Skip to content
2000
Volume 17, Issue 1
  • ISSN: 1874-4672
  • E-ISSN: 1874-4702
side by side viewer icon HTML

Abstract

Background

This study investigates whether phloretin, a brain-edema inhibitor, can enhance the therapeutic effects of human-derived platelet-rich plasma (hPRP) in reducing brain hemorrhagic volume (BHV) and preserving neurological function in rodents following acute traumatic brain damage (TBD).

Methods

Forty rats were divided into five groups: sham-control, TBD, TBD + phloretin (80 mg/kg/dose intraperitoneally at 30 minutes and on days 2/3 post-TBD), TBD + hPRP (80μL by left intra-carotid-artery injection at 3 hours post-TBD), and TBD + phloretin + hPRP. Cerebral tissues were harvested on day 28 post-TBD for analysis.

Results

Brain MRI on day 28 showed the lowest BHV in the sham-control group and the highest in the TBD group. BHV was significantly lower in the phloretin + hPRP group compared to the phloretin or hPRP alone groups, which had similar BHV. Neurological function followed an inverse pattern to BHV. By day 28, protein levels of upstream (HGMB1, TLR-2, TLR-4, MyD88, Mal, TRAM, TRIF, TRAF6, IKK-α, IKK-ß, p-NF-κB) and downstream (IL-1ß, TNF-α, iNOS) inflammation signalings, apoptosis (caspase3, PARP), and fibrosis (Smad3, TGF-ß) biomarkers, as well as flow cytometric assessment of inflammatory cells (CD11b/c+, Ly6G+, PMO+) and early (AN-V+/PI-) and late (AN-V+/PI+) mononuclear-cell apoptosis, displayed patterns similar to BHV. The number of inflammatory (CD68+, MMP9+) and brain-swelling/myelin-damaged (AQP4+, GFAP+) mediators also followed this pattern, while neuronal-myelin (Doublecortin+, NeuN, nestin) mediators showed an inverse relationship with BHV (all p<0.0001).

Conclusion

Combined phloretin and hPRP therapy is superior to either treatment alone in protecting the brain against TBD, primarily by suppressing inflammatory signaling and brain-swelling biomarkers.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmp/10.2174/0118761429316684240816062458
2024-01-01
2025-05-01
The full text of this item is not currently available.

References

  1. Effects of tranexamic acid on death, disability, vascular occlusive events and other morbidities in patients with acute traumatic brain injury (CRASH-3): a randomised, placebo-controlled trial.Lancet2019394102101713172310.1016/S0140‑6736(19)32233‑031623894
    [Google Scholar]
  2. KhellafA. KhanD.Z. HelmyA. Recent advances in traumatic brain injury.J. Neurol.2019266112878288910.1007/s00415‑019‑09541‑431563989
    [Google Scholar]
  3. GinerJ. Mesa GalánL. Yus TeruelS. Guallar EspallargasM.C. Pérez LópezC. Isla GuerreroA. Roda FradeJ. Traumatic brain injury in the new millennium: new population and new management.Neurología202237538338910.1016/j.nrleng.2019.03.02435672125
    [Google Scholar]
  4. MaasA.I.R. MenonD.K. AdelsonP.D. AndelicN. BellM.J. BelliA. BraggeP. BrazinovaA. BükiA. ChesnutR.M. CiterioG. CoburnM. CooperD.J. CrowderA.T. CzeiterE. CzosnykaM. Diaz-ArrastiaR. DreierJ.P. DuhaimeA.C. ErcoleA. van EssenT.A. FeiginV.L. GaoG. GiacinoJ. Gonzalez-LaraL.E. GruenR.L. GuptaD. HartingsJ.A. HillS. JiangJ. KetharanathanN. KompanjeE.J.O. LanyonL. LaureysS. LeckyF. LevinH. LingsmaH.F. MaegeleM. MajdanM. ManleyG. MarstellerJ. MasciaL. McFadyenC. MondelloS. NewcombeV. PalotieA. ParizelP.M. PeulW. PiercyJ. PolinderS. PuybassetL. RasmussenT.E. RossaintR. SmielewskiP. SöderbergJ. StanworthS.J. SteinM.B. von SteinbüchelN. StewartW. SteyerbergE.W. StocchettiN. SynnotA. Te AoB. TenovuoO. TheadomA. TibboelD. VidettaW. WangK.K.W. WilliamsW.H. WilsonL. YaffeK. AdamsH. AgnolettiV. AllansonJ. AmreinK. AndaluzN. AnkeA. AntoniA. van AsA.B. AudibertG. AzaševacA. AzouviP. AzzoliniM.L. BaciuC. BadenesR. BarlowK.M. BartelsR. BauerfeindU. BeauchampM. BeerD. BeerR. BeldaF.J. BellanderB-M. BellierR. BenaliH. BenardT. BeqiriV. BerettaL. BernardF. BertoliniG. BilottaF. BlaabjergM. den BoogertH. BoutisK. BouzatP. BrooksB. BrorssonC. BullingerM. BurnsE. CalappiE. CameronP. CariseE. Castaño-LeónA.M. CausinF. ChevallardG. ChieregatoA. ChristieB. CnossenM. ColesJ. CollettJ. Della CorteF. CraigW. CsatoG. CsomosA. CurryN. Dahyot-FizelierC. DawesH. DeMatteoC. DepreitereB. DeweyD. van DijckJ. ĐilvesiĐ. DippelD. DizdarevicK. DonoghueE. DuekO. DulièreG-L. DzekoA. EapenG. EmeryC.A. EnglishS. EsserP. EzerE. FabriciusM. FengJ. FergussonD. FigajiA. FlemingJ. FoksK. FranconyG. FreedmanS. FreoU. FrisvoldS.K. GagnonI. GalanaudD. GantnerD. GiraudB. GlockerB. GolubovicJ. Gómez LópezP.A. GordonW.A. GradisekP. GravelJ. GriesdaleD. GrossiF. HaagsmaJ.A. HåbergA.K. HaitsmaI. Van HeckeW. HelbokR. HelsethE. van HeugtenC. HoedemaekersC. HöferS. HortonL. HuiJ. HuijbenJ.A. HutchinsonP.J. JacobsB. van der JagtM. JankowskiS. JanssensK. JelacaB. JonesK.M. KamnitsasK. KapsR. KaranM. KatilaA. KaukonenK-M. De KeyserV. KivisaariR. KoliasA.G. KolumbánB. KolundžijaK. KondziellaD. KoskinenL-O. KovácsN. KramerA. KutsogiannisD. KyprianouT. LagaresA. LamontagneF. LatiniR. LauzierF. LazarI. LedigC. LeferingR. LegrandV. LeviL. LightfootR. LozanoA. MacDonaldS. MajorS. ManaraA. ManhesP. MaréchalH. MartinoC. MasalaA. MassonS. MatternJ. McFadyenB. McMahonC. MeadeM. MeleghB. MenovskyT. MooreL. Morgado CorreiaM. Morganti-KossmannM.C. MuehlanH. MukherjeeP. MurrayL. van der NaaltJ. NegruA. NelsonD. NieboerD. NoirhommeQ. NyirádiJ. OddoM. OkonkwoD.O. OldenbeuvingA.W. OrtolanoF. OsmondM. PayenJ-F. PerlbargV. PersonaP. PichonN. Piippo-KarjalainenA. Pili-FlouryS. PirinenM. PleH. PocaM.A. PostiJ. Van PraagD. PtitoA. RadoiA. RagauskasA. RajR. RealR.G.L. ReedN. RhodesJ. RobertsonC. RockaS. RøeC. RøiseO. RoksG. RosandJ. RosenfeldJ.V. RosenlundC. RosenthalG. RossiS. RueckertD. de RuiterG.C.W. SacchiM. SahakianB.J. SahuquilloJ. SakowitzO. SalvatoG. Sánchez-PorrasR. SándorJ. SanghaG. SchäferN. SchmidtS. SchneiderK.J. SchnyerD. SchöhlH. SchoonmanG.G. SchouR.F. SirÖ. SkandsenT. SmeetsD. SorinolaA. StamatakisE. StevanovicA. StevensR.D. SundströmN. TacconeF.S. TakalaR. TanskanenP. TaylorM.S. TelgmannR. TemkinN. TeodoraniG. ThomasM. ToliasC.M. TrapaniT. TurgeonA. VajkoczyP. ValadkaA.B. ValeinisE. VallanceS. VámosZ. VargioluA. VegaE. VerheydenJ. VikA. VilcinisR. Vleggeert-LankampC. VogtL. VoloviciV. VoormolenD.C. VulekovicP. Vande VyvereT. Van WaesbergheJ. WesselsL. WildschutE. WilliamsG. WinklerM.K.L. WolfS. WoodG. XirouchakiN. YounsiA. ZaaroorM. ZelinkovaV. ZemekR. ZumboF. Traumatic brain injury: integrated approaches to improve prevention, clinical care, and research.Lancet Neurol.20171612987104810.1016/S1474‑4422(17)30371‑X29122524
    [Google Scholar]
  5. RajR. SiironenJ. KivisaariR. HernesniemiJ. SkrifvarsM.B. Predicting outcome after traumatic brain injury: development of prognostic scores based on the IMPACT and the APACHE II.J. Neurotrauma201431201721173210.1089/neu.2014.336124836936
    [Google Scholar]
  6. MaasA.I.R. LingsmaH.F. RoozenbeekB. Predicting outcome after traumatic brain injury.Handb. Clin. Neurol.201512845547410.1016/B978‑0‑444‑63521‑1.00029‑725701901
    [Google Scholar]
  7. ChoiK.S. ChoY. JangB.H. KimW. AhnC. LimT.H. YiH.J. Prognostic role of copeptin after traumatic brain injury: A systematic review and meta-analysis of observational studies.Am. J. Emerg. Med.201735101444145010.1016/j.ajem.2017.04.03828545954
    [Google Scholar]
  8. ChoiK.S. KimH.J. ChunH.J. KimJ.M. YiH.J. CheongJ.H. KimC.H. OhS.J. KoY. KimY.S. BakK.H. RyuJ.I. KimW. LimT. AhnH. AhnI.M. LeeS.H. Prognostic role of copeptin after stroke: A systematic review and meta-analysis of observational studies.Sci. Rep.2015511166510.1038/srep1166526119473
    [Google Scholar]
  9. ChartrainA.G. YaegerK. FengR. ThemistocleousM.S. DangayachN.S. MargetisK. HickmanZ.L. Antiepileptics for Post-Traumatic Seizure Prophylaxis after Traumatic Brain Injury.Curr. Pharm. Des.201823426428644110.2174/138161282366617103110013929086674
    [Google Scholar]
  10. LewisS.R. EvansD.J.W. ButlerA.R. Schofield-RobinsonO.J. AldersonP. Hypothermia for traumatic brain injury.Cochrane Libr.201720179CD00104810.1002/14651858.CD001048.pub528933514
    [Google Scholar]
  11. KhanA.D. ElsethA.J. HeadB. RostasJ. DunnJ.A. SchroeppelT.J. GonzalezR.P. Indicators of Survival and Favorable Functional Outcomes after Decompressive Craniectomy: A Multi-Institutional Retrospective Study.Am. Surg.201783883684110.1177/00031348170830083228822387
    [Google Scholar]
  12. SchumacherR. MüriR.M. WalderB. Integrated Health Care Management of Moderate to Severe TBI in Older Patients-A Narrative Review.Curr. Neurol. Neurosci. Rep.201717129210.1007/s11910‑017‑0801‑728986740
    [Google Scholar]
  13. HermanidesJ. PlummerM.P. FinnisM. DeaneA.M. ColesJ.P. MenonD.K. Glycaemic control targets after traumatic brain injury: a systematic review and meta-analysis.Crit. Care20182211110.1186/s13054‑017‑1883‑y29351760
    [Google Scholar]
  14. RhineT. WadeS.L. MakoroffK.L. CassedyA. MichaudL.J. Clinical predictors of outcome following inflicted traumatic brain injury in children.J. Trauma Acute Care Surg.2012734Suppl. 3S248S25310.1097/TA.0b013e31826b006223026962
    [Google Scholar]
  15. LauzierF. TurgeonA.F. BoutinA. ShemiltM. CôtéI. LachanceO. ArchambaultP.M. LamontagneF. MooreL. BernardF. GagnonC. CookD. Clinical outcomes, predictors, and prevalence of anterior pituitary disorders following traumatic brain injury: a systematic review.Crit. Care Med.201442371272110.1097/CCM.000000000000004624247474
    [Google Scholar]
  16. HaghbayanH. BoutinA. LaflammeM. LauzierF. ShemiltM. MooreL. ZarychanskiR. DouvilleV. FergussonD. TurgeonA.F. The prognostic value of MRI in moderate and severe traumatic brain injury: A systematic review and meta-analysis.Crit. Care Med.20174512e1280e128810.1097/CCM.000000000000273129028764
    [Google Scholar]
  17. AppentengR. NelpT. AbdelgadirJ. WeledjiN. HaglundM. SmithE. ObigaO. SakitaF.M. MiguelE.A. VissociC.M. RiceH. VissociJ.R.N. StatonC. A systematic review and quality analysis of pediatric traumatic brain injury clinical practice guidelines.PLoS One2018138e020155010.1371/journal.pone.020155030071052
    [Google Scholar]
  18. HirschiR. RommelC. LetsingerJ. NirulaR. HawrylukG.W.J. Brain Trauma Foundation Guideline Compliance: Results of a Multidisciplinary, International Survey.World Neurosurg.2018116e399e40510.1016/j.wneu.2018.04.21529751187
    [Google Scholar]
  19. MeiC. AndersonV. WaughM.C. CahillL. MorganA.T. GroupT.B.I.G.D. Evidence- and consensus-based guidelines for the management of communication and swallowing disorders following pediatric traumatic brain injury.J. Head Trauma Rehabil.201833532634110.1097/HTR.000000000000036629385009
    [Google Scholar]
  20. LiuH.D. LiW. ChenZ.R. HuY.C. ZhangD.D. ShenW. ZhouM.L. ZhuL. HangC.H. Expression of the NLRP3 inflammasome in cerebral cortex after traumatic brain injury in a rat model.Neurochem. Res.201338102072208310.1007/s11064‑013‑1115‑z23892989
    [Google Scholar]
  21. JayakumarA.R. TongX.Y. Ruiz-CorderoR. BregyA. BetheaJ.R. BramlettH.M. NorenbergM.D. Activation of NF-κB mediates astrocyte swelling and brain edema in traumatic brain injury.J. Neurotrauma201431141249125710.1089/neu.2013.316924471369
    [Google Scholar]
  22. GaoW. ZhaoZ. YuG. ZhouZ. ZhouY. HuT. JiangR. ZhangJ. VEGI attenuates the inflammatory injury and disruption of blood–brain barrier partly by suppressing the TLR4/NF-κB signaling pathway in experimental traumatic brain injury.Brain Res.2015162223023910.1016/j.brainres.2015.04.03526080076
    [Google Scholar]
  23. ChenX. WuS. ChenC. XieB. FangZ. HuW. ChenJ. FuH. HeH. Omega-3 polyunsaturated fatty acid supplementation attenuates microglial-induced inflammation by inhibiting the HMGB1/TLR4/NF-κB pathway following experimental traumatic brain injury.J. Neuroinflammation201714114310.1186/s12974‑017‑0917‑328738820
    [Google Scholar]
  24. MortezaeeK. KhanlarkhaniN. BeyerC. ZendedelA. Inflammasome: Its role in traumatic brain and spinal cord injury.J. Cell. Physiol.201823375160516910.1002/jcp.2628729150951
    [Google Scholar]
  25. HanscomM. LoaneD.J. Shea-DonohueT. Brain-gut axis dysfunction in the pathogenesis of traumatic brain injury.J. Clin. Invest.202113112e14377710.1172/JCI14377734128471
    [Google Scholar]
  26. HuibregtseM.E. BazarianJ.J. ShultzS.R. KawataK. The biological significance and clinical utility of emerging blood biomarkers for traumatic brain injury.Neurosci. Biobehav. Rev.202113043344710.1016/j.neubiorev.2021.08.02934474049
    [Google Scholar]
  27. CaiL. GongQ. QiL. XuT. SuoQ. LiX. WangW. JingY. YangD. XuZ. YuanF. TangY. YangG. DingJ. ChenH. TianH. ACT001 attenuates microglia-mediated neuroinflammation after traumatic brain injury via inhibiting AKT/NFκB/NLRP3 pathway.Cell Commun. Signal.20222015610.1186/s12964‑022‑00862‑y35461293
    [Google Scholar]
  28. VemulaS. RoderK.E. YangT. BhatG.J. ThekkumkaraT.J. AbbruscatoT.J. A functional role for sodium-dependent glucose transport across the blood-brain barrier during oxygen glucose deprivation.J. Pharmacol. Exp. Ther.2009328248749510.1124/jpet.108.14658918981287
    [Google Scholar]
  29. WuC.C. ChenW.H. ZaoB. LaiP.L. LinT.C. LoH.Y. ShiehY.H. WuC.H. DengW.P. Regenerative potentials of platelet-rich plasma enhanced by collagen in retrieving pro-inflammatory cytokine-inhibited chondrogenesis.Biomaterials201132255847585410.1016/j.biomaterials.2011.05.00221616530
    [Google Scholar]
  30. KimH.J. YeomJ.S. KohY.G. YeoJ.E. KangK.T. KangY.M. ChangB.S. LeeC.K. Anti‐inflammatory effect of platelet‐rich plasma on nucleus pulposus cells with response of TNF‐α and IL‐1.J. Orthop. Res.201432455155610.1002/jor.2253224338609
    [Google Scholar]
  31. DayY.J. ChenK.H. ChenY.L. HuangT.H. SungP.H. LeeF.Y. ChenC.H. ChaiH.T. YinT.C. ChiangH.J. ChungS.Y. ChangH.W. YipH.K. Preactivated and disaggregated shape-changed platelets protected against acute respiratory distress syndrome complicated by sepsis through inflammation suppression.Shock201646557558610.1097/SHK.000000000000061727058048
    [Google Scholar]
  32. ChenC.H. ChenY.L. SungP.H. SunC.K. ChenK.H. ChenY.L. HuangT.H. LuH.I. LeeF.Y. SheuJ.J. ChungS.Y. LeeM.S. YipH.K. Effective protection against acute respiratory distress syndrome/sepsis injury by combined adipose-derived mesenchymal stem cells and preactivated disaggregated platelets.Oncotarget2017847824158242910.18632/oncotarget.1931229137274
    [Google Scholar]
  33. ChenY.L. Ping LinY. Pei HsunS. Lin ShaoP. Kan YipH. ChuaS. Protective effects of preactivated and disaggregated shape-changed platelets and human embryonic stem cell-derived exosomes improve neurological function and attenuate brain infarct after acute ischemic stroke.Neuropsychiatry201776100510.4172/Neuropsychiatry.1000308
    [Google Scholar]
  34. ChenK.H. ShaoP.L. LiY.C. ChiangJ.Y. SungP.H. ChienH.W. ShihF.Y. LeeM.S. ChenW.F. YipH.K. Human umbilical cord–derived mesenchymal stem cell therapy effectively protected the brain architecture and neurological function in rat after acute traumatic brain injury.Cell Transplant.20202910.1177/096368972092931333169616
    [Google Scholar]
  35. YipH.K. ChenK.H. DubeyN.K. SunC.K. DengY.H. SuC.W. LoW.C. ChengH.C. DengW.P. Cerebro- and renoprotective activities through platelet-derived biomaterials against cerebrorenal syndrome in rat model.Biomaterials201921411922710.1016/j.biomaterials.2019.11922731174067
    [Google Scholar]
  36. ChenY.L. TsaiT.H. WallaceC.G. ChenY.L. HuangT.H. SungP.H. YuenC.M. SunC.K. LinK.C. ChaiH.T. SheuJ.J. LeeF.Y. YipH.K. Intra-carotid arterial administration of autologous peripheral blood-derived endothelial progenitor cells improves acute ischemic stroke neurological outcomes in rats.Int. J. Cardiol.201520166868310.1016/j.ijcard.2015.03.13726363631
    [Google Scholar]
  37. YipH.K. LeeM.S. LiY.C. ShaoP.L. ChiangJ.Y. SungP.H. YangC.H. ChenK.H. Dipeptidyl Peptidase-4 deficiency effectively protects the brain and neurological function in rodent after acute Hemorrhagic Stroke.Int. J. Biol. Sci.202016163116313210.7150/ijbs.4267733162819
    [Google Scholar]
  38. YangC.C. ChenY.T. WallaceC.G. ChenK.H. ChengB.C. SungP.H. LiY.C. KoS.F. ChangH.W. YipH.K. Early administration of empagliflozin preserved heart function in cardiorenal syndrome in rat.Biomed. Pharmacother.201910965867010.1016/j.biopha.2018.10.09530404073
    [Google Scholar]
  39. YangC.C. SungP.H. ChiangJ.Y. ChaiH.T. ChenC.H. ChuY.C. LiY.C. YipH.K. Combined tacrolimus and melatonin effectively protected kidney against acute ischemia‐reperfusion injury.FASEB J.2021356e2166110.1096/fj.202100174R34029398
    [Google Scholar]
  40. JingliY. JingW. SaeedY. Ischemic brain stroke and mesenchymal stem cells: An overview of molecular mechanisms and therapeutic potential.Stem Cells Int.2022202211510.1155/2022/593024435663353
    [Google Scholar]
  41. ChenY.T. YangC.C. ChiangJ.Y. SungP.H. ShaoP.L. HuangC.R. LeeM.S. YipH.K. Prion protein overexpression in Adipose-Derived Mesenchymal Stem Cells (ADMSCs) effectively protected rodent kidney against ischemia-reperfusion injury Via enhancing atp/mitochondrial biogenesis-role of admsc rejuvenation and proliferation.Cell Transplant.2023320963689723121106710.1177/0963689723121106738078417
    [Google Scholar]
  42. SungP.H. LinH.S. LinW.C. ChangC.C. PeiS.N. MaM.C. ChenK.H. ChiangJ.Y. ChangH.W. LeeF.Y. LeeM.S. YipH.K. Intra-carotid arterial transfusion of autologous circulatory derived CD34+ cells for old ischemic stroke patients - a phase I clinical trial to evaluate safety and tolerability.Am. J. Transl. Res.20181092975298930323884
    [Google Scholar]
  43. LiY. HuangJ. WangJ. XiaS. RanH. GaoL. FengC. GuiL. ZhouZ. YuanJ. Human umbilical cord-derived mesenchymal stem cell transplantation supplemented with curcumin improves the outcomes of ischemic stroke via AKT/GSK-3β/β-TrCP/Nrf2 axis.J. Neuroinflammation2023201497210.1186/s12974‑023‑02738‑536829224
    [Google Scholar]
  44. ChenH. ZhouL. Treatment of ischemic stroke with modified mesenchymal stem cells.Int. J. Med. Sci.20221971155116210.7150/ijms.7416135919816
    [Google Scholar]
  45. ChenK.H. LinK.C. WallaceC.G. LiY.C. ShaoP.L. ChiangJ.Y. SungP.H. YipH.K. Human induced pluripotent stem cell-derived mesenchymal stem cell therapy effectively reduced brain infarct volume and preserved neurological function in rat after acute intracranial hemorrhage.Am. J. Transl. Res.20191196232624831632590
    [Google Scholar]
  46. LinK.C. ChaiH.T. ChenK.H. SungP.H. ChiangJ.Y. ShaoP.L. HuangC.R. LiY.C. KoS.F. YipH.K. Intra-carotid arterial transfusion of circulatory-derived autologous endothelial progenitor cells in rodent after ischemic stroke-evaluating the impact of therapeutic time points on prognostic outcomes.Stem Cell Res. Ther.202011121910.1186/s13287‑020‑01739‑y32503671
    [Google Scholar]
/content/journals/cmp/10.2174/0118761429316684240816062458
Loading
/content/journals/cmp/10.2174/0118761429316684240816062458
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): Acute traumatic brain injury; BHV; Inflammation; MRI; Phloretin; Platelet-rich plasma
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test