Skip to content
2000
Volume 17, Issue 1
  • ISSN: 1874-4672
  • E-ISSN: 1874-4702
side by side viewer icon HTML

Abstract

Background:

Status Epilepticus (SE) leads to the development of epilepsy with the contribution of endoplasmic reticulum (ER) stress. Uridine, a pyrimidine nucleoside, has been shown to have neuroprotective and antiepileptogenic effects in animal models. This study aimed to determine whether uridine ameliorates ER stress and apoptosis following epileptogenic insult. Secondly, this study aimed to establish the effect of uridine on inflammatory and oxidative stress parameters that contribute to ER stress.

Methods:

Status epilepticus was induced using lithium-pilocarpine in adult male Sprague-Dawley rats. Following SE termination, rats were treated with uridine, 4-phenylbutyric acid (4-PBA), or saline twice daily for 48 h. Expressions of hippocampal glucose-regulated protein 78 (GRP78), Inositol-Requiring Protein 1 (IRE1α), Protein kinase RNA-like Endoplasmic Reticulum Kinase (PERK), and C/EBP Homologous Protein (CHOP) were determined by western blotting 48 h after SE. Uridine's effects on apoptosis, inflammation or oxidation were evaluated by analyses of cleaved caspase-3 and poly(ADP-ribose) polymerase 1 (PARP1) protein expressions or pro-inflammatory cytokine levels or levels of oxidative stress markers, respectively.

Results:

Expressions of all ER stress-related proteins significantly increased 48 h after SE. Uridine treatment markedly decreased GRP78, IRE1α, and CHOP levels. A decrease in the PERK level was observed following the administration of 4-PBA; however, uridine had no effect. Cleaved caspase-3 and PARP1 levels were increased in the SHAM group, while uridine and 4-PBA treatment effectively decreased their expressions. Treatment with uridine significantly reduced Myeloperoxidase (MPO) and Malondialdehyde (MDA) levels while tending to increase Catalase (CAT) and Glutathione Peroxidase (GPx) levels. Uridine treatment also significantly attenuated levels of TNF-α and IL-1β, the pro-inflammatory cytokines, which increased 48 h post-SE.

Conclusion:

Our data indicate that uridine alleviates ER stress after SE. This effect may be attributed to the regulation of inflammation and oxidative stress. Uridine shows promise as a potential preventive agent for epilepsy.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmp/10.2174/0118761429315851240909104349
2024-01-01
2025-05-09
The full text of this item is not currently available.

References

  1. TrinkaE. CockH. HesdorfferD. RossettiA.O. SchefferI.E. ShinnarS. ShorvonS. LowensteinD.H. A definition and classification of status epilepticus – report of the ILAE task force on classification of status epilepticus.Epilepsia201556101515152310.1111/epi.1312126336950
    [Google Scholar]
  2. HesdorfferD.C. LogroscinoG. CascinoG. AnnegersJ.F. HauserW.A. Incidence of status epilepticus in Rochester, Minnesota, 1965-1984.Neurology199850373574110.1212/WNL.50.3.7359521266
    [Google Scholar]
  3. TerroneG. FrigerioF. BalossoS. RavizzaT. VezzaniA. Inflammation and reactive oxygen species in status epilepticus: Biomarkers and implications for therapy.Epilepsy Behav.2019101Pt B106275
    [Google Scholar]
  4. FabisiakT. PatelM. Crosstalk between neuroinflammation and oxidative stress in epilepsy.Front. Cell Dev. Biol.20221097695310.3389/fcell.2022.97695336035987
    [Google Scholar]
  5. LiW. CaoT. LuoC. CaiJ. ZhouX. XiaoX. LiuS. Crosstalk between ER stress, NLRP3 inflammasome, and inflammation.Appl. Microbiol. Biotechnol.2020104146129614010.1007/s00253‑020‑10614‑y32447438
    [Google Scholar]
  6. DandekarA. MendezR. ZhangK. Cross talk between ER stress, oxidative stress, and inflammation in health and disease.Methods Mol. Biol.2015129220521410.1007/978‑1‑4939‑2522‑3_1525804758
    [Google Scholar]
  7. OngG. LogueS.E. Unfolding the interactions between endoplasmic reticulum stress and oxidative stress.Antioxidents202312598110.3390/antiox12050981
    [Google Scholar]
  8. AlmanzaA. CarlessoA. ChinthaC. CreedicanS. DoultsinosD. LeuzziB. LuísA. McCarthyN. MontibellerL. MoreS. PapaioannouA. PüschelF. SassanoM.L. SkokoJ. AgostinisP. de BellerocheJ. ErikssonL.A. FuldaS. GormanA.M. HealyS. KozlovA. Muñoz-PinedoC. RehmM. ChevetE. SamaliA. Endoplasmic reticulum stress signalling – from basic mechanisms to clinical applications.FEBS J.2019286224127810.1111/febs.1460830027602
    [Google Scholar]
  9. HetzC. ZhangK. KaufmanR.J. Mechanisms, regulation and functions of the unfolded protein response.Nat. Rev. Mol. Cell Biol.20202184213810.1038/s41580‑020‑0250‑z
    [Google Scholar]
  10. FuJ. TaoT. LiZ. ChenY. LiJ. PengL. The roles of ER stress in epilepsy: Molecular mechanisms and therapeutic implications.Biomed Pharmacother2020131110658
    [Google Scholar]
  11. YamamotoA. MurphyN. SchindlerC.K. SoN.K. StohrS. TakiW. PrehnJ.H. HenshallD.C. Endoplasmic reticulum stress and apoptosis signaling in human temporal lobe epilepsy.J. Neuropathol. Exp. Neurol.200665321722510.1097/01.jnen.0000202886.22082.2a16651883
    [Google Scholar]
  12. LiuG.L. WangK.Y. GuoH. ZhaoS.J. ShenY. ZhaoY.B. Inositol-requiring protein 1α signaling pathway is activated in the temporal cortex of patients with mesial temporal lobe epilepsy.Neurol. Sci.201334335736410.1007/s10072‑012‑1008‑y22419015
    [Google Scholar]
  13. FuJ. PengL. WangW. HeH. ZengS. ChenT.C. ChenY. Sodium valproate reduces neuronal apoptosis in acute pentylenetetrzole-induced seizures via inhibiting ER stress.Neurochem. Res.201944112517252610.1007/s11064‑019‑02870‑w31512113
    [Google Scholar]
  14. SokkaA.L. PutkonenN. MudoG. PryazhnikovE. ReijonenS. KhirougL. BelluardoN. LindholmD. KorhonenL. Endoplasmic reticulum stress inhibition protects against excitotoxic neuronal injury in the rat brain.J. Neurosci.200727490190810.1523/JNEUROSCI.4289‑06.200717251432
    [Google Scholar]
  15. EngelT. Sanz-RodgriguezA. Jimenez-MateosE.M. ConcannonC.G. Jimenez-PachecoA. MoranC. MesuretG. PetitE. DelantyN. FarrellM.A. O’BrienD.F. PrehnJ.H. LucasJ.J. HenshallD.C. CHOP regulates the p53–MDM2 axis and is required for neuronal survival after seizures.Brain2013136257759210.1093/brain/aws33723361066
    [Google Scholar]
  16. KezukaD. Tkarada-IemataM. HattoriT. MoriK. TakahashiR. KitaoY. HoriO. Deletion of Atf6α enhances kainate-induced neuronal death in mice.Neurochem. Int.201692677410.1016/j.neuint.2015.12.00926724566
    [Google Scholar]
  17. ChenJ. GuoH. ZhengG. ShiZ.N. Region-specific vulnerability to endoplasmic reticulum stress-induced neuronal death in rat brain after status epilepticus.J. Biosci.201338587788610.1007/s12038‑013‑9391‑y24296890
    [Google Scholar]
  18. KoA.R. KimJ.Y. HyunH.W. KimJ.E. endoplasmic reticulum (ER) stress protein responses in relation to spatio-temporal dynamics of astroglial responses to status epilepticus in rats.Neuroscience201530719921410.1016/j.neuroscience.2015.08.06126335380
    [Google Scholar]
  19. CansevM. Uridine and cytidine in the brain: Their transport and utilization.Brain Res. Brain Res. Rev.200652238939710.1016/j.brainresrev.2006.05.00116769123
    [Google Scholar]
  20. LeccaD. CerutiS. Uracil nucleotides: From metabolic intermediates to neuroprotection and neuroinflammation.Biochem. Pharmacol.200875101869188110.1016/j.bcp.2007.12.00918261711
    [Google Scholar]
  21. KennedyE.P. WeissS.B. The function of cytidine coenzymes in the biosynthesis of phospholipides.J. Biol. Chem.1956222119321410.1016/S0021‑9258(19)50785‑213366993
    [Google Scholar]
  22. CansevM. Involvement of uridine-nucleotide-stimulated P2Y receptors in neuronal growth and function.Cent. Nerv. Syst. Agents Med. Chem.20077422322910.2174/187152407783220814
    [Google Scholar]
  23. CansevM. MinbayZ. GorenB. YaylagulE.O. CetinkayaM. KoksalN. AlkanT. Neuroprotective effects of uridine in a rat model of neonatal hypoxic–ischemic encephalopathy.Neurosci. Lett.2013542657010.1016/j.neulet.2013.02.03523458674
    [Google Scholar]
  24. KoyuncuogluT. TurkyilmazM. GorenB. CetinkayaM. CansevM. AlkanT. Uridine protects against hypoxic-ischemic brain injury by reducing histone deacetylase activity in neonatal rats.Restor. Neurol. Neurosci.201533577778410.3233/RNN‑15054926410212
    [Google Scholar]
  25. AlN. CakirA. KocC. CansevM. AlkanT. Antioxidative effects of uridine in a neonatal rat model of hyperoxic brain injury.Turkish J. Med. Sci.20205082059206610.3906/sag‑2002‑14
    [Google Scholar]
  26. GorenB. CakirA. SevincC. Serter KocogluS. OcalanB. OyC. Uridine treatment protects against neonatal brain damage and long-term cognitive deficits caused by hyperoxia.Brain Res.20171676576810.1016/j.brainres.2017.09.010
    [Google Scholar]
  27. GorenB. CakirA. OcalanB. Serter KocogluS. AlkanT. CansevM. KahveciN. Long-term cognitive effects of uridine treatment in a neonatal rat model of hypoxic-ischemic encephalopathy.Brain Res.20171659818710.1016/j.brainres.2017.01.02628126402
    [Google Scholar]
  28. JiangN. ZhaoZ. Intestinal aging is alleviated by uridine via regulating inflammation and oxidative stress in vivo and in vitro.Cell Cycle202221141519153110.1080/15384101.2022.205525235380925
    [Google Scholar]
  29. KovácsZ. KékesiK.A. DobolyiÁ. LakatosR. JuhászG. Absence epileptic activity changing effects of non-adenosine nucleoside inosine, guanosine and uridine in Wistar Albino Glaxo Rijswijk rats.Neuroscience201530059360810.1016/j.neuroscience.2015.05.05426037802
    [Google Scholar]
  30. ZhaoQ. ShatskikhT. MarolewskiA. RuscheJ.R. HolmesG.L. Effects of uridine on kindling.Epilepsy Behav.2008131475110.1016/j.yebeh.2008.02.00218321784
    [Google Scholar]
  31. LiuZ. LiW. GengL. SunL. WangQ. YuY. Cross-species metabolomic analysis identifies uridine as a potent regeneration promoting factor.Cell Discov.20228112210.1038/s41421‑021‑00361‑3
    [Google Scholar]
  32. BankstahlM. BreuerH. LeiterI. MärkelM. BascuñanaP. MichalskiD. Blood–brain barrier leakage during early epileptogenesis is associated with rapid remodeling of the neurovascular unit.eNeuro20185310.1523/ENEURO.0123‑18.2018
    [Google Scholar]
  33. RacineR.J. Modification of seizure activity by electrical stimulation: I. after-discharge threshold.Electroencephalogr. Clin. Neurophysiol.197232326927910.1016/0013‑4694(72)90176‑94110396
    [Google Scholar]
  34. BhardwajA. BhardwajR. DhawanD.K. KaurT. Exploring the effect of endoplasmic reticulum stress inhibition by 4-phenylbutyric acid on ampa-induced hippocampal excitotoxicity in rat brain.Neurotox. Res.2019351839110.1007/s12640‑018‑9932‑030008047
    [Google Scholar]
  35. SheedyC. MooneyC. Jimenez-MateosE. Sanz-RodriguezA. LangaE. MooneyC. De-repression of myelin-regulating gene expression after status epilepticus in mice lacking the C/EBP homologous protein CHOP.Int. J. Physiol. Pathophysiol. Pharmacol.201464185
    [Google Scholar]
  36. KoA.R. KimJ.Y. HyunH.W. KimJ.E. Endothelial NOS activation induces the blood–brain barrier disruption via ER stress following status epilepticus.Brain Res.2015162216317310.1016/j.brainres.2015.06.02026115585
    [Google Scholar]
  37. KimJ.E. SongB.R. YunW. Correlation between laxative effects of uridine and suppression of ER stress in loperamide induced constipated SD rats.Lab Anim. Res.2018334298307
    [Google Scholar]
  38. McCulloughK.D. MartindaleJ.L. KlotzL.O. AwT.Y. HolbrookN.J. Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bcl2 and perturbing the cellular redox state.Mol. Cell. Biol.20012141249125910.1128/MCB.21.4.1249‑1259.200111158311
    [Google Scholar]
  39. MarciniakS.J. YunC.Y. OyadomariS. NovoaI. ZhangY. JungreisR. NagataK. HardingH.P. RonD. CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum.Genes Dev.200418243066307710.1101/gad.125070415601821
    [Google Scholar]
  40. OhokaN. YoshiiS. HattoriT. OnozakiK. HayashiH. TRB3, a novel ER stress-inducible gene, is induced via ATF4–CHOP pathway and is involved in cell death.EMBO J.20052461243125510.1038/sj.emboj.760059615775988
    [Google Scholar]
  41. UranoF. WangX.Z. BertolottiA. ZhangY. ChungP. HardingH.P. Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1.Science20002875453664610.1126/science.287.5453.664
    [Google Scholar]
  42. IurlaroR. Muñoz-PinedoC. Cell death induced by endoplasmic reticulum stress.FEBS J.2016283142640265210.1111/febs.1359826587781
    [Google Scholar]
  43. FujikawaD.G. ShinmeiS.S. ZhaoS. AvilesE.R.Jr Caspase-dependent programmed cell death pathways are not activated in generalized seizure-induced neuronal death.Brain Res.20071135120621810.1016/j.brainres.2006.12.02917204252
    [Google Scholar]
  44. Lopez-MerazM.L. NiquetJ. WasterlainC.G. Distinct caspase pathways mediate necrosis and apoptosis in subpopulations of hippocampal neurons after status epilepticus.Epilepsia201051s3566010.1111/j.1528‑1167.2010.02611.x20618402
    [Google Scholar]
  45. WalkerM.C. Pathophysiology of status epilepticus.Neurosci. Letters20186678491
    [Google Scholar]
  46. FreitasR.M. VasconcelosS.M. SouzaF.C. VianaG.S. FontelesM.M. Oxidative stress in the hippocampus after pilocarpine-induced status epilepticus in Wistar rats.FEBS J.200527261307131210.1111/j.1742‑4658.2004.04537.x15752349
    [Google Scholar]
  47. PearsonJ.N. RowleyS. LiangL.P. WhiteA.M. DayB.J. PatelM. Reactive oxygen species mediate cognitive deficits in experimental temporal lobe epilepsy.Neurobiol. Dis.20158228929710.1016/j.nbd.2015.07.00526184893
    [Google Scholar]
  48. BuschC.J. BinderC.J. Malondialdehyde epitopes as mediators of sterile inflammation.Biochim. Biophys. Acta Mol. Cell Biol. Lipids20171862439840610.1016/j.bbalip.2016.06.01627355566
    [Google Scholar]
  49. RayR.S. KatyalA. Myeloperoxidase: Bridging the gap in neurodegeneration.Neurosci. Biobehav. Rev.20166861162010.1016/j.neubiorev.2016.06.03127343997
    [Google Scholar]
  50. BensonM.J. ManzaneroS. BorgesK. Complex alterations in microglial M1/M2 markers during the development of epilepsy in two mouse models.Epilepsia201556689590510.1111/epi.1296025847097
    [Google Scholar]
  51. ZhangL. LiB. ZhangD. WangZ. ZhaoY. YuQ. Uridine alleviates LPS-induced ARDS and improves insulin sensitivity by decreasing oxidative stress and inflammatory processes.Physiol. Int.2022109221522910.1556/2060.2022.0016935895566
    [Google Scholar]
  52. GuarneriP. GuarneriR. MocciaroC. PiccoliF. Interaction of uridine with GABA binding sites in cerebellar membranes of the rat.Neurochem. Res.19838121537154510.1007/BF009641556324012
    [Google Scholar]
  53. CrowleyT. CryanJ.F. DownerE.J. O’LearyO.F. Inhibiting neuroinflammation: The role and therapeutic potential of GABA in neuro-immune interactions.Brain Behav. Immun.20165426027710.1016/j.bbi.2016.02.00126851553
    [Google Scholar]
  54. VezzaniA. FrenchJ. BartfaiT. BaramT.Z. The role of inflammation in epilepsy.Nat. Rev. Neurol.201171314010.1038/nrneurol.2010.17821135885
    [Google Scholar]
  55. WuZ. NiuJ. XueH. WangS. ZhaoP. Sodium 4-phenylbutyrate protects hypoxic-ischemic brain injury via attenuating endoplasmic reticulum stress in neonatal rats.Front. Behav. Neurosci.20211563214310.3389/fnbeh.2021.63214333643009
    [Google Scholar]
  56. YokoiN. FukataY. KaseD. MiyazakiT. JaegleM. OhkawaT. Chemical corrector treatment ameliorates increased seizure susceptibility in a mouse model of familial epilepsy.Nat. Med.20142111926
    [Google Scholar]
  57. BerthierA. PayáM. García-CabreroA.M. BallesterM.I. HerediaM. SerratosaJ.M. SánchezM.P. SanzP. Pharmacological interventions to ameliorate neuropathological symptoms in a mouse model of lafora disease.Mol. Neurobiol.20165321296130910.1007/s12035‑015‑9091‑825627694
    [Google Scholar]
  58. ZengM. SangW. ChenS. ChenR. ZhangH. XueF. LiZ. LiuY. GongY. ZhangH. KongX. 4-PBA inhibits LPS-induced inflammation through regulating ER stress and autophagy in acute lung injury models.Toxicol. Lett.2017271263710.1016/j.toxlet.2017.02.02328245985
    [Google Scholar]
  59. QiX. HosoiT. OkumaY. KanekoM. NomuraY. Sodium 4-phenylbutyrate protects against cerebral ischemic injury.Mol. Pharmacol.200466489990810.1124/mol.104.00133915226415
    [Google Scholar]
  60. WisemanR.L. MesgarzadehJ.S. HendershotL.M. Reshaping endoplasmic reticulum quality control through the unfolded protein response.Mol. Cell20228281477149110.1016/j.molcel.2022.03.02535452616
    [Google Scholar]
  61. FerrisS.P. JaberN.S. MolinariM. ArvanP. KaufmanR.J. UDP-glucose:glycoprotein glucosyltransferase (UGGT1) promotes substrate solubility in the endoplasmic reticulum.Mol. Biol. Cell201324172597
    [Google Scholar]
  62. HungH.H. NagatsukaY. SoldàT. KodaliV.K. IwabuchiK. KamiguchiH. KanoK. MatsuoI. IkedaK. KaufmanR.J. MolinariM. GreimelP. HirabayashiY. Selective involvement of UGGT variant: UGGT2 in protecting mouse embryonic fibroblasts from saturated lipid-induced ER stress.Proc. Natl. Acad. Sci. USA202211951e221495711910.1073/pnas.221495711936508673
    [Google Scholar]
/content/journals/cmp/10.2174/0118761429315851240909104349
Loading
/content/journals/cmp/10.2174/0118761429315851240909104349
Loading

Data & Media loading...

Supplements

Supplementary material is available on the Publisher’s website.


  • Article Type:
    Research Article
Keyword(s): 4-PBA; ER stress; Inflammation; Oxidative stress; Status epilepticus; Uridine
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test