Skip to content
2000
Volume 17, Issue 1
  • ISSN: 1874-4672
  • E-ISSN: 1874-4702

Abstract

Objectives

Increasing ratio of bone fragility, and susceptibility to fractures constitutes a major health problem worldwide. Therefore, we aimed to identify new compounds with a potential to increase proliferation and differentiation of bone forming osteoblasts.

Methods

Cellular and molecular assays, such as ALP activity, alizarin staining, and flow cytometry were employed to study effect of 7,3′,4′-Trimethoxyflavone (TMF) on osteogenesis. Moreover, gene expression analysis of certain important genes and transcriptional factors was also performed.

Results

Our findings report for the first time that natural product TMF is capable of enhancing proliferation, and differentiation in osteoblast cells. Results from flow cytometry analysis also indicated that TMF increases the number of cells in S-phase. Furthermore, treatment with TMF altered the expression of osteogenic genes, OCN and Axin-2, indicating possible activation of Wnt signaling pathway.

Conclusion

Taken together, this study identified that 7,3′,4′-Trimethoxyflavone has the potential to enhance osteoblast proliferation and differentiation, possibly through the activation of Wnt/β-catenin pathway. Thus, TMF promotes osteogenesis and thus can contribute in the prevention of bone fragility, and related disorders.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmp/10.2174/0118761429305367240725112731
2024-01-01
2025-05-06
The full text of this item is not currently available.

References

  1. Appelman-DijkstraN. Bone quality evaluation in pituitary diseases.Endoc. Abst.201856S12.210.1530/endoabs.56.S12.2
    [Google Scholar]
  2. HabibS. IqbalR. ShahidM. HabibA. Growing prevalence of osteoporosis in Pakistan: call for action.J. Pak. Med. Assoc.201565223023125842568
    [Google Scholar]
  3. AudranM. ChappardD. LegrandE. LiboubanH. BasléM.F. Bone microarchitecture and bone fragility in men: DXA and histomorphometry in humans and in the orchidectomized rat model.Calcif. Tissue Int.200169421421710.1007/s00223‑001‑1058‑211730253
    [Google Scholar]
  4. KhanA.H. JafriL. AhmedS. NoordinS. Osteoporosis and its perspective in Pakistan: A review of evidence and issues for addressing fragility fractures.Ann. Med. Surg. (Lond.)201829192510.1016/j.amsu.2018.03.01929692892
    [Google Scholar]
  5. JhaS.S. Biologics: Teriparatide and newer anabolics.Indian J. Orthop.202357S1Suppl. 113514610.1007/s43465‑023‑01063‑638107803
    [Google Scholar]
  6. LiJ. MelissaA. Kacena and David L, Stocum. Fracture healing. Basic and Applied Bone Biology.Academic Press201923525310.1016/B978‑0‑12‑813259‑3.00012‑9
    [Google Scholar]
  7. UlivieriF.M. CaudarellaR. CamisascaM. CabriniD.M. MerliI. MessinaC. PiodiL.P. Assessment of bone quality in osteoporosis treatment with bone anabolic agents: Really something new?Curr. Rheumatol. Rev.2018141536110.2174/157339711266616120116232227908253
    [Google Scholar]
  8. MatsumotoC. InoueH. TominariT. WatanabeK. HirataM. MiyauraC. InadaM. Heptamethoxyflavone, a citrus flavonoid, suppresses inflammatory osteoclastogenesis and alveolar bone resorption.Biosci. Biotechnol. Biochem.201579115515810.1080/09168451.2014.95261625175163
    [Google Scholar]
  9. TominariT. HirataM. MatsumotoC. InadaM. MiyauraC. Polymethoxy flavonoids, nobiletin and tangeretin, prevent lipopolysaccharide-induced inflammatory bone loss in an experimental model for periodontitis.J. Pharmacol. Sci.2012119439039410.1254/jphs.11188SC22850615
    [Google Scholar]
  10. TanZ. ChengJ. LiuQ. ZhouL. KennyJ. WangT. LinX. YuanJ. QuinnJ.M.W. TicknerJ. HongG. QinA. ZhaoJ. XuJ. Neohesperidin suppresses osteoclast differentiation, bone resorption and ovariectomised-induced osteoporosis in mice.Mol. Cell. Endocrinol.201743936937810.1016/j.mce.2016.09.02627664516
    [Google Scholar]
  11. ShenC.L. ChyuM.C. Tea flavonoids for bone health: from animals to humans.J. Investig. Med.20166471151115710.1136/jim‑2016‑00019027356546
    [Google Scholar]
  12. CursinoL.M.C. LimaN.M. MurilloR. NunezC.V. MerfortI. HumarM. Isolation of flavonoids from Deguelia duckeana and their effect on cellular viability, AMPK, eEF2, eIF2 and eIF4E.Molecules201621219210.3390/molecules2102019226861281
    [Google Scholar]
  13. NomotoY. HarinantenainaL. SugimotoS. MatsunamiK. OtsukaH. 3,4-seco-24-homo-28-nor-cycloartane and drimane-type sesquiterpenes and their lactams from the EtOAc-soluble fraction of a leaf extract of Cinnamosma fragrans and their biological activity.J. Nat. Med.201468351352010.1007/s11418‑014‑0828‑x24633883
    [Google Scholar]
  14. JeongJ.M. ChoiC.H. Enhancement of paclitaxel transport and cytotoxicity by 7,3′,4′-Trimethoxyflavone, a P-glycoprotein inhibitor.J. Pharm. Pharm. Sci.200710454755310.18433/J3G59F18261374
    [Google Scholar]
  15. KatayamaK. MasuyamaK. YoshiokaS. HasegawaH. MitsuhashiJ. SugimotoY. Flavonoids inhibit breast cancer resistance protein-mediated drug resistance: transporter specificity and structure–activity relationship.Cancer Chemother. Pharmacol.200760678979710.1007/s00280‑007‑0426‑717345086
    [Google Scholar]
  16. NadipellyJ. SayeliV. KadhirveluP. ShanmugasundaramJ. CheriyanB.V. SubramanianV. Effect of certain trimethoxy flavones on paclitaxel - induced peripheral neuropathy in mice.Integr. Med. Res.20187215916710.1016/j.imr.2018.03.00629984177
    [Google Scholar]
  17. SunK.H. KarnaS. MoonY.S. ChoH. ChoiC.H. The wound-healing effect of 7,3′,4′-Trimethoxyflavone through increased levels of prostaglandin E2 by 15-hydroxyprostaglandin dehydrogenase inhibition.Biotechnol. Lett.201739101575158210.1007/s10529‑017‑2386‑228664315
    [Google Scholar]
  18. CarvalhoJ.C.T. FerreiraL.P. da Silva SantosL. CorrêaM.J.C. de Oliveira CamposL.M. BastosJ.K. SartiS.J. Anti-inflammatory activity of flavone and some of its derivates from Virola michelli Heckel.J. Ethnopharmacol.199964217317710.1016/S0378‑8741(98)00109‑310197753
    [Google Scholar]
  19. KawaiiS. IkuinaT. HikimaT. TokiwanoT. YoshizawaY. Relationship between structure and antiproliferative activity of polymethoxyflavones towards HL60 cells.Anticancer Res.201232125239524423225422
    [Google Scholar]
  20. FranceschiR.T. IyerB.S. Relationship between collagen synthesis and expression of the osteoblast phenotype in MC3T3-E1 cells.J. Bone Miner. Res.19927223524610.1002/jbmr.56500702161373931
    [Google Scholar]
  21. SuhK.S. ChonS. ChoiE.M. Bergenin increases osteogenic differentiation and prevents methylglyoxal-induced cytotoxicity in MC3T3-E1 osteoblasts.Cytotechnology201870121522410.1007/s10616‑017‑0135‑y28895006
    [Google Scholar]
  22. XuW HeP HeS CuiP MiY YangY ZhouS Gamma-tocotrienol stimulates the proliferation, differentiation, and mineralization in osteoblastic MC3T3-E1 cells.J. Chem.2018201810.1155/2018/3805932
    [Google Scholar]
  23. YazidM.D. AriffinS.H.Z. SenafiS. RazakM.A. WahabR.M.A. Determination of the differentiation capacities of murines’ primary mononucleated cells and MC3T3-E1 cells.Cancer Cell Int.20101014210.1186/1475‑2867‑10‑4220979664
    [Google Scholar]
  24. BadranS.A. Atia-tul-Wahab FayyazS. MuhammadB.T. ChoudharyM.I. Effect of steroidal hormone pregnenolone on proliferation and differentiation of MC3T3-E1 osteoblast like cells.Lett. Drug Des. Discov.20201791139114510.2174/1570180817666200204110859
    [Google Scholar]
  25. WeinM.N. KronenbergH.M. Regulation of bone remodeling by parathyroid hormone.Cold Spring Harb. Perspect. Med.201888a03123710.1101/cshperspect.a03123729358318
    [Google Scholar]
  26. LiuH. LiuL. RosenC.J. PTH and the regulation of mesenchymal cells within the bone marrow niche.Cells202413540610.3390/cells1305040638474370
    [Google Scholar]
  27. SugimotoE. YamaguchiM. Anabolic effect of genistein in osteoblastic MC3T3-E1 cells.Int. J. Mol. Med.20005551552010.3892/ijmm.5.5.51510762655
    [Google Scholar]
  28. ChibaH. UeharaM. WuJ. WangX. MasuyamaR. SuzukiK. KanazawaK. IshimiY. Hesperidin, a citrus flavonoid, inhibits bone loss and decreases serum and hepatic lipids in ovariectomized mice.J. Nutr.200313361892189710.1093/jn/133.6.189212771335
    [Google Scholar]
  29. FatokunA.A. StoneT.W. SmithR.A. Responses of differentiated MC3T3-E1 osteoblast-like cells to reactive oxygen species.Eur. J. Pharmacol.20085871-3354110.1016/j.ejphar.2008.03.02418448093
    [Google Scholar]
  30. QuarlesL.D. YohayD.A. LeverL.W. CatonR. WenstrupR.J. Distinct proliferative and differentiated stages of murine MC3T3-E1 cells in culture: An in vitro model of osteoblast development.J. Bone Miner. Res.19927668369210.1002/jbmr.56500706131414487
    [Google Scholar]
  31. MatsumotoS. TominariT. MatsumotoC. YoshinouchiS. IchimaruR. WatanabeK. HirataM. GrundlerF. MiyauraC. InadaM. Effects of polymethoxyflavonoids on bone loss induced by estrogen deficiency and by LPS-dependent inflammation in mice.Pharmaceuticals2018111710.3390/ph1101000729361674
    [Google Scholar]
  32. CameronK. TraversP. ChanderC. BucklandT. CampionC. NobleB. Directed osteogenic differentiation of human mesenchymal stem/precursor cells on silicate substituted calcium phosphate.J. Biomed. Mater. Res. A2013101A1132210.1002/jbm.a.3426122733430
    [Google Scholar]
  33. YangD. YuB. SunH. QiuL. The roles of histone demethylase Jmjd3 in osteoblast differentiation and apoptosis.J. Clin. Med.2017632410.3390/jcm603002428241471
    [Google Scholar]
  34. HeJ. GuoJ. JiangB. YaoR. WuY. WuF. Directing the osteoblastic and chondrocytic differentiations of mesenchymal stem cells: matrix vs. induction media.Regen. Biomater.20174526927910.1093/rb/rbx00829026640
    [Google Scholar]
  35. GunturA.R. GerencserA.A. LeP.T. DeMambroV.E. BornsteinS.A. MookerjeeS.A. MaridasD.E. ClemmonsD.E. BrandM.D. RosenC.J. Osteoblast-like MC3T3-E1 cells prefer glycolysis for ATP production but adipocyte-like 3T3-L1 cells prefer oxidative phosphorylation.J. Bone Miner. Res.20183361052106510.1002/jbmr.339029342317
    [Google Scholar]
  36. HosseiniS. Naderi-ManeshH. ValiH. Baghaban EslaminejadM. Azam SayahpourF. SheibaniS. FaghihiS. Contribution of osteocalcin-mimetic peptide enhances osteogenic activity and extracellular matrix mineralization of human osteoblast-like cells.Colloids Surf. B Biointerfaces201917366267110.1016/j.colsurfb.2018.10.03530368214
    [Google Scholar]
  37. GalindoM. PratapJ. YoungD.W. HovhannisyanH. ImH.J. ChoiJ.Y. LianJ.B. SteinJ.L. SteinG.S. van WijnenA.J. The bone-specific expression of Runx2 oscillates during the cell cycle to support a G1-related antiproliferative function in osteoblasts.J. Biol. Chem.200528021202742028510.1074/jbc.M41366520015781466
    [Google Scholar]
  38. PratapJ. GalindoM. ZaidiS.K. VradiiD. BhatB.M. RobinsonJ.A. ChoiJ.Y. KomoriT. SteinJ.L. LianJ.B. SteinG.S. van WijnenA.J. Cell growth regulatory role of Runx2 during proliferative expansion of preosteoblasts.Cancer Res.200363175357536214500368
    [Google Scholar]
  39. LiK. ZhangX. HeB. YangR. ZhangY. ShenZ. ChenP. DuW. Geraniin promotes osteoblast proliferation and differentiation via the activation of Wnt/β-catenin pathway.Biomed. Pharmacother.20189931932410.1016/j.biopha.2018.01.04029353207
    [Google Scholar]
  40. WangD. MaW. WangF. DongJ. WangD. SunB. WangB. Stimulation of Wnt/β-catenin signaling to improve bone development by naringin via interacting with AMPK and Akt.Cell. Physiol. Biochem.20153641563157610.1159/00043031926159568
    [Google Scholar]
  41. GuoC. YangR.J. JangK. ZhouX. LiuY. Protective effects of pretreatment with quercetin against lipopolysaccharide-induced apoptosis and the inhibition of osteoblast differentiation via the MAPK and wnt/β-catenin pathways in MC3T3-E1 cells.Cell. Physiol. Biochem.20174341547156110.1159/00048197829035884
    [Google Scholar]
/content/journals/cmp/10.2174/0118761429305367240725112731
Loading
/content/journals/cmp/10.2174/0118761429305367240725112731
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test