Skip to content
2000
Volume 17, Issue 1
  • ISSN: 1874-4672
  • E-ISSN: 1874-4702

Abstract

Aims:

Cardiac fibrosis causes most pathological alterations of cardiomyopathy in diabetes and heart failure patients. The activation and transformation of cardiac fibroblasts (CFs) are the main pathological mechanisms of cardiac fibrosis. It has been established that Sirtuin1 (Sirt1) plays a protective role in the pathogenesis of cardiovascular disorders. This study aimed to ascertain the Sirt1 effect on the phenotypic transformation of CFs in diabetes and its possible mechanisms.

Methods:

Type 1 diabetes was induced in 6-week-old male mice by subcutaneously injecting 50 mg/kg streptozotocin (STZ, i.p.). Western blotting, collagen staining, and echocardiography were performed to detect protein expression and assess cardiac fibrosis and function . We used high glucose (HG) to culture CFs prior to protein expression measurement .

Results:

Upregulation of Sirt1 expression effectively alleviated the degree of cardiac fibrosis by improving cardiac function in diabetic mice. experiments revealed that HG decreased the protein expression levels of Sirt1, but increased those of type I collagen and alpha-smooth muscle actin (α-SMA), as well as the transdifferentiation of fibroblasts into myofibroblasts. Further studies confirmed that downregulation of Sirt1 expression in the HG environment reduced the protein kinase-B (Akt) phosphorylation, thereby promoting the transdifferentiation of CFs into myofibroblasts coupled with the deterioration of cardiac function.

Conclusion:

Diabetes mellitus leads to downregulation of Sirt1 protein expression in CFs and decreased Akt phosphorylation, which promotes the transdifferentiation of CFs into myofibroblasts, the pathological process of cardiac fibrosis, and mediates the incidence and development of diabetic cardiomyopathy.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmp/10.2174/0118761429353519250106115016
2024-01-01
2025-06-29
The full text of this item is not currently available.

References

  1. RitchieR.H. AbelE.D. Basic mechanisms of diabetic heart disease.Circ. Res.2020126111501152510.1161/CIRCRESAHA.120.31591332437308
    [Google Scholar]
  2. GulsinG.S. SwarbrickD.J. HuntW.H. LeveltE. Graham-BrownM.P.M. ParkeK.S. WormleightonJ.V. LaiF.Y. YatesT. WilmotE.G. WebbD.R. DaviesM.J. McCannG.P. Relation of aortic stiffness to left ventricular remodeling in younger adults with type 2 diabetes.Diabetes20186771395140010.2337/db18‑011229661781
    [Google Scholar]
  3. AksnesT.A. KjeldsenS.E. RostrupM. OmvikP. HuaT.A. JuliusS. Impact of new-onset diabetes mellitus on cardiac outcomes in the valsartan antihypertensive long-term use evaluation (VALUE) trial population.Hypertension200750346747310.1161/HYPERTENSIONAHA.106.08565417679652
    [Google Scholar]
  4. OhkumaT. KomoritaY. PetersS.A.E. WoodwardM. Diabetes as a risk factor for heart failure in women and men: A systematic review and meta-analysis of 47 cohorts including 12 million individuals.Diabetologia20196291550156010.1007/s00125‑019‑4926‑x31317230
    [Google Scholar]
  5. TuletaI. FrangogiannisN.G. Fibrosis of the diabetic heart: Clinical significance, molecular mechanisms, and therapeutic opportunities.Adv. Drug Deliv. Rev.202117611390410.1016/j.addr.2021.11390434331987
    [Google Scholar]
  6. KarwiQ.G. HoK.L. PherwaniS. KetemaE.B. SunQ. LopaschukG.D. Concurrent diabetes and heart failure: Interplay and novel therapeutic approaches.Cardiovasc. Res.2022118368671510.1093/cvr/cvab12033783483
    [Google Scholar]
  7. ShimizuM. UmedaK. SugiharaN. YoshioH. InoH. TakedaR. OkadaY. NakanishiI. Collagen remodelling in myocardia of patients with diabetes.J. Clin. Pathol.1993461323610.1136/jcp.46.1.327679418
    [Google Scholar]
  8. PrakosoD. De BlasioM.J. QinC. RosliS. KiriazisH. QianH. DuX.J. WeeksK.L. GregorevicP. McMullenJ.R. RitchieR.H. Phosphoinositide 3-kinase (p110α) gene delivery limits diabetes-induced cardiac NADPH oxidase and cardiomyopathy in a mouse model with established diastolic dysfunction.Clin. Sci.2017131121345136010.1042/CS2017006328487469
    [Google Scholar]
  9. HuynhK. McMullenJ.R. JuliusT.L. TanJ.W. LoveJ.E. CemerlangN. KiriazisH. DuX.J. RitchieR.H. Cardiac-specific IGF-1 receptor transgenic expression protects against cardiac fibrosis and diastolic dysfunction in a mouse model of diabetic cardiomyopathy.Diabetes20105961512152010.2337/db09‑145620215428
    [Google Scholar]
  10. LinthoutS. SeelandU. RiadA. EckhardtO. HohlM. DhayatN. RichterU. FischerJ.W. BöhmM. PauschingerM. SchultheissH.P. TschöpeC. Reduced MMP-2 activity contributes to cardiac fibrosis in experimental diabetic cardiomyopathy.Basic Res. Cardiol.2008103431932710.1007/s00395‑008‑0715‑218347835
    [Google Scholar]
  11. BowdenM.A. TeschG.H. JuliusT.L. RosliS. LoveJ.E. RitchieR.H. Earlier onset of diabesity‐Induced adverse cardiac remodeling in female compared to male mice.Obesity20152361166117710.1002/oby.2107225959739
    [Google Scholar]
  12. HuynhK. KiriazisH. DuX.J. LoveJ.E. Jandeleit-DahmK.A. ForbesJ.M. McMullenJ.R. RitchieR.H. Coenzyme Q10 attenuates diastolic dysfunction, cardiomyocyte hypertrophy and cardiac fibrosis in the db/db mouse model of type 2 diabetes.Diabetologia20125551544155310.1007/s00125‑012‑2495‑322374176
    [Google Scholar]
  13. YoonY. UchidaS. MasuoO. CejnaM. ParkJ.S. GwonH. KirchmairR. BahlmanF. WalterD. CurryC. HanleyA. IsnerJ.M. LosordoD.W. Progressive attenuation of myocardial vascular endothelial growth factor expression is a seminal event in diabetic cardiomyopathy: Restoration of microvascular homeostasis and recovery of cardiac function in diabetic cardiomyopathy after replenishment of local vascular endothelial growth factor.Circulation2005111162073208510.1161/01.CIR.0000162472.52990.3615851615
    [Google Scholar]
  14. CandidoR. ForbesJ.M. ThomasM.C. ThallasV. DeanR.G. BurnsW.C. TikellisC. RitchieR.H. TwiggS.M. CooperM.E. BurrellL.M. A breaker of advanced glycation end products attenuates diabetes-induced myocardial structural changes.Circ. Res.200392778579210.1161/01.RES.0000065620.39919.2012623881
    [Google Scholar]
  15. ConnellyK. KellyD. ZhangY. PriorD. MartinJ. CoxA. ThaiK. FeneleyM. TsoporisJ. WhiteK. KrumH. GilbertR.E. Functional, structural and molecular aspects of diastolic heart failure in the diabetic (mRen-2)27 rat.Cardiovasc. Res.200776228029110.1016/j.cardiores.2007.06.02217716638
    [Google Scholar]
  16. ReganT.J. LyonsM.M. AhmedS.S. LevinsonG.E. OldewurtelH.A. AhmadM.R. HaiderB. Evidence for cardiomyopathy in familial diabetes mellitus.J. Clin. Invest.197760488589910.1172/JCI108843893679
    [Google Scholar]
  17. NunodaS. GendaA. SugiharaN. NakayamaA. MizunoS. TakedaR. Quantitative approach to the histopathology of the biopsied right ventricular myocardium in patients with diabetes mellitus.Heart Vessels198511434710.1007/BF020664864093355
    [Google Scholar]
  18. LevickS.P. WidiapradjaA. The diabetic cardiac fibroblast: Mechanisms underlying phenotype and function.Int. J. Mol. Sci.202021397010.3390/ijms2103097032024054
    [Google Scholar]
  19. ZhouY. PoczatekM.H. BerecekK.H. Murphy-UllrichJ.E. Thrombospondin 1 mediates angiotensin II induction of TGF-β activation by cardiac and renal cells under both high and low glucose conditions.Biochem. Biophys. Res. Commun.2006339263364110.1016/j.bbrc.2005.11.06016310163
    [Google Scholar]
  20. BiernackaA. CavaleraM. WangJ. RussoI. ShindeA. KongP. Gonzalez-QuesadaC. RaiV. DobaczewskiM. LeeD.W. WangX.F. FrangogiannisN.G. Smad3 signaling promotes fibrosis while preserving cardiac and aortic geometry in obese diabetic mice.Circ. Heart Fail.20158478879810.1161/CIRCHEARTFAILURE.114.00196325985794
    [Google Scholar]
  21. van HeerebeekL. HamdaniN. HandokoM.L. Falcao-PiresI. MustersR.J. KupreishviliK. IjsselmuidenA.J.J. SchalkwijkC.G. BronzwaerJ.G.F. DiamantM. BorbélyA. van der VeldenJ. StienenG.J.M. LaarmanG.J. NiessenH.W.M. PaulusW.J. Diastolic stiffness of the failing diabetic heart: Importance of fibrosis, advanced glycation end products, and myocyte resting tension.Circulation20081171435110.1161/CIRCULATIONAHA.107.72855018071071
    [Google Scholar]
  22. RussoI. FrangogiannisN.G. Diabetes-associated cardiac fibrosis: Cellular effectors, molecular mechanisms and therapeutic opportunities.J. Mol. Cell. Cardiol.201690849310.1016/j.yjmcc.2015.12.01126705059
    [Google Scholar]
  23. MatsueY. SuzukiM. NakamuraR. AbeM. OnoM. YoshidaS. SeyaM. IwatsukaR. MizukamiA. SetoguchiM. NagahoriW. OhnoM. MatsumuraA. HashimotoY. Prevalence and prognostic implications of pre-diabetic state in patients with heart failure.Circ. J.201175122833283910.1253/circj.CJ‑11‑075422008319
    [Google Scholar]
  24. TraversJ.G. KamalF.A. RobbinsJ. YutzeyK.E. BlaxallB.C. Cardiac fibrosis: The fibroblast awakens.Circ. Res.201611861021104010.1161/CIRCRESAHA.115.30656526987915
    [Google Scholar]
  25. KangH. OkaS. LeeD.Y. ParkJ. AponteA.M. JungY.S. BittermanJ. ZhaiP. HeY. KooshapurH. GhirlandoR. TjandraN. LeeS.B. KimM.K. SadoshimaJ. ChungJ.H. Sirt1 carboxyl-domain is an ATP-repressible domain that is transferrable to other proteins.Nat. Commun.2017811556010.1038/ncomms1556028504272
    [Google Scholar]
  26. DonatoA.J. MagerkoK.A. LawsonB.R. DurrantJ.R. LesniewskiL.A. SealsD.R. SIRT‐1 and vascular endothelial dysfunction with ageing in mice and humans.J. Physiol.2011589184545455410.1113/jphysiol.2011.21121921746786
    [Google Scholar]
  27. OtaH. AkishitaM. EtoM. IijimaK. KanekiM. OuchiY. Sirt1 modulates premature senescence-like phenotype in human endothelial cells.J. Mol. Cell. Cardiol.200743557157910.1016/j.yjmcc.2007.08.00817916362
    [Google Scholar]
  28. BlanderG. GuarenteL. The Sir2 family of protein deacetylases.Annu. Rev. Biochem.200473141743510.1146/annurev.biochem.73.011303.07365115189148
    [Google Scholar]
  29. SulaimanM. MattaM.J. SunderesanN.R. GuptaM.P. PeriasamyM. GuptaM. Resveratrol, an activator of SIRT1, upregulates sarcoplasmic calcium ATPase and improves cardiac function in diabetic cardiomyopathy.Am. J. Physiol. Heart Circ. Physiol.20102983H833H84310.1152/ajpheart.00418.200920008278
    [Google Scholar]
  30. MaS. FengJ. ZhangR. ChenJ. HanD. LiX. YangB. LiX. FanM. LiC. TianZ. WangY. CaoF. SIRT1 activation by resveratrol alleviates cardiac dysfunction via mitochondrial regulation in diabetic cardiomyopathy mice.Oxid. Med. Cell. Longev.201720171460271510.1155/2017/460271528883902
    [Google Scholar]
  31. GuoR. LiuW. LiuB. ZhangB. LiW. XuY. SIRT1 suppresses cardiomyocyte apoptosis in diabetic cardiomyopathy: An insight into endoplasmic reticulum stress response mechanism.Int. J. Cardiol.2015191364510.1016/j.ijcard.2015.04.24525965594
    [Google Scholar]
  32. LiK. ZhaiM. JiangL. SongF. ZhangB. LiJ. LiH. LiB. XiaL. XuL. CaoY. HeM. ZhuH. ZhangL. LiangH. JinZ. DuanW. WangS. Tetrahydrocurcumin ameliorates diabetic cardiomyopathy by attenuating high glucose-induced oxidative stress and fibrosis via activating the SIRT1 pathway.Oxid. Med. Cell. Longev.2019201911510.1155/2019/674690731210844
    [Google Scholar]
  33. BaiB. ManA.W.C. YangK. GuoY. XuC. TseH.F. HanW. BloksgaardM. De MeyJ.G.R. VanhoutteP.M. XuA. WangY. Endothelial SIRT1 prevents adverse arterial remodeling by facilitating HERC2-mediated degradation of acetylated LKB1.Oncotarget2016726390653908110.18632/oncotarget.968727259994
    [Google Scholar]
  34. GorenneI. KumarS. GrayK. FiggN. YuH. MercerJ. BennettM. Vascular smooth muscle cell sirtuin 1 protects against DNA damage and inhibits atherosclerosis.Circulation2013127338639610.1161/CIRCULATIONAHA.112.12440423224247
    [Google Scholar]
  35. MattagajasinghI. KimC.S. NaqviA. YamamoriT. HoffmanT.A. JungS.B. DeRiccoJ. KasunoK. IraniK. SIRT1 promotes endothelium-dependent vascular relaxation by activating endothelial nitric oxide synthase.Proc. Natl. Acad. Sci. USA200710437148551486010.1073/pnas.070432910417785417
    [Google Scholar]
  36. JiaG. DeMarcoV.G. SowersJ.R. Insulin resistance and hyperinsulinaemia in diabetic cardiomyopathy.Nat. Rev. Endocrinol.201612314415310.1038/nrendo.2015.21626678809
    [Google Scholar]
  37. YuL. LiQ. YuB. YangY. JinZ. DuanW. ZhaoG. ZhaiM. LiuL. YiD. ChenM. YuS. Berberine attenuates myocardial ischemia/reperfusion injury by reducing oxidative stress and inflammation response: Role of silent information regulator 1.Oxid. Med. Cell. Longev.201620161168960210.1155/2016/168960226788242
    [Google Scholar]
  38. TaoA. XuX. KvietysP. KaoR. MartinC. RuiT. Experimental diabetes mellitus exacerbates ischemia/reperfusion-induced myocardial injury by promoting mitochondrial fission: Role of down-regulation of myocardial Sirt1 and subsequent Akt/Drp1 interaction.Int. J. Biochem. Cell Biol.20181059410310.1016/j.biocel.2018.10.01130381241
    [Google Scholar]
  39. ZhangB. ZhaiM. LiB. LiuZ. LiK. JiangL. ZhangM. YiW. YangJ. YiD. LiangH. JinZ. DuanW. YuS. Honokiol ameliorates myocardial ischemia/reperfusion injury in type 1 diabetic rats by reducing oxidative stress and apoptosis through activating the SIRT1‐Nrf2 signaling pathway.Oxid. Med. Cell. Longev.201820181315980110.1155/2018/315980129675132
    [Google Scholar]
  40. GhoshA.K. QuagginS.E. VaughanD.E. Molecular basis of organ fibrosis: Potential therapeutic approaches.Exp. Biol. Med.2013238546148110.1177/153537021348944123856899
    [Google Scholar]
  41. LiuX. WangD. ZhaoY. TuB. ZhengZ. WangL. WangH. GuW. RoederR.G. ZhuW.G. Methyltransferase Set7/9 regulates p53 activity by interacting with Sirtuin 1 (SIRT1).Proc. Natl. Acad. Sci. USA201110851925193010.1073/pnas.101961910821245319
    [Google Scholar]
  42. YingC. LiuT. LingH. ChengM. ZhouX. WangS. MaoY. ChenL. ZhangR. LiW. Glucose variability aggravates cardiac fibrosis by altering AKT signalling path.Diab. Vasc. Dis. Res.201714432733510.1177/147916411769891728301953
    [Google Scholar]
  43. TaoA. SongJ. LanT. XuX. KvietysP. KaoR. MartinC. RuiT. Cardiomyocyte–fibroblast interaction contributes to diabetic cardiomyopathy in mice: Role of HMGB1/TLR4/IL-33 axis.Biochim. Biophys. Acta Mol. Basis Dis.20151852102075208510.1016/j.bbadis.2015.07.01526209013
    [Google Scholar]
  44. Bonnefont-RousselotD. Resveratrol and cardiovascular diseases.Nutrients20168525010.3390/nu805025027144581
    [Google Scholar]
  45. LiH. XiaN. FörstermannU. Cardiovascular effects and molecular targets of resveratrol.Nitric Oxide201226210211010.1016/j.niox.2011.12.00622245452
    [Google Scholar]
  46. MacLeanJ. PasumarthiK.B.S. Characterization of primary adult mouse cardiac fibroblast cultures.Can. J. Physiol. Pharmacol.2020981286186910.1139/cjpp‑2020‑003332721222
    [Google Scholar]
  47. RublerS. DlugashJ. YuceogluY.Z. KumralT. BranwoodA.W. GrishmanA. New type of cardiomyopathy associated with diabetic glomerulosclerosis.Am. J. Cardiol.197230659560210.1016/0002‑9149(72)90595‑44263660
    [Google Scholar]
  48. MarwickT.H. RitchieR. ShawJ.E. KayeD. Implications of underlying mechanisms for the recognition and management of diabetic cardiomyopathy.J. Am. Coll. Cardiol.201871333935110.1016/j.jacc.2017.11.01929348027
    [Google Scholar]
  49. HuynhK. BernardoB.C. McMullenJ.R. RitchieR.H. Diabetic cardiomyopathy: Mechanisms and new treatment strategies targeting antioxidant signaling pathways.Pharmacol. Ther.2014142337541510.1016/j.pharmthera.2014.01.00324462787
    [Google Scholar]
  50. PrakosoD. De BlasioM.J. TateM. RitchieR.H. Current landscape of preclinical models of diabetic cardiomyopathy.Trends Pharmacol. Sci.2022431194095610.1016/j.tips.2022.04.00535779966
    [Google Scholar]
  51. KwongR.Y. SattarH. WuH. VorobiofG. GandlaV. SteelK. SiuS. BrownK.A. Incidence and prognostic implication of unrecognized myocardial scar characterized by cardiac magnetic resonance in diabetic patients without clinical evidence of myocardial infarction.Circulation2008118101011102010.1161/CIRCULATIONAHA.107.72782618725488
    [Google Scholar]
  52. van HoevenK.H. FactorS.M. A comparison of the pathological spectrum of hypertensive, diabetic, and hypertensive-diabetic heart disease.Circulation199082384885510.1161/01.CIR.82.3.8482394006
    [Google Scholar]
  53. TurkbeyE.B. BacklundJ.Y.C. GenuthS. JainA. MiaoC. ClearyP.A. LachinJ.M. NathanD.M. van der GeestR.J. SolimanE.Z. LiuC.Y. LimaJ.A.C. BluemkeD.A. Myocardial structure, function, and scar in patients with type 1 diabetes mellitus.Circulation2011124161737174610.1161/CIRCULATIONAHA.111.02232721947298
    [Google Scholar]
  54. Lorenzo-AlmorósA. TuñónJ. OrejasM. CortésM. EgidoJ. LorenzoÓ. Diagnostic approaches for diabetic cardiomyopathy.Cardiovasc. Diabetol.20171612810.1186/s12933‑017‑0506‑x28231848
    [Google Scholar]
  55. HerumK.M. ChoppeJ. KumarA. EnglerA.J. McCullochA.D. Mechanical regulation of cardiac fibroblast profibrotic phenotypes.Mol. Biol. Cell201728141871188210.1091/mbc.e17‑01‑001428468977
    [Google Scholar]
  56. RawshaniA. RawshaniA. FranzénS. EliassonB. SvenssonA.M. MiftarajM. McGuireD.K. SattarN. RosengrenA. GudbjörnsdottirS. Mortality and cardiovascular disease in type 1 and type 2 diabetes.N. Engl. J. Med.2017376151407141810.1056/NEJMoa160866428402770
    [Google Scholar]
  57. AssociationA.D. Diagnosis and classification of diabetes mellitus.Diabetes Care201235Suppl 1Suppl. 1S64S7110.2337/dc12‑s06422187472
    [Google Scholar]
  58. VazquezE.J. BerthiaumeJ.M. KamathV. AchikeO. BuchananE. MontanoM.M. ChandlerM.P. MiyagiM. RoscaM.G. Mitochondrial complex I defect and increased fatty acid oxidation enhance protein lysine acetylation in the diabetic heart.Cardiovasc. Res.2015107445346510.1093/cvr/cvv18326101264
    [Google Scholar]
  59. LenzenS. The mechanisms of alloxan- and streptozotocin-induced diabetes.Diabetologia200851221622610.1007/s00125‑007‑0886‑718087688
    [Google Scholar]
  60. RitchieR.H. LoveJ.E. HuynhK. BernardoB.C. HenstridgeD.C. KiriazisH. ThamY.K. SapraG. QinC. CemerlangN. BoeyE.J.H. Jandeleit-DahmK. DuX.J. McMullenJ.R. Enhanced phosphoinositide 3-kinase(p110α) activity prevents diabetes-induced cardiomyopathy and superoxide generation in a mouse model of diabetes.Diabetologia201255123369338110.1007/s00125‑012‑2720‑023001375
    [Google Scholar]
  61. BoudinaS. AbelE.D. Diabetic cardiomyopathy revisited.Circulation2007115253213322310.1161/CIRCULATIONAHA.106.67959717592090
    [Google Scholar]
  62. ChristoffersenC. BollanoE. LindegaardM.L.S. BartelsE.D. GoetzeJ.P. AndersenC.B. NielsenL.B. Cardiac lipid accumulation associated with diastolic dysfunction in obese mice.Endocrinology200314483483349010.1210/en.2003‑024212865329
    [Google Scholar]
  63. SemeniukL.M. KryskiA.J. SeversonD.L. Echocardiographic assessment of cardiac function in diabetic db/db and transgenic db/db -hGLUT4 mice.Am. J. Physiol. Heart Circ. Physiol.20022833H976H98210.1152/ajpheart.00088.200212181126
    [Google Scholar]
  64. ChenX. LiuG. ZhangW. ZhangJ. YanY. DongW. LiangE. ZhangY. ZhangM. Inhibition of MEF2A prevents hyperglycemia-induced extracellular matrix accumulation by blocking Akt and TGF-β1/Smad activation in cardiac fibroblasts.Int. J. Biochem. Cell Biol.201569526110.1016/j.biocel.2015.10.01226482596
    [Google Scholar]
  65. VenkatachalamK. MummidiS. CortezD.M. PrabhuS.D. ValenteA.J. ChandrasekarB. Resveratrol inhibits high glucose-induced PI3K/Akt/ERK-dependent interleukin-17 expression in primary mouse cardiac fibroblasts.Am. J. Physiol. Heart Circ. Physiol.20082945H2078H208710.1152/ajpheart.01363.200718310510
    [Google Scholar]
  66. BattiproluP.K. HojayevB. JiangN. WangZ.V. LuoX. IglewskiM. SheltonJ.M. GerardR.D. RothermelB.A. GilletteT.G. LavanderoS. HillJ.A. Metabolic stress–induced activation of FoxO1 triggers diabetic cardiomyopathy in mice.J. Clin. Invest.201212231109111810.1172/JCI6032922326951
    [Google Scholar]
  67. De BlasioM.J. HuynhK. QinC. RosliS. KiriazisH. AyerA. CemerlangN. StockerR. DuX.J. McMullenJ.R. RitchieR.H. Therapeutic targeting of oxidative stress with coenzyme Q10 counteracts exaggerated diabetic cardiomyopathy in a mouse model of diabetes with diminished PI3K(p110α) signaling.Free Radic. Biol. Med.20158713714710.1016/j.freeradbiomed.2015.04.02825937176
    [Google Scholar]
  68. KarwiQ.G. JörgA.R. LopaschukG.D. Allosteric, transcriptional and post-translational control of mitochondrial energy metabolism.Biochem. J.2019476121695171210.1042/BCJ2018061731217327
    [Google Scholar]
/content/journals/cmp/10.2174/0118761429353519250106115016
Loading
/content/journals/cmp/10.2174/0118761429353519250106115016
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): Cardiac fibrosis; Diabetes; Fibroblasts; Protein kinase B (Akt); Resveratrol; SIRT1
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test