study Group Doxazosin for benign prostatic hyperplasia: Long-term efficacy and safety in hypertensive and normotensive patients.J. Urol.1997157252553010.1016/S0022‑5347(01)65193‑08996348
    [Google Scholar]
  38. MehndirattaS. SapraS. singhG. SinghM. NepaliK. Quinazolines as apoptosis inducers and inhibitors: A review of patent literature.Recent Patents Anticancer Drug Discov.201611126610.2174/157489281166615121815150626681186
    [Google Scholar]
  39. UgaleV.G. BariS.B. Quinazolines: New horizons in anticonvulsant therapy.Eur. J. Med. Chem.20148044750110.1016/j.ejmech.2014.04.07224813877
    [Google Scholar]
  40. RakeshK.P. ManukumarH.M. GowdaD.C. Schiff’s bases of quinazolinone derivatives: Synthesis and SAR studies of a novel series of potential anti-inflammatory and antioxidants.Bioorg. Med. Chem. Lett.20152551072107710.1016/j.bmcl.2015.01.01025638040
    [Google Scholar]
  41. MalakarC.C. BaskakovaA. ConradJ. BeifussU. Copper-catalyzed synthesis of quinazolines in water starting from o-bromobenzylbromides and benzamidines.Chemistry201218298882888510.1002/chem.20120058322730204
    [Google Scholar]
  42. ShtaiwiM. AljaarN. Al-NajjarL. MalakarC.C. ShtaiwiA. Abu-SiniM. Al-RefaiM. Design, synthesis, biological activity, and molecular modeling of novel spiroquinazoline derivatives as acetylcholinesterase inhibitors for alzheimer disease.Polycycl. Aromat. Compd.20234398082809510.1080/10406638.2022.2144911
    [Google Scholar]
  43. GujjarappaR. MaityS.K. HazraC.K. VodnalaN. DhimanS. KumarA. BeifussU. MalakarC.C. Divergent synthesis of quinazolines using organocatalytic domino strategies under aerobic conditions.Eur. J. Org. Chem.20182018334628463810.1002/ejoc.201800746
    [Google Scholar]
  44. GujjarappaR. VodnalaN. ReddyV.G. MalakarC.C. Niacin as a potent organocatalyst towards the synthesis of quinazolines using nitriles as C–N source.Eur. J. Org. Chem.20202020780381410.1002/ejoc.201901651
    [Google Scholar]
  45. WadeC.A. GoodwinJ. PrestonD. KyprianouN. Impact of α-adrenoceptor antagonists on prostate cancer development, progression and prevention.Am. J. Clin. Exp. Urol.201971466030906804
    [Google Scholar]
  46. TakaoT. TsujimuraA. CoetzeeS. SalmS.N. LeporH. ShapiroE. MoscatelliD. WilsonE.L. Stromal/epithelial interactions of murine prostatic cell lines in vivo: A model for benign prostatic hyperplasia and the effect of doxazosin on tissue size.Prostate2003541172410.1002/pros.1014712481251
    [Google Scholar]
  47. ZitounO.A. FarhatA.M.N. MohamedM.A. HamadM.R. AraminiB. HaiderK.H. Management of benign prostate hyperplasia (BPH) by combinatorial approach using alpha-1-adrenergic antagonists and 5-alpha-reductase inhibitors.Eur. J. Pharmacol.202088317330110.1016/j.ejphar.2020.17330132592768
    [Google Scholar]
  48. FosterH.Jr YonoM. ShinD. TakahashiW. PouresmailM. AfiatpourP. LatifpourJ. Effects of chronic administration of doxazosin on α 1 -adrenoceptors in the rat prostate.J. Urol.20041726 Part 12465247010.1097/01.ju.0000138475.89790.8815538292
    [Google Scholar]
  49. FornariA. RhodenE.L. ZettlerC.G. RibeiroE.P. RhodenC.R. Effects of the chronic use of finasteride and doxazosin mesylate on the histomorphometric characteristics of the prostate: Experimental study in rats.Int. Urol. Nephrol.2011431394510.1007/s11255‑010‑9770‑320532625
    [Google Scholar]
  50. MinneryC.H. GetzenbergR.H. Benign prostatic hyperplasia cell line viability and modulation of jm-27 by doxazosin and Ibuprofen.J. Urol.2005174137537910.1097/01.ju.0000161598.24740.3415947693
    [Google Scholar]
  51. SalmS.N. KoikawaY. OgilvieV. TsujimuraA. CoetzeeS. MoscatelliD. MooreE. LeporH. ShapiroE. SunT.T. WilsonE.L. Generation of active TGF-β by prostatic cell cocultures using novel basal and luminal prostatic epithelial cell lines.J. Cell. Physiol.20001841707910.1002/(SICI)1097‑4652(200007)184:1<70::AID‑JCP7>3.0.CO;2‑U10825235
    [Google Scholar]
  52. FarnsworthW.E. Prostate Stroma: Physiology.Prostate1999381607210.1002/(SICI)1097‑0045(19990101)38:1<60::AID‑PROS8>3.0.CO;2‑39973111
    [Google Scholar]
  53. BretlandA.J. ReidS.V. ChappleC.R. EatonC.L. Role of endogenous transforming growth factor β (TGFβ) 1 in prostatic stromal cells.Prostate200148429730410.1002/pros.111011536310
    [Google Scholar]
  54. PeehlD.M. SellersR.G. Induction of smooth muscle cell phenotype in cultured human prostatic stromal cells.Exp. Cell Res.1997232220821510.1006/excr.1997.35259168795
    [Google Scholar]
  55. CohenP. NunnS.E. PeehlD.M. Transforming growth factor-beta induces growth inhibition and IGF-binding protein-3 production in prostatic stromal cells: Abnormalities in cells cultured from benign prostatic hyperplasia tissues.J. Endocrinol.2000164221522310.1677/joe.0.164021510657857
    [Google Scholar]
  56. LeeC. SintichS.M. MathewsE.P. ShahA.H. KunduS.D. PerryK.T. ChoJ.S. IlioK.Y. CronauerM.V. JanulisL. SensibarJ.A. Transforming growth factor-β in benign and malignant prostate.Prostate199939428529010.1002/(SICI)1097‑0045(19990601)39:4<285::AID‑PROS9>3.0.CO;2‑710344218
    [Google Scholar]
  57. LiF. PascalL.E. WangK. ZhouY. BalasubramaniG.K. O’MalleyK.J. DhirR. HeK. StolzD. DeFrancoD.B. YoshimuraN. NelsonJ.B. ChongT. GuoP. HeD. WangZ. Transforming growth factor beta 1 impairs benign prostatic luminal epithelial cell monolayer barrier function.Am. J. Clin. Exp. Urol.20208191732211449
    [Google Scholar]
  58. MoriH. MakiM. OishiK. JayeM. IgarashiK. YoshidaO. HatanakaM. Increased expression of genes for basic fibroblast growth factor and transforming growth factor type β2 in human benign prostatic hyperplasia.Prostate1990161718010.1002/pros.29901601081689483
    [Google Scholar]
  59. DescazeaudA. WeinbreckN. RobertG. VacherotF. AbbouC.C. LabrousseF. AlloryY. RubinM.A. de la TailleA. Transforming growth factor β-receptor II protein expression in benign prostatic hyperplasia is associated with prostate volume and inflammation.BJU Int.20111082bE23E2810.1111/j.1464‑410X.2010.09699.x20840324
    [Google Scholar]
  60. Krzysiek-MaczkaG. TargoszA. SzczyrkU. WrobelT. StrzalkaM. BrzozowskiT. CzyzJ. Ptak-BelowskaA. Long-term Helicobacter pylori infection switches gastric epithelium reprogramming towards cancer stem cell-related differentiation program in Hp-activated gastric fibroblast-TGFβ dependent manner.Microorganisms2020810151910.3390/microorganisms810151933023180
    [Google Scholar]
  61. XuF. LiuC. ZhouD. ZhangL. TGF-β/SMAD pathway and its regulation in hepatic fibrosis.J. Histochem. Cytochem.201664315716710.1369/002215541562768126747705
    [Google Scholar]
  62. LeeJ.Y. KimS. KimS. KimJ.H. BaeB.S. KooG.B. SoS.H. LeeJ. LeeY.H. Effects of red ginseng oil(KGC11o) on testosterone-propionate-induced benign prostatic hyperplasia.J. Ginseng Res.202246347348010.1016/j.jgr.2021.11.00535600774
    [Google Scholar]
  63. ElsherbiniD.M.A. AlmohaimeedH.M. El-SherbinyM. MohammedsalehZ.M. ElsherbinyN.M. GabrS.A. EbrahimH.A. Origanum majorana L. extract attenuated benign prostatic hyperplasia in rat model: Effect on oxidative stress, apoptosis, and proliferation.Antioxidants2022116114910.3390/antiox1106114935740046
    [Google Scholar]
  64. KimS.K. SeokH. ParkH.J. JeonH.S. KangS.W. LeeB.C. YiJ. SongS.Y. LeeS.H. KimY.O. ChungJ.H. Inhibitory effect of curcumin on testosterone induced benign prostatic hyperplasia rat model.BMC Complement. Altern. Med.201515138010.1186/s12906‑015‑0825‑y26490686
    [Google Scholar]
  65. PartinJ.V. AnglinI.E. KyprianouN. Quinazoline-based α1-adrenoceptor antagonists induce prostate cancer cell apoptosis via TGF-β signalling and IκBα induction.Br. J. Cancer200388101615162110.1038/sj.bjc.660096112771931
    [Google Scholar]
  66. KyprianouN. Doxazosin and terazosin suppress prostate growth by inducing apoptosis: Clinical significance.J. Urol.200316941520152510.1097/01.ju.0000033280.29453.7212629407
    [Google Scholar]
  67. GlassmanD.T. ChonJ.K. BorkowskiA. JacobsS.C. KyprianouN. Combined effect of terazosin and finasteride on apoptosis, cell proliferation, and transforming growth factor-β expression in benign prostatic hyperplasia.Prostate2001461455110.1002/1097‑0045(200101)46:1<45::AID‑PROS1007>3.0.CO;2‑U11170131
    [Google Scholar]
  68. YangG. TimmeT.L. ParkS.H. WuX. WyllieM.G. ThompsonT.C. Transforming growth factor β1 transduced mouse prostate reconstitutions: II. Induction of apoptosis by doxazosin.Prostate199733315716310.1002/(SICI)1097‑0045(19971101)33:3<157::AID‑PROS2>3.0.CO;2‑G9365542
    [Google Scholar]
  69. DrewaT. WolskiZ. MisterekB. DebskiR. StyczynskiJ. The influence of α1-antagonist on the expression pattern of TNF receptor family in primary culture of prostate epithelial cells from BPH patients.Prostate Cancer Prostatic Dis.2008111889310.1038/sj.pcan.450097817533395
    [Google Scholar]
  70. Muñoz-OrtegaM.H. Llamas-RamírezR.W. Romero-DelgadilloN.I. Elías-FloresT.G. Tavares-RodríguezE.J. Campos-EsparzaM.R. Cervantes-GarcíaD. Muñoz-FernándezL. Gerardo-RodríguezM. Ventura-JuárezJ. Doxazosin treatment attenuates carbon tetrachloride-induced liver fibrosis in hamsters through a decrease in transforming growth factor β secretion.Gut Liver201610110110810.5009/gnl1445926573293
    [Google Scholar]
  71. XuH. ChenY. ChenQ. XuH. WangY. YuJ. ZhouJ. WangZ. XuB. DNMT1 regulates IL-6- and TGF-β1-induced epithelial mesenchymal transition in prostate epithelial cells.Eur. J. Histochem.2017612277510.4081/ejh.2017.277528735516
    [Google Scholar]
  72. WelénK. DamberJ.E. Androgens, aging, and prostate health.Rev. Endocr. Metab. Disord.20222361221123110.1007/s11154‑022‑09730‑z35748976
    [Google Scholar]
  73. LuT. LinW.J. IzumiK. WangX. XuD. FangL.Y. LiL. JiangQ. JinJ. ChangC. Targeting androgen receptor to suppress macrophage-induced EMT and benign prostatic hyperplasia (BPH) development.Mol. Endocrinol.201226101707171510.1210/me.2012‑107922915828
    [Google Scholar]
  74. MadersbacherS. SampsonN. CuligZ. Pathophysiology of benign prostatic hyperplasia and benign prostatic enlargement: A mini-review.Gerontology201965545846410.1159/00049628930943489
    [Google Scholar]
  75. LiuC.M. LoY.C. TaiM.H. WuB.N. WuW.J. ChouY.H. ChaiC.Y. HuangC.H. ChenI.J. Piperazine-designed α 1A /α 1D -adrenoceptor blocker KMUP-1 and doxazosin provide down-regulation of androgen receptor and PSA in prostatic LNCaP cells growth and specifically in xenografts.Prostate200969661062310.1002/pros.2091919143029
    [Google Scholar]
  76. O’MalleyK.J. EisermannK. PascalL.E. ParwaniA.V. MajimaT. GrahamL. HrebinkoK. AcquafondataM. StewartN.A. NelsonJ.B. YoshimuraN. WangZ. Proteomic analysis of patient tissue reveals PSA protein in the stroma of benign prostatic hyperplasia.Prostate201474889290010.1002/pros.2280724711254
    [Google Scholar]
  77. LiF. PascalL.E. StolzD.B. WangK. ZhouY. ChenW. XuY. ChenY. DhirR. ParwaniA.V. NelsonJ.B. DeFrancoD.B. YoshimuraN. BalasubramaniG.K. GingrichJ.R. MaranchieJ.K. JacobsB.L. DaviesB.J. HrebinkoR.L. BigleyJ.D. McBrideD. GuoP. HeD. WangZ. E-cadherin is downregulated in benign prostatic hyperplasia and required for tight junction formation and permeability barrier in the prostatic epithelial cell monolayer.Prostate201979111226123710.1002/pros.2380631212363
    [Google Scholar]
/content/journals/cmp/10.2174/0118761429315125240919033502
Loading
/content/journals/cmp/10.2174/0118761429315125240919033502
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test