Skip to content
2000
Volume 17, Issue 1
  • ISSN: 1874-4672
  • E-ISSN: 1874-4702

Abstract

Introduction

Reduced bedaquiline (BDQ) sensitivity to antimycobacterial drugs has been linked to mutations in the Rv0678, pepQ, and Rv1979c genes of (MTB). Resistance-causing mutations in MTB strains under treatment may have an impact on novel BDQ-based medication regimens intended to reduce treatment time. Due to this, we investigated the genetic basis of BDQ resistance in Turkish TB patients with MTB clinical isolates. Furthermore, mutations in the genes linked to efflux pumps were examined as a backup resistance mechanism.

Methods

We scrutinized 100 MTB clinical isolates from TB patients using convenience sampling. Eighty MDR and twenty pan-drug susceptible MTB strains were among these isolates. Sequencing was performed on all strains, and genomic analyses were performed to find mutations in BDQ resistance-associated genes, including Rv0678 and pepQ(Rv2535c), which correspond to a putative Xaa-Pro aminopeptidase, and Rv1979c. Of the 74 isolates with PepQ (Rv2535c) mutations, four isolates (2.96%) exhibited MGIT-BDQ susceptibility.

Results

Twenty-one (19.11%) of the ninety-one isolates carrying mutations, including Rv1979c, were MGIT-BDQ-sensitive. Nonetheless, out of the 39 isolates with Rv0678 mutations, four (2.96%) were sensitive to MGIT-BDQ. It was found that resistance-associated variants (RAVs) in Rv0678, pepQ, and Rv1979c are often linked to BDQ resistance.

Conclusion

In order to include variations in efflux pump genes in genome-based diagnostics for drug-resistant MTB, further evidence about their involvement in resistance is needed.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmp/10.2174/0118761429314641240815080447
2024-01-01
2025-05-09
The full text of this item is not currently available.

References

  1. AlMatarM. AlMandealH. VarI. KayarB. KöksalF. New drugs for the treatment of Mycobacterium tuberculosis infection.Biomed. Pharmacother.20179154655810.1016/j.biopha.2017.04.10528482292
    [Google Scholar]
  2. GinsbergA.M. SpigelmanM. Challenges in tuberculosis drug research and development.Nat. Med.200713329029410.1038/nm0307‑29017342142
    [Google Scholar]
  3. MahajanR. Bedaquiline: First FDA-approved tuberculosis drug in 40 years.Int. J. Appl. Basic Med. Res.2013311210.4103/2229‑516X.11222823776831
    [Google Scholar]
  4. MaseS. ChorbaT. ParksS. BelangerA. DworkinF. SeaworthB. WarkentinJ. BarryP. ShahN. Bedaquiline for the treatment of multidrug-resistant tuberculosis in the United States.Clin. Infect. Dis.20207141010101610.1093/cid/ciz91431556947
    [Google Scholar]
  5. CholoM.C. MothibaM.T. FourieB. AndersonR. Mechanisms of action and therapeutic efficacies of the lipophilic antimycobacterial agents clofazimine and bedaquiline.J. Antimicrob. Chemother.201627798208
    [Google Scholar]
  6. TweedC.D. DawsonR. BurgerD.A. ConradieA. CrookA.M. MendelC.M. ConradieF. DiaconA.H. NtinginyaN.E. EverittD.E. HarakaF. LiM. van NiekerkC.H. OkweraA. RassoolM.S. ReitherK. SebeM.A. StaplesS. VariavaE. SpigelmanM. Bedaquiline, moxifloxacin, pretomanid, and pyrazinamide during the first 8 weeks of treatment of patients with drug-susceptible or drug-resistant pulmonary tuberculosis: A multicentre, open-label, partially randomised, phase 2b trial.Lancet Respir. Med.20197121048105810.1016/S2213‑2600(19)30366‑231732485
    [Google Scholar]
  7. CDCProvisional CDC Guidance for the Use of Pretomanid as part of a Regimen [Bedaquiline, Pretomanid, and Linezolid (BPaL)] to Treat Drug-Resistant Tuberculosis Disease.2024Available From: https://www.cdc.gov/tb/hcp/treatment/bpal.html
  8. Espinosa-PereiroJ. Sánchez-MontalváA. AznarM.L. EspiauM. MDR tuberculosis treatment.Medicina202258218810.3390/medicina5802018835208510
    [Google Scholar]
  9. AlMatarM. MakkyE.A. YakıcıG. VarI. KayarB. KöksalF. Antimicrobial peptides as an alternative to anti-tuberculosis drugs.Pharmacol. Res.201812828830510.1016/j.phrs.2017.10.01129079429
    [Google Scholar]
  10. WHOTechnical manual for drug susceptibility testing of medicines used in the treatment of tuberculosis.2018Available From: https://www.who.int/publications/i/item/9789241514842
  11. AndriesK. VillellasC. CoeckN. ThysK. GeversT. VranckxL. LounisN. de JongB.C. KoulA. Acquired resistance of Mycobacterium tuberculosis to bedaquiline.PLoS One201497e10213510.1371/journal.pone.010213525010492
    [Google Scholar]
  12. VillellasC. CoeckN. MeehanC.J. LounisN. de JongB. RigoutsL. AndriesK. Unexpected high prevalence of resistance-associated Rv0678 variants in MDR-TB patients without documented prior use of clofazimine or bedaquiline.J. Antimicrob. Chemother.201772368469028031270
    [Google Scholar]
  13. ZimenkovD.V. NosovaE.Y. KulaginaE.V. AntonovaO.V. ArslanbaevaL.R. IsakovaA.I. KrylovaL.Y. PeretokinaI.V. MakarovaM.V. SafonovaS.G. BorisovS.E. GryadunovD.A. Examination of bedaquiline- and linezolid-resistant Mycobacterium tuberculosis isolates from the Moscow region.J. Antimicrob. Chemother.20177271901190610.1093/jac/dkx09428387862
    [Google Scholar]
  14. IsmailN.A. OmarS.V. JosephL. GovenderN. BlowsL. IsmailF. KoornhofH. DreyerA.W. KanigaK. NdjekaN. Defining bedaquiline susceptibility, resistance, cross-resistance and associated genetic determinants: A retrospective cohort study.EBioMedicine20182813614210.1016/j.ebiom.2018.01.00529337135
    [Google Scholar]
  15. NimmoC. MillardJ. BrienK. MoodleyS. van DorpL. LutchminarainK. WolfA. GrantA.D. BallouxF. PymA.S. PadayatchiN. O’DonnellM. Bedaquiline resistance in drug-resistant tuberculosis HIV co-infected patients.Eur. Respir. J.2020556190238310.1183/13993003.02383‑201932060065
    [Google Scholar]
  16. NimmoC. MillardJ. van DorpL. BrienK. MoodleyS. WolfA. GrantA.D. PadayatchiN. PymA.S. BallouxF. O’DonnellM. Population-level emergence of bedaquiline and clofazimine resistance-associated variants among patients with drug-resistant tuberculosis in southern Africa: A phenotypic and phylogenetic analysis.Lancet Microbe202014e165e17410.1016/S2666‑5247(20)30031‑832803174
    [Google Scholar]
  17. VargasR.Jr FreschiL. SpitaleriA. TahseenS. BarilarI. NiemannS. MiottoP. CirilloD.M. KöserC.U. FarhatM.R. Role of epistasis in amikacin, kanamycin, bedaquiline, and clofazimine resistance in Mycobacterium tuberculosis complex.Antimicrob. Agents Chemother.20216511e01164-2110.1128/AAC.01164‑2134460306
    [Google Scholar]
  18. BattagliaS. SpitaleriA. CabibbeA.M. MeehanC.J. UtpatelC. IsmailN. TahseenS. SkrahinaA. AlikhanovaN. Mostofa KamalS.M. BarbovaA. NiemannS. GroenheitR. DeanA.S. ZignolM. RigoutsL. CirilloD.M. Characterization of genomic variants associated with resistance to bedaquiline and delamanid in naive Mycobacterium tuberculosis clinical strains.J. Clin. Microbiol.20205811e01304-2010.1128/JCM.01304‑2032907992
    [Google Scholar]
  19. KaduraS. KingN. NakhoulM. ZhuH. TheronG. KöserC.U. FarhatM. Systematic review of mutations associated with resistance to the new and repurposed Mycobacterium tuberculosis drugs bedaquiline, clofazimine, linezolid, delamanid and pretomanid.J. Antimicrob. Chemother.20207582031204310.1093/jac/dkaa13632361756
    [Google Scholar]
  20. WHO Catalogue of mutations in Mycobacterium tuberculosis complex and their association with drug resistance2021Available From: https://www.who.int/publications/i/item/9789240082410
  21. te BrakeL.H.M. de KnegtG.J. de SteenwinkelJ.E. van DamT.J.P. BurgerD.M. RusselF.G.M. van CrevelR. KoenderinkJ.B. AarnoutseR.E. The role of efflux pumps in tuberculosis treatment and their promise as a target in drug development: Unraveling the black box.Annu. Rev. Pharmacol. Toxicol.201858127129110.1146/annurev‑pharmtox‑010617‑05243828715978
    [Google Scholar]
  22. AlMatarM. AlbarriO. MakkyE.A. KöksalF. Efflux pump inhibitors: New updates.Pharmacol. Rep.202173111610.1007/s43440‑020‑00160‑932946075
    [Google Scholar]
  23. LeeJ.J. LeeS.K. SongN. NathanT.O. SwartsB.M. EumS.Y. EhrtS. ChoS.N. EohH. Transient drug-tolerance and permanent drug-resistance rely on the trehalose-catalytic shift in Mycobacterium tuberculosis.Nat. Commun.2019101292810.1038/s41467‑019‑10975‑731266959
    [Google Scholar]
  24. LiuJ. ShiW. ZhangS. HaoX. MaslovD.A. ShurK.V. BekkerO.B. DanilenkoV.N. ZhangY. Mutations in efflux pump Rv1258c (Tap) cause resistance to pyrazinamide, isoniazid, and streptomycin in M. tuberculosis.Front. Microbiol.20191021610.3389/fmicb.2019.0021630837962
    [Google Scholar]
  25. SzumowskiJ. D. AdamsK. N. EdelsteinP. H. RamakrishnanL. >Antimicrobial efflux pumps and Mycobacterium tuberculosis drug tolerance: Evolutionary considerations.Curr Top Microbiol Immunol.2013374108681
    [Google Scholar]
  26. KanjiA. HasanR. AliA. ZaverA. ZhangY. ImtiazK. ShiW. ClarkT.G. McNerneyR. PhelanJ. RaoS. ShafiqS. HasanZ. Single nucleotide polymorphisms in efflux pumps genes in extensively drug resistant Mycobacterium tuberculosis isolates from Pakistan.Tuberculosis2017107203010.1016/j.tube.2017.07.01229050768
    [Google Scholar]
  27. KoulA. VranckxL. DharN. GöhlmannH.W.H. ÖzdemirE. NeefsJ.M. SchulzM. LuP. MørtzE. McKinneyJ.D. AndriesK. BaldD. Delayed bactericidal response of Mycobacterium tuberculosis to bedaquiline involves remodelling of bacterial metabolism.Nat. Commun.201451336910.1038/ncomms436924569628
    [Google Scholar]
  28. AlbarriO. AlMatarM. VarI. KöksalF. Antimicrobial resistance of clinical Klebsiella pneumoniae isolates: Involvement of AcrAB and OqxAB efflux pumps.Curr. Mol. Pharmacol.2024171e31032321526636999690
    [Google Scholar]
  29. AlbarriO. AlMatarM. ÖcalM.M. KöksalF. Overexpression of efflux pumps AcrAB and OqxAB contributes to ciprofloxacin resistance in clinical isolates of K. pneumoniae.Curr. Protein Pept. Sci.202223535636810.2174/138920372366622063016292035786184
    [Google Scholar]
  30. AlMatarM. VarI. KayarB. KöksalF. Differential expression of resistant and efflux pump genes in MDR-TB isolates.Endocr Metab Immune Disord Drug Targets202020227128710.2174/1871530319666191009153834
    [Google Scholar]
  31. IsmailN. PetersR.P.H. IsmailN.A. OmarS.V. Clofazimine exposure in vitro selects efflux pump mutants and bedaquiline resistance.Antimicrob. Agents Chemother.2019633e02141-1810.1128/AAC.02141‑1830642938
    [Google Scholar]
  32. TheeS. Garcia-PratsA.J. DonaldP.R. HesselingA.C. SchaafH.S. A review of the use of ethionamide and prothionamide in childhood tuberculosis.Tuberculosis20169712613610.1016/j.tube.2015.09.00726586647
    [Google Scholar]
  33. TiberiS. ScardigliA. CentisR. D’AmbrosioL. Muñoz-TorricoM. Salazar-LezamaM.Á. SpanevelloA. ViscaD. ZumlaA. MiglioriG.B. Caminero LunaJ.A. Classifying new anti-tuberculosis drugs: Rationale and future perspectives.Int. J. Infect. Dis.20175618118410.1016/j.ijid.2016.10.02627818361
    [Google Scholar]
  34. RaoS. P. LakshminarayanaS. B. KondreddiR. R. HerveM. CamachoL. R. BifaniP. KalapalaS. K. JiricekJ. MaN. L. TanB. H. Indolcarboxamide is a preclinical candidate for treating multidrug-resistant tuberculosis.Sci Transl Med20135214214ra16810.1126/scitranslmed.3007355
    [Google Scholar]
  35. PrasadM.S. BholeR.P. KhedekarP.B. ChikhaleR.V. Mycobacterium enoyl acyl carrier protein reductase (InhA): A key target for antitubercular drug discovery.Bioorg. Chem.202111510524210.1016/j.bioorg.2021.10524234392175
    [Google Scholar]
  36. RochaD.M.G.C. ViveirosM. SaraivaM. OsórioN.S. The neglected contribution of streptomycin to the tuberculosis drug resistance problem.Genes20211212200310.3390/genes1212200334946952
    [Google Scholar]
  37. ZurenkoG. GibsonJ.K. ShinabargerD.L. AristoffP.A. FordC.W. TarpleyW.G. Oxazolidinones: A new class of antibacterials.Curr. Opin. Pharmacol.20011547047610.1016/S1471‑4892(01)00082‑011764772
    [Google Scholar]
  38. RodríguezJ.C. RuizM. LópezM. RoyoG. In vitro activity of moxifloxacin, levofloxacin, gatifloxacin and linezolid against Mycobacterium tuberculosis.Int. J. Antimicrob. Agents200220646446710.1016/S0924‑8579(02)00239‑X12458143
    [Google Scholar]
  39. AlMatarM. IslamM.R. AlbariO. VarI. KoksalF. Pomegranate as a possible treatment in reducing risk of developing wound healing, obesity, neurodegenerative disorders, and diabetes mellitus.Mini Rev. Med. Chem.201818650752610.2174/138955751766617041911472228425868
    [Google Scholar]
  40. SaeedD.K. ShakoorS. RazzakS.A. HasanZ. SabzwariS.F. AzizullahZ. KanjiA. NasirA. ShafiqS. GhanchiN.K. HasanR. Variants associated with Bedaquiline (BDQ) resistance identified in Rv0678 and efflux pump genes in Mycobacterium tuberculosis isolates from BDQ naïve TB patients in Pakistan.BMC Microbiol.20222216210.1186/s12866‑022‑02475‑435209842
    [Google Scholar]
  41. SnobreJ. VillellasM.C. CoeckN. MuldersW. TzfadiaO. de JongB.C. AndriesK. RigoutsL. Bedaquiline- and clofazimine- selected Mycobacterium tuberculosis mutants: Further insights on resistance driven largely by Rv0678.Sci. Rep.20231311044410.1038/s41598‑023‑36955‑y37369740
    [Google Scholar]
  42. WuS.H. ChanH.H. HsiaoH.C. JouR. Primary bedaquiline resistance among cases of drug-resistant tuberculosis in Taiwan.Front. Microbiol.20211275424910.3389/fmicb.2021.75424934745058
    [Google Scholar]
  43. HartkoornR.C. UplekarS. ColeS.T. Cross-resistance between clofazimine and bedaquiline through upregulation of MmpL5 in Mycobacterium tuberculosis.Antimicrob. Agents Chemother.20145852979298110.1128/AAC.00037‑1424590481
    [Google Scholar]
  44. AlmeidaF.M. VenturaT.L.B. AmaralE.P. RibeiroS.C.M. CalixtoS.D. ManhãesM.R. RezendeA.L. SouzalG.S. de CarvalhoI.S. SilvaE.C. SilvaJ.A. CarvalhoE.C.Q. KritskiA.L. LasunskaiaE.B. Hypervirulent Mycobacterium tuberculosis strain triggers necrotic lung pathology associated with enhanced recruitment of neutrophils in resistant C57BL/6 mice.PLoS One2017123e017371510.1371/journal.pone.017371528306733
    [Google Scholar]
  45. NguyenT.V.A. AnthonyR.M. BañulsA.L. NguyenT.V.A. VuD.H. AlffenaarJ.W.C. Bedaquiline resistance: Its emergence, mechanism, and prevention.Clin. Infect. Dis.201866101625163010.1093/cid/cix99229126225
    [Google Scholar]
  46. KoulA. DendougaN. VergauwenK. MolenberghsB. VranckxL. WillebrordsR. RisticZ. LillH. DorangeI. GuillemontJ. BaldD. AndriesK. Diarylquinolines target subunit c of mycobacterial ATP synthase.Nat. Chem. Biol.20073632332410.1038/nchembio88417496888
    [Google Scholar]
/content/journals/cmp/10.2174/0118761429314641240815080447
Loading
/content/journals/cmp/10.2174/0118761429314641240815080447
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test