Skip to content
2000
image of Sirt1 Regulates Phenotypic Transformation of Diabetic Cardiac Fibroblasts through Akt/Α-SMA Pathway

Abstract

Aims:

Cardiac fibrosis causes most pathological alterations of cardiomyopathy in diabetes and heart failure patients. The activation and transformation of cardiac fibroblasts (CFs) are the main pathological mechanisms of cardiac fibrosis. It has been established that Sirtuin1 (Sirt1) plays a protective role in the pathogenesis of cardiovascular disorders. This study aimed to ascertain the Sirt1 effect on the phenotypic transformation of CFs in diabetes and its possible mechanisms.

Methods:

Type 1 diabetes was induced in 6-week-old male mice by subcutaneously injecting 50 mg/kg streptozotocin (STZ, i.p.). Western blotting, collagen staining, and echocardiography were performed to detect protein expression and assess cardiac fibrosis and function . We used high glucose (HG) to culture CFs prior to protein expression measurement .

Results:

Upregulation of Sirt1 expression effectively alleviated the degree of cardiac fibrosis by improving cardiac function in diabetic mice. experiments revealed that HG decreased the protein expression levels of Sirt1, but increased those of type I collagen and alpha-smooth muscle actin (α-SMA), as well as the transdifferentiation of fibroblasts into myofibroblasts. Further studies confirmed that downregulation of Sirt1 expression in the HG environment reduced the protein kinase-B (Akt) phosphorylation, thereby promoting the transdifferentiation of CFs into myofibroblasts coupled with the deterioration of cardiac function.

Conclusion:

Diabetes mellitus leads to downregulation of Sirt1 protein expression in CFs and decreased Akt phosphorylation, which promotes the transdifferentiation of CFs into myofibroblasts, the pathological process of cardiac fibrosis, and mediates the incidence and development of diabetic cardiomyopathy.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmp/10.2174/0118761429353519250106115016
2025-01-09
2025-01-22
Loading full text...

Full text loading...

/deliver/fulltext/cmp/10.2174/0118761429353519250106115016/e18761429353519.html?itemId=/content/journals/cmp/10.2174/0118761429353519250106115016&mimeType=html&fmt=ahah

References

  1. Ritchie R.H. Abel E.D. Basic mechanisms of diabetic heart disease. Circ. Res. 2020 126 11 1501 1525 10.1161/CIRCRESAHA.120.315913 32437308
    [Google Scholar]
  2. Gulsin G.S. Swarbrick D.J. Hunt W.H. Levelt E. Graham-Brown M.P.M. Parke K.S. Wormleighton J.V. Lai F.Y. Yates T. Wilmot E.G. Webb D.R. Davies M.J. McCann G.P. Relation of aortic stiffness to left ventricular remodeling in younger adults with type 2 diabetes. Diabetes 2018 67 7 1395 1400 10.2337/db18‑0112 29661781
    [Google Scholar]
  3. Aksnes T.A. Kjeldsen S.E. Rostrup M. Omvik P. Hua T.A. Julius S. Impact of new-onset diabetes mellitus on cardiac outcomes in the valsartan antihypertensive long-term use evaluation (VALUE) trial population. Hypertension 2007 50 3 467 473 10.1161/HYPERTENSIONAHA.106.085654 17679652
    [Google Scholar]
  4. Ohkuma T. Komorita Y. Peters S.A.E. Woodward M. Diabetes as a risk factor for heart failure in women and men: A systematic review and meta-analysis of 47 cohorts including 12 million individuals. Diabetologia 2019 62 9 1550 1560 10.1007/s00125‑019‑4926‑x 31317230
    [Google Scholar]
  5. Tuleta I. Frangogiannis N.G. Fibrosis of the diabetic heart: Clinical significance, molecular mechanisms, and therapeutic opportunities. Adv. Drug Deliv. Rev. 2021 176 113904 10.1016/j.addr.2021.113904 34331987
    [Google Scholar]
  6. Karwi Q.G. Ho K.L. Pherwani S. Ketema E.B. Sun Q. Lopaschuk G.D. Concurrent diabetes and heart failure: Interplay and novel therapeutic approaches. Cardiovasc. Res. 2022 118 3 686 715 10.1093/cvr/cvab120 33783483
    [Google Scholar]
  7. Shimizu M. Umeda K. Sugihara N. Yoshio H. Ino H. Takeda R. Okada Y. Nakanishi I. Collagen remodelling in myocardia of patients with diabetes. J. Clin. Pathol. 1993 46 1 32 36 10.1136/jcp.46.1.32 7679418
    [Google Scholar]
  8. Prakoso D. De Blasio M.J. Qin C. Rosli S. Kiriazis H. Qian H. Du X.J. Weeks K.L. Gregorevic P. McMullen J.R. Ritchie R.H. Phosphoinositide 3-kinase (p110α) gene delivery limits diabetes-induced cardiac NADPH oxidase and cardiomyopathy in a mouse model with established diastolic dysfunction. Clin. Sci. 2017 131 12 1345 1360 10.1042/CS20170063 28487469
    [Google Scholar]
  9. Huynh K. McMullen J.R. Julius T.L. Tan J.W. Love J.E. Cemerlang N. Kiriazis H. Du X.J. Ritchie R.H. Cardiac-specific IGF-1 receptor transgenic expression protects against cardiac fibrosis and diastolic dysfunction in a mouse model of diabetic cardiomyopathy. Diabetes 2010 59 6 1512 1520 10.2337/db09‑1456 20215428
    [Google Scholar]
  10. Linthout S. Seeland U. Riad A. Eckhardt O. Hohl M. Dhayat N. Richter U. Fischer J.W. Böhm M. Pauschinger M. Schultheiss H.P. Tschöpe C. Reduced MMP-2 activity contributes to cardiac fibrosis in experimental diabetic cardiomyopathy. Basic Res. Cardiol. 2008 103 4 319 327 10.1007/s00395‑008‑0715‑2 18347835
    [Google Scholar]
  11. Bowden M.A. Tesch G.H. Julius T.L. Rosli S. Love J.E. Ritchie R.H. Earlier onset of diabesity‐Induced adverse cardiac remodeling in female compared to male mice. Obesity 2015 23 6 1166 1177 10.1002/oby.21072 25959739
    [Google Scholar]
  12. Huynh K. Kiriazis H. Du X.J. Love J.E. Jandeleit-Dahm K.A. Forbes J.M. McMullen J.R. Ritchie R.H. Coenzyme Q10 attenuates diastolic dysfunction, cardiomyocyte hypertrophy and cardiac fibrosis in the db/db mouse model of type 2 diabetes. Diabetologia 2012 55 5 1544 1553 10.1007/s00125‑012‑2495‑3 22374176
    [Google Scholar]
  13. Yoon Y. Uchida S. Masuo O. Cejna M. Park J.S. Gwon H. Kirchmair R. Bahlman F. Walter D. Curry C. Hanley A. Isner J.M. Losordo D.W. Progressive attenuation of myocardial vascular endothelial growth factor expression is a seminal event in diabetic cardiomyopathy: Restoration of microvascular homeostasis and recovery of cardiac function in diabetic cardiomyopathy after replenishment of local vascular endothelial growth factor. Circulation 2005 111 16 2073 2085 10.1161/01.CIR.0000162472.52990.36 15851615
    [Google Scholar]
  14. Candido R. Forbes J.M. Thomas M.C. Thallas V. Dean R.G. Burns W.C. Tikellis C. Ritchie R.H. Twigg S.M. Cooper M.E. Burrell L.M. A breaker of advanced glycation end products attenuates diabetes-induced myocardial structural changes. Circ. Res. 2003 92 7 785 792 10.1161/01.RES.0000065620.39919.20 12623881
    [Google Scholar]
  15. Connelly K. Kelly D. Zhang Y. Prior D. Martin J. Cox A. Thai K. Feneley M. Tsoporis J. White K. Krum H. Gilbert R.E. Functional, structural and molecular aspects of diastolic heart failure in the diabetic (mRen-2)27 rat. Cardiovasc. Res. 2007 76 2 280 291 10.1016/j.cardiores.2007.06.022 17716638
    [Google Scholar]
  16. Regan T.J. Lyons M.M. Ahmed S.S. Levinson G.E. Oldewurtel H.A. Ahmad M.R. Haider B. Evidence for cardiomyopathy in familial diabetes mellitus. J. Clin. Invest. 1977 60 4 885 899 10.1172/JCI108843 893679
    [Google Scholar]
  17. Nunoda S. Genda A. Sugihara N. Nakayama A. Mizuno S. Takeda R. Quantitative approach to the histopathology of the biopsied right ventricular myocardium in patients with diabetes mellitus. Heart Vessels 1985 1 1 43 47 10.1007/BF02066486 4093355
    [Google Scholar]
  18. Levick S.P. Widiapradja A. The diabetic cardiac fibroblast: Mechanisms underlying phenotype and function. Int. J. Mol. Sci. 2020 21 3 970 10.3390/ijms21030970 32024054
    [Google Scholar]
  19. Zhou Y. Poczatek M.H. Berecek K.H. Murphy-Ullrich J.E. Thrombospondin 1 mediates angiotensin II induction of TGF-β activation by cardiac and renal cells under both high and low glucose conditions. Biochem. Biophys. Res. Commun. 2006 339 2 633 641 10.1016/j.bbrc.2005.11.060 16310163
    [Google Scholar]
  20. Biernacka A. Cavalera M. Wang J. Russo I. Shinde A. Kong P. Gonzalez-Quesada C. Rai V. Dobaczewski M. Lee D.W. Wang X.F. Frangogiannis N.G. Smad3 signaling promotes fibrosis while preserving cardiac and aortic geometry in obese diabetic mice. Circ. Heart Fail. 2015 8 4 788 798 10.1161/CIRCHEARTFAILURE.114.001963 25985794
    [Google Scholar]
  21. van Heerebeek L. Hamdani N. Handoko M.L. Falcao-Pires I. Musters R.J. Kupreishvili K. Ijsselmuiden A.J.J. Schalkwijk C.G. Bronzwaer J.G.F. Diamant M. Borbély A. van der Velden J. Stienen G.J.M. Laarman G.J. Niessen H.W.M. Paulus W.J. Diastolic stiffness of the failing diabetic heart: Importance of fibrosis, advanced glycation end products, and myocyte resting tension. Circulation 2008 117 1 43 51 10.1161/CIRCULATIONAHA.107.728550 18071071
    [Google Scholar]
  22. Russo I. Frangogiannis N.G. Diabetes-associated cardiac fibrosis: Cellular effectors, molecular mechanisms and therapeutic opportunities. J. Mol. Cell. Cardiol. 2016 90 84 93 10.1016/j.yjmcc.2015.12.011 26705059
    [Google Scholar]
  23. Matsue Y. Suzuki M. Nakamura R. Abe M. Ono M. Yoshida S. Seya M. Iwatsuka R. Mizukami A. Setoguchi M. Nagahori W. Ohno M. Matsumura A. Hashimoto Y. Prevalence and prognostic implications of pre-diabetic state in patients with heart failure. Circ. J. 2011 75 12 2833 2839 10.1253/circj.CJ‑11‑0754 22008319
    [Google Scholar]
  24. Travers J.G. Kamal F.A. Robbins J. Yutzey K.E. Blaxall B.C. Cardiac fibrosis: The fibroblast awakens. Circ. Res. 2016 118 6 1021 1040 10.1161/CIRCRESAHA.115.306565 26987915
    [Google Scholar]
  25. Kang H. Oka S. Lee D.Y. Park J. Aponte A.M. Jung Y.S. Bitterman J. Zhai P. He Y. Kooshapur H. Ghirlando R. Tjandra N. Lee S.B. Kim M.K. Sadoshima J. Chung J.H. Sirt1 carboxyl-domain is an ATP-repressible domain that is transferrable to other proteins. Nat. Commun. 2017 8 1 15560 10.1038/ncomms15560 28504272
    [Google Scholar]
  26. Donato A.J. Magerko K.A. Lawson B.R. Durrant J.R. Lesniewski L.A. Seals D.R. SIRT‐1 and vascular endothelial dysfunction with ageing in mice and humans. J. Physiol. 2011 589 18 4545 4554 10.1113/jphysiol.2011.211219 21746786
    [Google Scholar]
  27. Ota H. Akishita M. Eto M. Iijima K. Kaneki M. Ouchi Y. Sirt1 modulates premature senescence-like phenotype in human endothelial cells. J. Mol. Cell. Cardiol. 2007 43 5 571 579 10.1016/j.yjmcc.2007.08.008 17916362
    [Google Scholar]
  28. Blander G. Guarente L. The Sir2 family of protein deacetylases. Annu. Rev. Biochem. 2004 73 1 417 435 10.1146/annurev.biochem.73.011303.073651 15189148
    [Google Scholar]
  29. Sulaiman M. Matta M.J. Sunderesan N.R. Gupta M.P. Periasamy M. Gupta M. Resveratrol, an activator of SIRT1, upregulates sarcoplasmic calcium ATPase and improves cardiac function in diabetic cardiomyopathy. Am. J. Physiol. Heart Circ. Physiol. 2010 298 3 H833 H843 10.1152/ajpheart.00418.2009 20008278
    [Google Scholar]
  30. Ma S. Feng J. Zhang R. Chen J. Han D. Li X. Yang B. Li X. Fan M. Li C. Tian Z. Wang Y. Cao F. SIRT1 activation by resveratrol alleviates cardiac dysfunction via mitochondrial regulation in diabetic cardiomyopathy mice. Oxid. Med. Cell. Longev. 2017 2017 1 4602715 10.1155/2017/4602715 28883902
    [Google Scholar]
  31. Guo R. Liu W. Liu B. Zhang B. Li W. Xu Y. SIRT1 suppresses cardiomyocyte apoptosis in diabetic cardiomyopathy: An insight into endoplasmic reticulum stress response mechanism. Int. J. Cardiol. 2015 191 36 45 10.1016/j.ijcard.2015.04.245 25965594
    [Google Scholar]
  32. Li K. Zhai M. Jiang L. Song F. Zhang B. Li J. Li H. Li B. Xia L. Xu L. Cao Y. He M. Zhu H. Zhang L. Liang H. Jin Z. Duan W. Wang S. Tetrahydrocurcumin ameliorates diabetic cardiomyopathy by attenuating high glucose-induced oxidative stress and fibrosis via activating the SIRT1 pathway. Oxid. Med. Cell. Longev. 2019 2019 1 15 10.1155/2019/6746907 31210844
    [Google Scholar]
  33. Bai B. Man A.W.C. Yang K. Guo Y. Xu C. Tse H.F. Han W. Bloksgaard M. De Mey J.G.R. Vanhoutte P.M. Xu A. Wang Y. Endothelial SIRT1 prevents adverse arterial remodeling by facilitating HERC2-mediated degradation of acetylated LKB1. Oncotarget 2016 7 26 39065 39081 10.18632/oncotarget.9687 27259994
    [Google Scholar]
  34. Gorenne I. Kumar S. Gray K. Figg N. Yu H. Mercer J. Bennett M. Vascular smooth muscle cell sirtuin 1 protects against DNA damage and inhibits atherosclerosis. Circulation 2013 127 3 386 396 10.1161/CIRCULATIONAHA.112.124404 23224247
    [Google Scholar]
  35. Mattagajasingh I. Kim C.S. Naqvi A. Yamamori T. Hoffman T.A. Jung S.B. DeRicco J. Kasuno K. Irani K. SIRT1 promotes endothelium-dependent vascular relaxation by activating endothelial nitric oxide synthase. Proc. Natl. Acad. Sci. USA 2007 104 37 14855 14860 10.1073/pnas.0704329104 17785417
    [Google Scholar]
  36. Jia G. DeMarco V.G. Sowers J.R. Insulin resistance and hyperinsulinaemia in diabetic cardiomyopathy. Nat. Rev. Endocrinol. 2016 12 3 144 153 10.1038/nrendo.2015.216 26678809
    [Google Scholar]
  37. Yu L. Li Q. Yu B. Yang Y. Jin Z. Duan W. Zhao G. Zhai M. Liu L. Yi D. Chen M. Yu S. Berberine attenuates myocardial ischemia/reperfusion injury by reducing oxidative stress and inflammation response: Role of silent information regulator 1. Oxid. Med. Cell. Longev. 2016 2016 1 1689602 10.1155/2016/1689602 26788242
    [Google Scholar]
  38. Tao A. Xu X. Kvietys P. Kao R. Martin C. Rui T. Experimental diabetes mellitus exacerbates ischemia/reperfusion-induced myocardial injury by promoting mitochondrial fission: Role of down-regulation of myocardial Sirt1 and subsequent Akt/Drp1 interaction. Int. J. Biochem. Cell Biol. 2018 105 94 103 10.1016/j.biocel.2018.10.011 30381241
    [Google Scholar]
  39. Zhang B. Zhai M. Li B. Liu Z. Li K. Jiang L. Zhang M. Yi W. Yang J. Yi D. Liang H. Jin Z. Duan W. Yu S. Honokiol ameliorates myocardial ischemia/reperfusion injury in type 1 diabetic rats by reducing oxidative stress and apoptosis through activating the SIRT1‐Nrf2 signaling pathway. Oxid. Med. Cell. Longev. 2018 2018 1 3159801 10.1155/2018/3159801 29675132
    [Google Scholar]
  40. Ghosh A.K. Quaggin S.E. Vaughan D.E. Molecular basis of organ fibrosis: Potential therapeutic approaches. Exp. Biol. Med. 2013 238 5 461 481 10.1177/1535370213489441 23856899
    [Google Scholar]
  41. Liu X. Wang D. Zhao Y. Tu B. Zheng Z. Wang L. Wang H. Gu W. Roeder R.G. Zhu W.G. Methyltransferase Set7/9 regulates p53 activity by interacting with Sirtuin 1 (SIRT1). Proc. Natl. Acad. Sci. USA 2011 108 5 1925 1930 10.1073/pnas.1019619108 21245319
    [Google Scholar]
  42. Ying C. Liu T. Ling H. Cheng M. Zhou X. Wang S. Mao Y. Chen L. Zhang R. Li W. Glucose variability aggravates cardiac fibrosis by altering AKT signalling path. Diab. Vasc. Dis. Res. 2017 14 4 327 335 10.1177/1479164117698917 28301953
    [Google Scholar]
  43. Tao A. Song J. Lan T. Xu X. Kvietys P. Kao R. Martin C. Rui T. Cardiomyocyte–fibroblast interaction contributes to diabetic cardiomyopathy in mice: Role of HMGB1/TLR4/IL-33 axis. Biochim. Biophys. Acta Mol. Basis Dis. 2015 1852 10 2075 2085 10.1016/j.bbadis.2015.07.015 26209013
    [Google Scholar]
  44. Bonnefont-Rousselot D. Resveratrol and cardiovascular diseases. Nutrients 2016 8 5 250 10.3390/nu8050250 27144581
    [Google Scholar]
  45. Li H. Xia N. Förstermann U. Cardiovascular effects and molecular targets of resveratrol. Nitric Oxide 2012 26 2 102 110 10.1016/j.niox.2011.12.006 22245452
    [Google Scholar]
  46. MacLean J. Pasumarthi K.B.S. Characterization of primary adult mouse cardiac fibroblast cultures. Can. J. Physiol. Pharmacol. 2020 98 12 861 869 10.1139/cjpp‑2020‑0033 32721222
    [Google Scholar]
  47. Rubler S. Dlugash J. Yuceoglu Y.Z. Kumral T. Branwood A.W. Grishman A. New type of cardiomyopathy associated with diabetic glomerulosclerosis. Am. J. Cardiol. 1972 30 6 595 602 10.1016/0002‑9149(72)90595‑4 4263660
    [Google Scholar]
  48. Marwick T.H. Ritchie R. Shaw J.E. Kaye D. Implications of underlying mechanisms for the recognition and management of diabetic cardiomyopathy. J. Am. Coll. Cardiol. 2018 71 3 339 351 10.1016/j.jacc.2017.11.019 29348027
    [Google Scholar]
  49. Huynh K. Bernardo B.C. McMullen J.R. Ritchie R.H. Diabetic cardiomyopathy: Mechanisms and new treatment strategies targeting antioxidant signaling pathways. Pharmacol. Ther. 2014 142 3 375 415 10.1016/j.pharmthera.2014.01.003 24462787
    [Google Scholar]
  50. Prakoso D. De Blasio M.J. Tate M. Ritchie R.H. Current landscape of preclinical models of diabetic cardiomyopathy. Trends Pharmacol. Sci. 2022 43 11 940 956 10.1016/j.tips.2022.04.005 35779966
    [Google Scholar]
  51. Kwong R.Y. Sattar H. Wu H. Vorobiof G. Gandla V. Steel K. Siu S. Brown K.A. Incidence and prognostic implication of unrecognized myocardial scar characterized by cardiac magnetic resonance in diabetic patients without clinical evidence of myocardial infarction. Circulation 2008 118 10 1011 1020 10.1161/CIRCULATIONAHA.107.727826 18725488
    [Google Scholar]
  52. van Hoeven K.H. Factor S.M. A comparison of the pathological spectrum of hypertensive, diabetic, and hypertensive-diabetic heart disease. Circulation 1990 82 3 848 855 10.1161/01.CIR.82.3.848 2394006
    [Google Scholar]
  53. Turkbey E.B. Backlund J.Y.C. Genuth S. Jain A. Miao C. Cleary P.A. Lachin J.M. Nathan D.M. van der Geest R.J. Soliman E.Z. Liu C.Y. Lima J.A.C. Bluemke D.A. Myocardial structure, function, and scar in patients with type 1 diabetes mellitus. Circulation 2011 124 16 1737 1746 10.1161/CIRCULATIONAHA.111.022327 21947298
    [Google Scholar]
  54. Lorenzo-Almorós A. Tuñón J. Orejas M. Cortés M. Egido J. Lorenzo Ó. Diagnostic approaches for diabetic cardiomyopathy. Cardiovasc. Diabetol. 2017 16 1 28 10.1186/s12933‑017‑0506‑x 28231848
    [Google Scholar]
  55. Herum K.M. Choppe J. Kumar A. Engler A.J. McCulloch A.D. Mechanical regulation of cardiac fibroblast profibrotic phenotypes. Mol. Biol. Cell 2017 28 14 1871 1882 10.1091/mbc.e17‑01‑0014 28468977
    [Google Scholar]
  56. Rawshani A. Rawshani A. Franzén S. Eliasson B. Svensson A.M. Miftaraj M. McGuire D.K. Sattar N. Rosengren A. Gudbjörnsdottir S. Mortality and cardiovascular disease in type 1 and type 2 diabetes. N. Engl. J. Med. 2017 376 15 1407 1418 10.1056/NEJMoa1608664 28402770
    [Google Scholar]
  57. Association A.D. Diagnosis and classification of diabetes mellitus. Diabetes Care 2012 35 Suppl 1 Suppl. 1 S64 S71 10.2337/dc12‑s064 22187472
    [Google Scholar]
  58. Vazquez E.J. Berthiaume J.M. Kamath V. Achike O. Buchanan E. Montano M.M. Chandler M.P. Miyagi M. Rosca M.G. Mitochondrial complex I defect and increased fatty acid oxidation enhance protein lysine acetylation in the diabetic heart. Cardiovasc. Res. 2015 107 4 453 465 10.1093/cvr/cvv183 26101264
    [Google Scholar]
  59. Lenzen S. The mechanisms of alloxan- and streptozotocin-induced diabetes. Diabetologia 2008 51 2 216 226 10.1007/s00125‑007‑0886‑7 18087688
    [Google Scholar]
  60. Ritchie R.H. Love J.E. Huynh K. Bernardo B.C. Henstridge D.C. Kiriazis H. Tham Y.K. Sapra G. Qin C. Cemerlang N. Boey E.J.H. Jandeleit-Dahm K. Du X.J. McMullen J.R. Enhanced phosphoinositide 3-kinase(p110α) activity prevents diabetes-induced cardiomyopathy and superoxide generation in a mouse model of diabetes. Diabetologia 2012 55 12 3369 3381 10.1007/s00125‑012‑2720‑0 23001375
    [Google Scholar]
  61. Boudina S. Abel E.D. Diabetic cardiomyopathy revisited. Circulation 2007 115 25 3213 3223 10.1161/CIRCULATIONAHA.106.679597 17592090
    [Google Scholar]
  62. Christoffersen C. Bollano E. Lindegaard M.L.S. Bartels E.D. Goetze J.P. Andersen C.B. Nielsen L.B. Cardiac lipid accumulation associated with diastolic dysfunction in obese mice. Endocrinology 2003 144 8 3483 3490 10.1210/en.2003‑0242 12865329
    [Google Scholar]
  63. Semeniuk L.M. Kryski A.J. Severson D.L. Echocardiographic assessment of cardiac function in diabetic db/db and transgenic db/db -hGLUT4 mice. Am. J. Physiol. Heart Circ. Physiol. 2002 283 3 H976 H982 10.1152/ajpheart.00088.2002 12181126
    [Google Scholar]
  64. Chen X. Liu G. Zhang W. Zhang J. Yan Y. Dong W. Liang E. Zhang Y. Zhang M. Inhibition of MEF2A prevents hyperglycemia-induced extracellular matrix accumulation by blocking Akt and TGF-β1/Smad activation in cardiac fibroblasts. Int. J. Biochem. Cell Biol. 2015 69 52 61 10.1016/j.biocel.2015.10.012 26482596
    [Google Scholar]
  65. Venkatachalam K. Mummidi S. Cortez D.M. Prabhu S.D. Valente A.J. Chandrasekar B. Resveratrol inhibits high glucose-induced PI3K/Akt/ERK-dependent interleukin-17 expression in primary mouse cardiac fibroblasts. Am. J. Physiol. Heart Circ. Physiol. 2008 294 5 H2078 H2087 10.1152/ajpheart.01363.2007 18310510
    [Google Scholar]
  66. Battiprolu P.K. Hojayev B. Jiang N. Wang Z.V. Luo X. Iglewski M. Shelton J.M. Gerard R.D. Rothermel B.A. Gillette T.G. Lavandero S. Hill J.A. Metabolic stress–induced activation of FoxO1 triggers diabetic cardiomyopathy in mice. J. Clin. Invest. 2012 122 3 1109 1118 10.1172/JCI60329 22326951
    [Google Scholar]
  67. De Blasio M.J. Huynh K. Qin C. Rosli S. Kiriazis H. Ayer A. Cemerlang N. Stocker R. Du X.J. McMullen J.R. Ritchie R.H. Therapeutic targeting of oxidative stress with coenzyme Q10 counteracts exaggerated diabetic cardiomyopathy in a mouse model of diabetes with diminished PI3K(p110α) signaling. Free Radic. Biol. Med. 2015 87 137 147 10.1016/j.freeradbiomed.2015.04.028 25937176
    [Google Scholar]
  68. Karwi Q.G. Jörg A.R. Lopaschuk G.D. Allosteric, transcriptional and post-translational control of mitochondrial energy metabolism. Biochem. J. 2019 476 12 1695 1712 10.1042/BCJ20180617 31217327
    [Google Scholar]
/content/journals/cmp/10.2174/0118761429353519250106115016
Loading
/content/journals/cmp/10.2174/0118761429353519250106115016
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: Resveratrol ; Protein kinase B (Akt) ; SIRT1 ; Fibroblasts ; Cardiac fibrosis ; Diabetes
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test