Skip to content
2000
Volume 17, Issue 1
  • ISSN: 1874-4672
  • E-ISSN: 1874-4702

Abstract

Background:

Nicosulfuron, a widely used herbicide in crops, has raised concerns due to its escalating presence as an environmental pollutant, particularly in soil and water. The potential adverse effects of nicosulfuron on animals, including reproductive toxicity, have garnered attention.

Objective:

The study aimed to evaluate the reproductive toxicity of nicosulfuron in male mice.

Methods:

Male mice were orally administrated with three different concentration gradients (350, 700, and 1400 mg/kg) of nicosulfuron for 35 days. The investigation delved into sperm quality, testicular structures, and expression of cleaved caspase-3 and NF-κB p65 of the testes.

Results:

The finding unveiled a correlation between nicosulfuron exposure and detrimental effects on sperm quality and alteration of testicular structure. Notably, parameters, such as sperm survival rate (SUR) and sperm motility (MOT), exhibited a decline in relation to increasing nicosulfuron dosages. Moreover, in the mice subjected to higher doses of nicosulfuron, elevated expression of cleaved caspase-3 and NF-κB p65 was observed in the testes. Interestingly, we also observed an increase of NF-κB p65 expression in the mice exposed to the nicosulfuron.

Conclusion:

Our research revealed that exposure to nicosulfuron resulted in compromised sperm quality and alterations in testicular structure. The correlation between nicosulfuron and apoptosis, especially the NF-κB pathway, provided significant insights into the mechanisms underpinning these detrimental effects. These findings significantly enhance our comprehension of the potential hazards associated with nicosulfuron exposure and its impacts on the reproductive health of animals.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmp/10.2174/0118761429282063231119180457
2024-01-30
2025-01-22
Loading full text...

Full text loading...

/deliver/fulltext/cmp/17/1/e18761429282063.html?itemId=/content/journals/cmp/10.2174/0118761429282063231119180457&mimeType=html&fmt=ahah

References

  1. HuangJ.J. WangF. OuyangY. HuangY.Q. JiaC.Y. ZhongH. HaoG.F. HerbiPAD : A free web platform to comprehensively analyze constitutive property and herbicide‐likeness to estimate chemical bioavailability.Pest Manag. Sci.20217731273128110.1002/ps.614033063413
    [Google Scholar]
  2. XuN. WuZ. LiX. YangM. HanJ. LuB. LuB. WangJ. Effects of nicosulfuron on plant growth and sugar metabolism in sweet maize (Zea mays L.).PLoS One20221710e027660610.1371/journal.pone.027660636269745
    [Google Scholar]
  3. DugandzicA.M. Effect of inorganic ions, photosensitisers and scavengers on the photocatalytic degradation of nicosulfuron.J. Photochem. Photobiol.2017336146155
    [Google Scholar]
  4. YousefiM. KamkarB. GherekhlooJ. FaezR. Sulfosulfuron persistence in soil under different cultivation systems of wheat (Triticum aestivum).Pedosphere201626566667510.1016/S1002‑0160(15)60075‑3
    [Google Scholar]
  5. ZhangZ. ZhangY. YangD.C. ZhangJ.L. Expression and functional analysis of three nicosulfuron-degrading enzymes from Bacillus subtilis YB1.J. Environ. Sci. Health B201853747648510.1080/03601234.2018.145534429596028
    [Google Scholar]
  6. CarlesL. JolyM. BonnemoyF. LeremboureM. BatissonI. Besse-HogganP. Identification of sulfonylurea biodegradation pathways enabled by a novel nicosulfuron-transforming strain Pseudomonas fluorescens SG-1: Toxicity assessment and effect of formulation.J. Hazard. Mater.2017324Pt B18419310.1016/j.jhazmat.2016.10.04828340990
    [Google Scholar]
  7. SabadieJ. Nicosulfuron: Alcoholysis, chemical hydrolysis, and degradation on various minerals.J. Agric. Food Chem.200250352653110.1021/jf010873s11804524
    [Google Scholar]
  8. GaoQ. HuoJ. ChenL. YangD. ZhangW. JiaB. XuX. BarnychB. ZhangJ. HammockB.D. Development of immunoassay based on a specific antibody for sensitive detection of nicosulfuron in environment.Sci. Total Environ.2023859Pt 116024710.1016/j.scitotenv.2022.16024736400293
    [Google Scholar]
  9. SondhiaS. WaseemU. VarmaR.K. Fungal degradation of an acetolactate synthase (ALS) inhibitor pyrazosulfuron-ethyl in soil.Chemosphere20139392140214710.1016/j.chemosphere.2013.07.06623993642
    [Google Scholar]
  10. HuangZ. LuZ. HuangH. LiW. CaoY. WeiS. Target site mutations and cytochrome P450s-involved metabolism confer resistance to nicosulfuron in green foxtail (Setaria viridis).Pestic. Biochem. Physiol.202117910495610.1016/j.pestbp.2021.10495634802535
    [Google Scholar]
  11. BringerA. ThomasH. PrunierG. DubillotE. ClérandeauC. PageaudM. CachotJ. Toxicity and risk assessment of six widely used pesticides on embryo-larval development of the Pacific oyster, Crassostrea gigas.Sci. Total Environ.202177914634310.1016/j.scitotenv.2021.14634333744579
    [Google Scholar]
  12. ChangX. FuF. SunY. ZhaoL. LiX. LiY. Coupling multifactor dominated the biochemical response and the alterations of intestinal microflora of earthworm Pheretima guillelmi due to typical herbicides.Environ. Sci. Pollut. Res. Int.20233041941269413710.1007/s11356‑023‑29032‑437526832
    [Google Scholar]
  13. CheronM. CostantiniD. BrischouxF. Nicosulfuron, a sulfonylurea herbicide, alters embryonic development and oxidative status of hatchlings at environmental concentrations in an amphibian species.Ecotoxicol. Environ. Saf.202223211327710.1016/j.ecoenv.2022.11327735123186
    [Google Scholar]
  14. CheronM. KatoA. Ropert-CoudertY. MeyerX. MacIntoshA.J.J. RaoelisonL. BrischouxF. Exposure, but not timing of exposure, to a sulfonylurea herbicide alters larval development and behaviour in an amphibian species.Aquat. Toxicol.202325410635510.1016/j.aquatox.2022.10635536446167
    [Google Scholar]
  15. SantosT.P. MenezesC.W.G. BatistaC.H. BritoE.S.G. TavaresW.S. ZanuncioJ.C. Selectivity of registered pesticides for the corn crop on immature stages of Trichogramma pretiosum (Hymenoptera: Trichogrammatidae).Cienc. Agrotec.201943e02071910.1590/1413‑7054201943020719
    [Google Scholar]
  16. LeiteG.L.D. de PauloP.D. ZanuncioJ.C. TavaresW.D.S. AlvarengaA.C. DouradoL.R. BispoE.P.R. SoaresM.A. Herbicide toxicity, selectivity and hormesis of nicosulfuron on 10 Trichogrammatidae (Hymenoptera) species parasitizing Anagasta ( = Ephestia) kuehniella (Lepidoptera: Pyralidae) eggs.J. Environ. Sci. Health B2017521707610.1080/03601234.2016.122947627726483
    [Google Scholar]
  17. HackenbergerD.K. StjepanovićN. LončarićŽ. HackenbergerB.K. Acute and subchronic effects of three herbicides on biomarkers and reproduction in earthworm Dendrobaena veneta.Chemosphere201820872273010.1016/j.chemosphere.2018.06.04729894974
    [Google Scholar]
  18. HanJ. ZhaoC. GuoH. LiuT. LiY. QiY. DeussingJ.M. ZhangY. TanJ. HanH. MaX. Obesity induces male mice infertility via oxidative stress, apoptosis, and glycolysis.Reproduction20231661273610.1530/REP‑23‑009737140983
    [Google Scholar]
  19. MartinezG. First-line evaluation of sperm parameters in mice (Mus musculus).Bio Protoc.20221220e452910.21769/BioProtoc.452936353714
    [Google Scholar]
  20. EkşiE. YalçınC.H.S. ImamoğluM. AlverA. AydinM.S. SarıhanH. Effects of myricetin on testicular torsion‐detorsion injury in rats.Andrologia20205210e1377510.1111/and.1377532786086
    [Google Scholar]
  21. OeckinghausA. GhoshS. The NF-kappaB family of transcription factors and its regulation.Cold Spring Harb. Perspect. Biol.200914a00003410.1101/cshperspect.a00003420066092
    [Google Scholar]
  22. SunS.C. ChangJ.H. JinJ. Regulation of nuclear factor-κB in autoimmunity.Trends Immunol.201334628228910.1016/j.it.2013.01.00423434408
    [Google Scholar]
  23. VallabhapurapuS. KarinM. Regulation and function of NF-kappaB transcription factors in the immune system.Annu. Rev. Immunol.200927169373310.1146/annurev.immunol.021908.13264119302050
    [Google Scholar]
  24. SunS.C. The non-canonical NF-κB pathway in immunity and inflammation.Nat. Rev. Immunol.201717954555810.1038/nri.2017.5228580957
    [Google Scholar]
  25. GiridharanS. SrinivasanM. Mechanisms of NF-κB p65 and strategies for therapeutic manipulation.J. Inflamm. Res.20181140741910.2147/JIR.S14018830464573
    [Google Scholar]
  26. GhimireK.B. YuY.C. KimH.S. ChungM.I. Evaluation of pre-emergence and post-emergence herbicides for weed management in miscanthus sacchariflorus and miscanthus sinensis.Phyton20239251439146710.32604/phyton.2023.023076
    [Google Scholar]
  27. ZandvakiliO.R. HashemiM. ChaichiM.R. BarkerA.V. Keshavarz AfsharR. MashhadiH.R. OveysiM. SabetM. Role of cover crops and nicosulfuron dosage on weed control and productivity in corn crop.Weed Sci.202068666467210.1017/wsc.2020.71
    [Google Scholar]
  28. MaQ. TanH. SongJ. LiM. WangZ. ParalesR.E. LiL. RuanZ. Effects of long-term exposure to the herbicide nicosulfuron on the bacterial community structure in a factory field.Environ. Pollut.202230711947710.1016/j.envpol.2022.11947735598816
    [Google Scholar]
  29. BretaudS. ToutantJ.P. SaglioP. Effects of carbofuran, diuron, and nicosulfuron on acetylcholinesterase activity in goldfish (Carassius auratus).Ecotoxicol. Environ. Saf.200047211712410.1006/eesa.2000.195411023689
    [Google Scholar]
  30. SaglioP. BretaudS. RivotE. OlsénK.H. Chemobehavioral changes induced by short-term exposures to prochloraz, nicosulfuron, and carbofuran in goldfish.Arch. Environ. Contam. Toxicol.200345451552410.1007/s00244‑003‑2223‑614708668
    [Google Scholar]
  31. SaglioP. OlsénK.H. BretaudS. Behavioral and olfactory responses to prochloraz, bentazone, and nicosulfuron-contaminated flows in goldfish.Arch. Environ. Contam. Toxicol.200141219220010.1007/s00244001023711462143
    [Google Scholar]
  32. OliveiraL.R.A. AlbuquerqueA.O. SilvaC.I.S.M. SilvaJ.M. CasadevallM.Q.F.C. AzevedoO.G.R. AlbuquerqueV.L.S.P. VasconcelosP.R.L. Preconditioning with L-Ala-Gln reduces the expression of inflammatory markers (TNF-α, NF-κB, IL-6 and HO-1) in an injury animal model of cerebrovascular ischemia in Meriones unguiculatus (gerbils).Acta Cir. Bras.2020356e20200060110.1590/s0102‑865020200060000001
    [Google Scholar]
  33. JinH. HaichengY. CaiyunZ. YongZ. JinrongW. The expression of NF-kB signaling pathway was inhibited by silencing TGF-b4 in chicken IECs infected with E. tenella.Braz. J. Poult. Sci.2020224eRBCA-2020-133810.1590/1806‑9061‑2020‑1338
    [Google Scholar]
  34. KhanM.A. RubersonJ.R. Lethal effects of selected novel pesticides on immature stages of Trichogramma pretiosum (Hymenoptera: Trichogrammatidae).Pest Manag. Sci.201773122465247210.1002/ps.463928600808
    [Google Scholar]
  35. YouY. The acute toxicity and risk assessment of four multi-combination nicosulfuron to apis mellifera and trichogramma ostriniae.Asian J. Ecotoxicol.2018136298306
    [Google Scholar]
/content/journals/cmp/10.2174/0118761429282063231119180457
Loading
/content/journals/cmp/10.2174/0118761429282063231119180457
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test