Skip to content
2000
Volume 17, Issue 1
  • ISSN: 1874-4672
  • E-ISSN: 1874-4702

Abstract

Guanine nucleotide exchange factor H1 (GEF-H1) is a unique protein modulated by the GDP/GTP exchange. As a regulator of the Rho-GTPase family, GEF-H1 can be activated through a microtubule-depended mechanism and phosphorylation regulation, enabling it to perform various pivotal biological functions across multiple cellular activities. These include the regulation of Rho-GTPase, cytoskeleton formation, cellular barrier, cell cycle, mitosis, cell differentiation, and vesicle trafficking. Recent studies have revealed its crucial effect on the tumor microenvironment (TME) components, promoting tumor initiation and progress. Consequently, an in-depth exploration of GEF-H1’s biological roles and association with tumors holds promise for its potential as a valuable molecular target in tumor treatment.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmp/10.2174/0118761429274883231129103220
2024-01-30
2025-01-22
Loading full text...

Full text loading...

/deliver/fulltext/cmp/17/1/e18761429274883.html?itemId=/content/journals/cmp/10.2174/0118761429274883231129103220&mimeType=html&fmt=ahah

References

  1. Arrazola SastreA. Luque MontoroM. Gálvez-MartínP. LacerdaH.M. LuciaA. LlaveroF. ZugazaJ.L. Small GTPases of the ras and rho families switch on/off signaling pathways in neurodegenerative diseases.Int. J. Mol. Sci.20202117631210.3390/ijms2117631232878220
    [Google Scholar]
  2. SternS. HiltonB.J. BurnsideE.R. DuprazS. HandleyE.E. GonyerJ.M. BrakebuschC. BradkeF. RhoA drives actin compaction to restrict axon regeneration and astrocyte reactivity after CNS injury.Neuron20211092134363455.e910.1016/j.neuron.2021.08.01434508667
    [Google Scholar]
  3. TyckaertF. ZaninN. MorsommeP. RenardH.F. Rac1, the actin cytoskeleton and microtubules are key players in clathrin-independent endophilin-A3-mediated endocytosis.J. Cell Sci.202213514jcs25962310.1242/jcs.25962335703091
    [Google Scholar]
  4. GarcinC. StraubeA. Microtubules in cell migration.Essays Biochem.201963550952010.1042/EBC2019001631358621
    [Google Scholar]
  5. LavanderosB. SilvaI. CruzP. Orellana-SerradellO. SaldíasM.P. CerdaO. TRP channels regulation of rho GTPases in brain context and diseases.Front. Cell Dev. Biol.2020858297510.3389/fcell.2020.58297533240883
    [Google Scholar]
  6. BlaiseA.M. CorcoranE.E. WattenbergE.S. ZhangY.L. CottrellJ.R. KoleskeA.J. In vitro fluorescence assay to measure GDP/GTP exchange of guanine nucleotide exchange factors of Rho family GTPases.Biol. Methods Protoc.202271bpab02410.1093/biomethods/bpab02435087952
    [Google Scholar]
  7. de SezeJ. GatinJ. CoppeyM. RhoA regulation in space and time.FEBS Lett.2023597683684910.1002/1873‑3468.1457836658753
    [Google Scholar]
  8. ComerS.P. Turning platelets off and on: Role of RhoGAPs and RhoGEFs in platelet activity.Front. Cardiovasc. Med.2022882094510.3389/fcvm.2021.82094535071371
    [Google Scholar]
  9. ChauJ.E. VishK.J. BoggonT.J. StieglerA.L. SH3 domain regulation of RhoGAP activity: Crosstalk between p120RasGAP and DLC1 RhoGAP.Nat. Commun.2022131478810.1038/s41467‑022‑32541‑435970859
    [Google Scholar]
  10. LawR.A. KiepasA. DestaH.E. Perez IpiñaE. ParlaniM. LeeS.J. YankaskasC.L. ZhaoR. MistriotisP. WangN. GuZ. KalabP. FriedlP. CamleyB.A. KonstantopoulosK. Cytokinesis machinery promotes cell dissociation from collectively migrating strands in confinement.Sci. Adv.202392eabq648010.1126/sciadv.abq648036630496
    [Google Scholar]
  11. ComerS. NagyZ. BoladoA. von KriegsheimA. GambaryanS. WalterU. PagelO. ZahediR.P. JurkK. SmolenskiA. The RhoA regulators Myo9b and GEF‐H1 are targets of cyclic nucleotide‐dependent kinases in platelets.J. Thromb. Haemost.202018113002301210.1111/jth.1502832692911
    [Google Scholar]
  12. YangH. ZhangH. YangY. WangX. DengT. LiuR. NingT. BaiM. LiH. ZhuK. LiJ. FanQ. YingG. BaY. Hypoxia induced exosomal circRNA promotes metastasis of Colorectal Cancer via targeting GEF-H1/RhoA axis.Theranostics202010188211822610.7150/thno.4441932724467
    [Google Scholar]
  13. CaoJ. YangT. TangD. ZhouF. QianY. ZouX. Increased expression of GEF-H1 promotes colon cancer progression by RhoA signaling.Pathol. Res. Pract.201921551012101910.1016/j.prp.2019.02.00830846413
    [Google Scholar]
  14. PanM. ChewT. W. WongD. C. P. XiaoJ. OngH. T. ChinJ. F. L. BNIP-2 retards breast cancer cell migration by coupling microtubule-mediated GEF-H1 and RhoA activation.Sci. Adv.20206eaaz1534
    [Google Scholar]
  15. MachinP.A. TsonouE. HornigoldD.C. WelchH.C.E. Rho Family GTPases and Rho GEFs in glucose homeostasis.Cells202110491510.3390/cells1004091533923452
    [Google Scholar]
  16. KimK. LeeS.A. ParkD. Emerging roles of ephexins in physiology and disease.Cells2019828710.3390/cells802008730682817
    [Google Scholar]
  17. Kukimoto-NiinoM. KatsuraK. KaushikR. EharaH. YokoyamaT. Uchikubo-KamoT. NakagawaR. Mishima-TsumagariC. YonemochiM. IkedaM. HanadaK. ZhangK.Y.J. ShirouzuM. Cryo-EM structure of the human ELMO1-DOCK5-Rac1 complex.Sci. Adv.2021730eabg314710.1126/sciadv.abg314734290093
    [Google Scholar]
  18. ZhangY. RecouvreuxM.V. JungM. GalenkampK.M.O. LiY. ZagnitkoO. ScottD.A. LowyA.M. CommissoC. Macropinocytosis in cancer-associated fibroblasts is dependent on CaMKK2/ARHGEF2 signaling and functions to support tumor and stromal cell fitness.Cancer Discov.20211171808182510.1158/2159‑8290.CD‑20‑011933653692
    [Google Scholar]
  19. HuQ. LaiJ. ChenH. CaiY. YueZ. LinH. SunL. Reducing GEF-H1 expression inhibits renal cyst formation, inflammation, and fibrosis via RhoA signaling in nephronophthisis.Int. J. Mol. Sci.2023244350410.3390/ijms2404350436834937
    [Google Scholar]
  20. ColóG.P. SeiwertA. HagaR.B. Lfc subcellular localization and activity is controlled by αv-class integrin.J. Cell Sci.20231369jcs26074010.1242/jcs.26074037129180
    [Google Scholar]
  21. JooE. OlsonM.F. Regulation and functions of the RhoA regulatory guanine nucleotide exchange factor GEF-H1.Small GTPases2021125-635837110.1080/21541248.2020.184088933126816
    [Google Scholar]
  22. TianX. TianY. SarichN. WuT. BirukovaA.A. Novel role of stathmin in microtubule‐dependent control of endothelial permeability.FASEB J.20122693862387410.1096/fj.12‑20774622700873
    [Google Scholar]
  23. SeetharamanS. vianayB. RocaV. FarrugiaA.J. De PascalisC. BoëdaB. DingliF. LoewD. VassilopoulosS. BershadskyA. ThéryM. Etienne-MannevilleS. Microtubules tune mechanosensitive cell responses.Nat. Mater.202221336637710.1038/s41563‑021‑01108‑x34663953
    [Google Scholar]
  24. FineN. GraceyE. DimitriouI. La RoseJ. GlogauerM. RottapelR. GEF-H1 is required for colchicine inhibition of neutrophil rolling and recruitment in mouse models of gout.J. Immunol.2020205123300331010.4049/jimmunol.190078333199537
    [Google Scholar]
  25. BarrosC.S. BossingT. Microtubule disruption upon CNS damage triggers mitotic entry via TNF signaling activation.Cell Rep.202136110932510.1016/j.celrep.2021.10932534233183
    [Google Scholar]
  26. AzoiteiM.L. NohJ. MarstonD.J. RoudotP. MarshallC.B. DaugirdT.A. LisanzaS.L. SandíM.J. IkuraM. SondekJ. RottapelR. HahnK.M. DanuserG. Spatiotemporal dynamics of GEF-H1 activation controlled by microtubule- and Src-mediated pathways.J. Cell Biol.201921893077309710.1083/jcb.20181207331420453
    [Google Scholar]
  27. TonamiK. KuriharaY. ArimaS. NishiyamaK. UchijimaY. AsanoT. SorimachiH. KuriharaH. Calpain-6, a microtubule-stabilizing protein, regulates Rac1 activity and cell motility through interaction with GEF-H1.J. Cell Sci.201112481214122310.1242/jcs.07256121406564
    [Google Scholar]
  28. Salgado-LucioM.L. Ramírez-RamírezD. Jorge-CruzC.Y. Roa-EspitiaA.L. Hernández-GonzálezE.O. FAK regulates actin polymerization during sperm capacitation via the ERK2/GEF-H1/RhoA signaling pathway.J. Cell Sci.2020133832107290
    [Google Scholar]
  29. KakiashviliE. SpeightP. WaheedF. SethR. LodygaM. TanimuraS. KohnoM. RotsteinO.D. KapusA. SzásziK. GEF-H1 mediates tumor necrosis factor-alpha-induced Rho activation and myosin phosphorylation: Role in the regulation of tubular paracellular permeability.J. Biol. Chem.200928417114541146610.1074/jbc.M80593320019261619
    [Google Scholar]
  30. YamahashiY. HatakeyamaM. PAR1b takes the stage in the morphogenetic and motogenetic activity of Helicobacter pylori CagA oncoprotein.Cell Adhes. Migr.201371111710.4161/cam.2193623076215
    [Google Scholar]
  31. WaheedF. DanQ. AmoozadehY. ZhangY. TanimuraS. SpeightP. KapusA. SzásziK. Central role of the exchange factor GEF-H1 in TNF-α–induced sequential activation of Rac, ADAM17/TACE, and RhoA in tubular epithelial cells.Mol. Biol. Cell20132471068108210.1091/mbc.e12‑09‑066123389627
    [Google Scholar]
  32. MeiriD. MarshallC.B. MokadyD. LaRoseJ. MullinM. GingrasA.C. IkuraM. RottapelR. Mechanistic insight into GPCR-mediated activation of the microtubule-associated RhoA exchange factor GEF-H1.Nat. Commun.201451485710.1038/ncomms585725209408
    [Google Scholar]
  33. ChangM. YiL. ZhouZ. YiX. ChenH. LiangX. JinR. HuangX. GEF-H1/RhoA signaling pathway mediates pro-inflammatory effects of NF-κB on CD40L-induced pulmonary endothelial cells.Mol. Immunol.2023157425210.1016/j.molimm.2023.03.01536989839
    [Google Scholar]
  34. KampsD. KochJ. JumaV.O. Campillo-FunolletE. GraesslM. BanerjeeS. MazelT. ChenX. WuY.W. PortetS. MadzvamuseA. NalbantP. DehmeltL. Optogenetic tuning reveals rho amplification-dependent dynamics of a cell contraction signal network.Cell Rep.202033910846710.1016/j.celrep.2020.10846733264629
    [Google Scholar]
  35. BoulterE. EstrachS. TissotF.S. HennrichM.L. ToselloL. CailleteauL. de la BallinaL.R. PisanoS. GavinA.C. FéralC.C. Cell metabolism regulates integrin mechanosensing via an SLC3A2-dependent sphingolipid biosynthesis pathway.Nat. Commun.201891486210.1038/s41467‑018‑07268‑w30451822
    [Google Scholar]
  36. PineauJ. PinonL. MesdjianO. FattaccioliJ. Lennon DuménilA.M. PierobonP. Microtubules restrict F-actin polymerization to the immune synapse via GEF-H1 to maintain polarity in lymphocytes.eLife202211e7833010.7554/eLife.7833036111670
    [Google Scholar]
  37. MüllerP.M. RademacherJ. BagshawR.D. WortmannC. BarthC. van UnenJ. AlpK.M. GiudiceG. EcclesR.L. HeinrichL.E. Pascual-VargasP. Sanchez-CastroM. BrandenburgL. MbamaluG. TucholskaM. SpattL. CzajkowskiM.T. WelkeR.W. ZhangS. NguyenV. RrustemiT. TrnkaP. FreitagK. LarsenB. PoppO. MertinsP. GingrasA.C. RothF.P. ColwillK. BakalC. PertzO. PawsonT. PetsalakiE. RocksO. Systems analysis of RhoGEF and RhoGAP regulatory proteins reveals spatially organized RAC1 signalling from integrin adhesions.Nat. Cell Biol.202022449851110.1038/s41556‑020‑0488‑x32203420
    [Google Scholar]
  38. Lim LamV.K. Hin WongJ.Y. ChewS.Y. ChanB.P. Rac1-GTPase regulates compression-induced actin protrusions (CAPs) of mesenchymal stem cells in 3D collagen micro-tissues.Biomaterials202127412082910.1016/j.biomaterials.2021.12082933933985
    [Google Scholar]
  39. BoiR. BergwallL. EbeforsK. BergöM.O. NyströmJ. BuvallL. Podocyte geranylgeranyl transferase type-I is essential for maintenance of the glomerular filtration barrier.J. Am. Soc. Nephrol.202334464165510.1681/ASN.000000000000006236735952
    [Google Scholar]
  40. FineN. DimitriouI.D. RottapelR. Go with the flow: GEF-H1 mediated shear stress mechanotransduction in neutrophils.Small GTPases2020111233110.1080/21541248.2017.133250529188751
    [Google Scholar]
  41. YeY.P. JiaoH.L. WangS.Y. XiaoZ.Y. ZhangD. QiuJ.F. ZhangL.J. ZhaoY.L. LiT.T. Li-Liang LiaoW.T. DingY.Q. Hypermethylation of DMTN promotes the metastasis of colorectal cancer cells by regulating the actin cytoskeleton through Rac1 signaling activation.J. Exp. Clin. Cancer Res.201837129910.1186/s13046‑018‑0958‑130514346
    [Google Scholar]
  42. YuH. HeJ. SuG. WangY. FangF. YangW. GuK. FuN. WangY. ShenY. LiuX. Fluid shear stress activates YAP to promote epithelial–mesenchymal transition in hepatocellular carcinoma.Mol. Oncol.202115113164318310.1002/1878‑0261.1306134260811
    [Google Scholar]
  43. Raya-SandinoA. Castillo-KauilA. Domínguez-CalderónA. AlarcónL. Flores-BenitezD. Cuellar-PerezF. López-BayghenB. Chávez-MunguíaB. Vázquez-PradoJ. González-MariscalL. Zonula occludens-2 regulates Rho proteins activity and the development of epithelial cytoarchitecture and barrier function.Biochim. Biophys. Acta Mol. Cell Res.20171864101714173310.1016/j.bbamcr.2017.05.01628554775
    [Google Scholar]
  44. HolznerS. BrombergerS. WenzinaJ. NeumüllerK. HolperT.M. PetzelbauerP. BauerW. WeberB. SchossleitnerK. Phosphorylated cingulin localises GEF-H1 at tight junctions to protect vascular barriers in blood endothelial cells.J. Cell Sci.202113417jcs25855710.1242/jcs.25855734345888
    [Google Scholar]
  45. KunimuraK. MikiS. TakashimaM. SuzukiJ. S-1-propenylcysteine improves TNF-α-induced vascular endothelial barrier dysfunction by suppressing the GEF-H1/RhoA/Rac pathway.Cell Commun. Signal.20211911710.1186/s12964‑020‑00692‑w33588881
    [Google Scholar]
  46. SamarinS.N. IvanovA.I. FlatauG. ParkosC.A. NusratA. Rho/Rho-associated kinase-II signaling mediates disassembly of epithelial apical junctions.Mol. Biol. Cell20071893429343910.1091/mbc.e07‑04‑031517596509
    [Google Scholar]
  47. LeguayK. DecelleB. ElkholiI.E. BouvierM. CôtéJ.F. CarrénoS. Interphase microtubule disassembly is a signaling cue that drives cell rounding at mitotic entry.J. Cell Biol.20222216e20210906510.1083/jcb.20210906535482006
    [Google Scholar]
  48. RavindranE. HuH. YuzwaS.A. Hernandez-MirandaL.R. KraemerN. NinnemannO. MusanteL. BoltshauserE. SchindlerD. HübnerA. ReineckerH.C. RopersH.H. BirchmeierC. MillerF.D. WienkerT.F. HübnerC. KaindlA.M. Homozygous ARHGEF2 mutation causes intellectual disability and midbrain-hindbrain malformation.PLoS Genet.2017134e100674610.1371/journal.pgen.100674628453519
    [Google Scholar]
  49. RidgwayL.D. WetzelM.D. NgoJ.A. Erdreich-EpsteinA. MarchettiD. Heparanase-induced GEF-H1 signaling regulates the cytoskeletal dynamics of brain metastatic breast cancer cells.Mol. Cancer Res.201210668970210.1158/1541‑7786.MCR‑11‑053422513363
    [Google Scholar]
  50. NakaoY. NakagawaS. YamashitaY. UmezakiN. OkamotoY. OgataY. Yasuda-YoshiharaN. ItoyamaR. YusaT. YamashitaK. MiyataT. OkabeH. HayashiH. ImaiK. BabaH. High ARHGEF2 (GEF-H1) expression is associated with poor prognosis via cell cycle regulation in patients with pancreatic cancer.Ann. Surg. Oncol.20212884733474310.1245/s10434‑020‑09383‑933393038
    [Google Scholar]
  51. ZhouP. QiY. FangX. YangM. ZhengS. LiaoC. QinF. LiuL. LiH. LiY. RavindranE. SunC. WeiX. WangW. FangL. HanD. PengC. ChenW. LiN. KaindlA.M. HuH. Arhgef2 regulates neural differentiation in the cerebral cortex through mRNA m6A-methylation of Npdc1 and Cend1.iScience202124610264510.1016/j.isci.2021.10264534142067
    [Google Scholar]
  52. TakanoT. WuM. NakamutaS. NaokiH. IshizawaN. NambaT. WatanabeT. XuC. HamaguchiT. YuraY. AmanoM. HahnK.M. KaibuchiK. Discovery of long-range inhibitory signaling to ensure single axon formation.Nat. Commun.2017813310.1038/s41467‑017‑00044‑228652571
    [Google Scholar]
  53. HeL. LiuR. YueH. RenS. ZhuG. GuoY. QinC. Actin-granule formation is an additional step in cardiac myofibroblast differentiation.Ann. Transl. Med.20219216510.21037/atm‑20‑823133569467
    [Google Scholar]
  54. ChanD.C.H. XuJ. VujovicA. WongN. GordonV. de RooijL.P.M.H. MoreiraS. JoyceC.E. La RoseJ. SandíM.J. DobleB.W. NovinaC.D. RottapelR.K. HopeK.J. Arhgef2 regulates mitotic spindle orientation in hematopoietic stem cells and is essential for productive hematopoiesis.Blood Adv.20215163120313310.1182/bloodadvances.202000253934406376
    [Google Scholar]
  55. PleinesI. HagedornI. GuptaS. MayF. ChakarovaL. van HengelJ. OffermannsS. KrohneG. KleinschnitzC. BrakebuschC. NieswandtB. Megakaryocyte-specific RhoA deficiency causes macrothrombocytopenia and defective platelet activation in hemostasis and thrombosis.Blood201211941054106310.1182/blood‑2011‑08‑37219322045984
    [Google Scholar]
  56. EislerS.A. CuradoF. LinkG. SchulzS. NoackM. SteinkeM. OlayioyeM.A. HausserA. A Rho signaling network links microtubules to PKD controlled carrier transport to focal adhesions.eLife20187e3590710.7554/eLife.3590730028295
    [Google Scholar]
  57. BiondiniM. DuclosG. Meyer-SchallerN. SilberzanP. CamonisJ. ParriniM.C. RalB regulates contractility-driven cancer dissemination upon TGFβ stimulation via the RhoGEF GEF-H1.Sci. Rep.2015511175910.1038/srep1175926152517
    [Google Scholar]
  58. PathakR. Delorme-WalkerV.D. HowellM.C. AnselmoA.N. WhiteM.A. BokochG.M. DerMardirossianC. The microtubule-associated Rho activating factor GEF-H1 interacts with exocyst complex to regulate vesicle traffic.Dev. Cell201223239741110.1016/j.devcel.2012.06.01422898781
    [Google Scholar]
  59. SvensmarkJ.H. BrakebuschC. Rho GTPases in cancer: Friend or foe?Oncogene201938507447745610.1038/s41388‑019‑0963‑731427738
    [Google Scholar]
  60. Santos Da SilvaJ. SchubertV. DottiC.G. RhoA. RhoA, Rac1, and cdc42 intracellular distribution shift during hippocampal neuron development.Mol. Cell. Neurosci.20042711710.1016/j.mcn.2004.03.00815345238
    [Google Scholar]
  61. KochD. KhoA.L. FukuzawaA. AlexandrovichA. VanaanenK.J. BeavilA. PfuhlM. ReesM. GautelM. Obscurin Rho GEF domains are phosphorylated by MST-family kinases but do not exhibit nucleotide exchange factor activity towards Rho GTPases in vitro.PLoS One2023184e028445310.1371/journal.pone.028445337079638
    [Google Scholar]
  62. ToffaliL. MontresorA. MirendaM. ScitaG. LaudannaC. SOS1, ARHGEF1, and DOCK2 rho-GEFs mediate JAK-dependent LFA-1 activation by chemokines.J. Immunol.2017198270871710.4049/jimmunol.160093327986909
    [Google Scholar]
  63. O’TooleT.E. BialkowskaK. LiX. FoxJ.E.B. Tiam1 is recruited to β1‐integrin complexes by 14‐3‐3ζ where it mediates integrin‐induced Rac1 activation and motility.J. Cell. Physiol.2011226112965297810.1002/jcp.2264421302295
    [Google Scholar]
  64. HoelzA. JanzJ.M. LawrieS.D. CorwinB. LeeA. SakmarT.P. Crystal structure of the SH3 domain of betaPIX in complex with a high affinity peptide from PAK2.J. Mol. Biol.2006358250952210.1016/j.jmb.2006.02.02716527308
    [Google Scholar]
  65. ZhuY. LiuW. WangZ. WangY. TanC. PanZ. WangA. LiuJ. SunG. ARHGEF2/EDN1 pathway participates in ER stress-related drug resistance of hepatocellular carcinoma by promoting angiogenesis and malignant proliferation.Cell Death Dis.202213765210.1038/s41419‑022‑05099‑835896520
    [Google Scholar]
  66. MizuaraiS. YamanakaK. KotaniH. Mutant p53 induces the GEF-H1 oncogene, a guanine nucleotide exchange factor-H1 for RhoA, resulting in accelerated cell proliferation in tumor cells.Cancer Res.200666126319632610.1158/0008‑5472.CAN‑05‑462916778209
    [Google Scholar]
  67. LuG. TianS. SunY. DongJ. WangN. ZengJ. NieY. WuK. HanY. FengB. ShangY. NEK9, a novel effector of IL-6/STAT3, regulates metastasis of gastric cancer by targeting ARHGEF2 phosphorylation.Theranostics20211152460247410.7150/thno.5316933500736
    [Google Scholar]
  68. KalpanaG. FigyC. FengJ. TiptonC. De CastroJ.N. BachV.N. BorileC. LaSallaA. OdehH.N. YeungM. Garcia-MataR. YeungK.C. The RhoA dependent anti-metastatic function of RKIP in breast cancer.Sci. Rep.20211111745510.1038/s41598‑021‑96709‑634465801
    [Google Scholar]
  69. KellerM. DuboisF. TeulierS. MartinA.P.J. LevalletJ. MailleE. BrosseauS. ElieN. HergovichA. BergotE. CamonisJ. ZalcmanG. LevalletG. NDR2 kinase contributes to cell invasion and cytokinesis defects induced by the inactivation of RASSF1A tumor-suppressor gene in lung cancer cells.J. Exp. Clin. Cancer Res.201938115810.1186/s13046‑019‑1145‑830979377
    [Google Scholar]
  70. WangS. GaoS. ZengY. ZhuL. MoY. WongC.C. BaoY. SuP. ZhaiJ. WangL. SoaresF. XuX. ChenH. HezavehK. CiX. HeA. McGahaT. O’BrienC. RottapelR. KangW. WuJ. ZhengG. CaiZ. YuJ. HeH.H. N6-methyladenosine reader YTHDF1 promotes ARHGEF2 translation and RhoA signaling in colorectal cancer.Gastroenterology202216241183119610.1053/j.gastro.2021.12.26934968454
    [Google Scholar]
  71. YiL. LiangY. ZhaoQ. WangH. DongJ. CX3CL1 induces vertebral microvascular barrier dysfunction via the Src/P115-RhoGEF/ROCK signaling pathway.Front. Cell. Neurosci.2020149610.3389/fncel.2020.0009632390803
    [Google Scholar]
  72. SimonettiS. SerranoC. Hernández-LosaJ. BaguéS. OrellanaR. ValverdeC. LleonartM.E. AizpuruaM. CarlesJ. Ramón y CajalS. RomagosaC. Schwannomas, benign tumors with a senescent phenotype.Histol. Histopathol.201429672173024217963
    [Google Scholar]
  73. PanY. BiF. LiuN. XueY. YaoX. ZhengY. FanD. Expression of seven main Rho family members in gastric carcinoma.Biochem. Biophys. Res. Commun.2004315368669110.1016/j.bbrc.2004.01.10814975755
    [Google Scholar]
  74. LawsonC.D. FanC. MitinN. BakerN.M. GeorgeS.D. GrahamD.M. PerouC.M. BurridgeK. DerC.J. RossmanK.L. Rho GTPase transcriptome analysis reveals oncogenic roles for Rho GTPase-activating proteins in basal-like breast cancers.Cancer Res.201676133826383710.1158/0008‑5472.CAN‑15‑292327216196
    [Google Scholar]
  75. HumphriesB. WangZ. LiY. JhanJ.R. JiangY. YangC. ARHGAP18 downregulation by MIR-200b suppresses metastasis of triple-negative breast cancer by enhancing activation of RhoA.Cancer Res.201777154051406410.1158/0008‑5472.CAN‑16‑314128619708
    [Google Scholar]
  76. FuL. WangX. YangY. ChenM. KuerbanA. LiuH. DongY. CaiQ. MaM. WuX. Septin11 promotes hepatocellular carcinoma cell motility by activating RhoA to regulate cytoskeleton and cell adhesion.Cell Death Dis.202314428010.1038/s41419‑023‑05726‑y37080972
    [Google Scholar]
  77. HanX. JiangS. GuY. DingL. ZhaoE. CaoD. WangX. WenY. PanY. YanX. DuanL. SunM. ZhouT. LiuY. HuH. YeQ. GaoS. HUNK inhibits epithelial-mesenchymal transition of CRC via direct phosphorylation of GEF-H1 and activating RhoA/LIMK-1/CFL-1.Cell Death Dis.202314532710.1038/s41419‑023‑05849‑237193711
    [Google Scholar]
  78. KashyapA.S. Fernandez-RodriguezL. ZhaoY. MonacoG. TrefnyM.P. YoshidaN. MartinK. SharmaA. OliericN. ShahP. StanczakM. KirchhammerN. ParkS.M. WieckowskiS. LaubliH. ZaganiR. KasendaB. SteinmetzM.O. ReineckerH.C. ZippeliusA. GEF-H1 signaling upon microtubule destabilization is required for dendritic cell activation and specific anti-tumor responses.Cell Rep.2019281333673380.e810.1016/j.celrep.2019.08.05731553907
    [Google Scholar]
  79. ZhangL. XiaH. XiaK. LiuX. ZhangX. DaiJ. ZengZ. JiaY. Selenium regulation of the immune function of dendritic cells in mice through the ERK, Akt and RhoA/ROCK pathways.Biol. Trace Elem. Res.202119993360337010.1007/s12011‑020‑02449‑533107016
    [Google Scholar]
  80. TangH.C. LaiY.Y. ZhengJ. JiangH.Y. XuG. miR-223-3p inhibits antigen endocytosis and presentation and promotes the tolerogenic potential of dendritic cells through targeting mannose receptor signaling and rhob.J. Immunol. Res.2020202011710.1155/2020/137945832656268
    [Google Scholar]
  81. KamonH. KawabeT. KitamuraH. LeeJ. KamimuraD. KaishoT. AkiraS. IwamatsuA. KogaH. MurakamiM. HiranoT. TRIF–GEFH1–RhoB pathway is involved in MHCII expression on dendritic cells that is critical for CD4 T-cell activation.EMBO J.200625174108411910.1038/sj.emboj.760128616917499
    [Google Scholar]
  82. LiuS. ZhengQ. ZhangR. LiT. ZhanJ. Construction of a combined random forest and artificial neural network diagnosis model to screening potential biomarker for hepatoblastoma.Pediatr. Surg. Int.202238122023203410.1007/s00383‑022‑05255‑336271952
    [Google Scholar]
  83. ZhengY.B. GongJ.H. ZhenY.S. Focal adhesion kinase is activated by microtubule‐depolymerizing agents and regulates membrane blebbing in human endothelial cells.J. Cell. Mol. Med.202024137228723810.1111/jcmm.1527332452639
    [Google Scholar]
  84. VoloshinT. SchneidermanR.S. VolodinA. ShamirR.R. KaynanN. ZeeviE. KorenL. Klein-GoldbergA. PazR. GiladiM. BomzonZ. WeinbergU. PaltiY. Tumor treating fields (TTFields) hinder cancer cell motility through regulation of microtubule and actin dynamics.Cancers20201210301610.3390/cancers1210301633080774
    [Google Scholar]
  85. SinghA. TijoreA. MargadantF. SimpsonC. ChitkaraD. LowB.C. SheetzM. Enhanced tumor cell killing by ultrasound after microtubule depolymerization.Bioeng. Transl. Med.202163e1023310.1002/btm2.1023334589605
    [Google Scholar]
  86. LiebW.S. LunguC. TamasR. BerrethH. RathertP. StorzP. OlayioyeM.A. HausserA. The GEF‐H1/PKD3 signaling pathway promotes the maintenance of triple‐negative breast cancer stem cells.Int. J. Cancer2020146123423343410.1002/ijc.3279831745977
    [Google Scholar]
  87. YuJ. ChenL. ChenY. HasanM.K. GhiaE.M. ZhangL. WuR. RassentiL.Z. WidhopfG.F. ShenZ. BriggsS.P. KippsT.J. Wnt5a induces ROR1 to associate with 14-3-3ζ for enhanced chemotaxis and proliferation of chronic lymphocytic leukemia cells.Leukemia201731122608261410.1038/leu.2017.13228465528
    [Google Scholar]
/content/journals/cmp/10.2174/0118761429274883231129103220
Loading
/content/journals/cmp/10.2174/0118761429274883231129103220
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): ARHGEF2; Cancer; GEF-H1; Guanine nucleotide exchange factor; Rho GTPase; RhoA
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test