Skip to content
2000
Volume 17, Issue 1
  • ISSN: 1874-4672
  • E-ISSN: 1874-4702

Abstract

Gynecological cancers are serious life-threatening diseases responsible for high morbidity and mortality around the world. Chemotherapy, radiotherapy, and surgery are considered standard therapeutic modalities for these cancers. Since the mentioned treatments have undesirable side effects and are not effective enough, further attempts are required to explore potent complementary and/or alternative treatments. This study was designed to review and discuss the anticancer potentials of baicalin against gynecological cancers based on causal mechanisms and underlying pathways. Traditional medicine has been used for thousands of years in the therapy of diverse human diseases. The therapeutic effects of natural compounds like baicalin have been widely investigated in cancer therapy. Baicalin was effective against gynecological cancers by regulating key cellular mechanisms, including apoptosis, autophagy, and angiogenesis. Baicalin exerted its anticancer property by regulating most molecular signaling pathways, including PI3K/Akt/mTOR, NFκB, MAPK/ERK, and Wnt/β-catenin. However, more numerous experimental and clinical studies should be designed to find the efficacy of baicalin and the related mechanisms of action.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmp/10.2174/0118761429263063231204095516
2024-01-26
2024-11-26
Loading full text...

Full text loading...

/deliver/fulltext/cmp/17/1/e18761429263063.html?itemId=/content/journals/cmp/10.2174/0118761429263063231204095516&mimeType=html&fmt=ahah

References

  1. MedhinL.B. TekleL.A. AchilaO.O. SaidS. Incidence of Cervical, Ovarian and Uterine Cancer in Eritrea: Data from the National Health Laboratory, 2011-2017.Sci. Rep.2020101909910.1038/s41598‑020‑66096‑532499531
    [Google Scholar]
  2. OttevangerP.B. Ovarian cancer stem cells more questions than answers.Semin. Cancer Biol.201744677110.1016/j.semcancer.2017.04.00928450177
    [Google Scholar]
  3. TsikourasP ZervoudisS ManavB TomaraE IatrakisG RomanidisC Cervical cancer: Screening, diagnosis and staging.J BUON.20162123205
    [Google Scholar]
  4. MatulonisU.A. SoodA.K. FallowfieldL. HowittB.E. SehouliJ. KarlanB.Y. Ovarian cancer.Nat. Rev. Dis. Primers2016211606110.1038/nrdp.2016.6127558151
    [Google Scholar]
  5. AshrafizadehM. AhmadiZ. KotlaN.G. AfsharE.G. SamarghandianS. MandegaryA. PardakhtyA. MohammadinejadR. SethiG. Nanoparticles targeting STATs in cancer therapy.Cells20198101158
    [Google Scholar]
  6. BrooksR.A. FlemingG.F. LastraR.R. LeeN.K. MoroneyJ.W. SonC.H. TatebeK. VenerisJ.L. Current recommendations and recent progress in endometrial cancer.CA Cancer J. Clin.2019694caac.2156110.3322/caac.2156131074865
    [Google Scholar]
  7. HuQ. ZhangW. WuZ. TianX. XiangJ. LiL. LiZ. PengX. WeiS. MaX. ZhaoY. Baicalin and the liver-gut system: Pharmacological bases explaining its therapeutic effects.Pharmacol. Res.202116510544410.1016/j.phrs.2021.10544433493657
    [Google Scholar]
  8. WangZ. MaL. SuM. ZhouY. MaoK. LiC. PengG. ZhouC. ShenB. DouJ. Baicalin induces cellular senescence in human colon cancer cells via upregulation of DEPP and the activation of Ras/Raf/MEK/ERK signaling.Cell Death Dis.20189221710.1038/s41419‑017‑0223‑029440765
    [Google Scholar]
  9. DiaoX. YangD. ChenY. LiuW. Baicalin suppresses lung cancer growth by targeting PDZ-binding kinase/T-LAK cell-originated protein kinase.Biosci. Rep.2019394BSR2018169210.1042/BSR2018169230898980
    [Google Scholar]
  10. HuangQ. ZhangJ. PengJ. ZhangY. WangL. WuJ. YeL. FangC. Effect of baicalin on proliferation and apoptosis in pancreatic cancer cells.Am. J. Transl. Res.20191195645565431632536
    [Google Scholar]
  11. YuZ. ZhanC. DuH. ZhangL. LiangC. ZhangL. Baicalin suppresses the cell cycle progression and proliferation of prostate cancer cells through the CDK6/FOXM1 axis.Mol. Cell. Biochem.20204691-216917810.1007/s11010‑020‑03739‑132385718
    [Google Scholar]
  12. ZhouX. FuL. WangP. YangL. ZhuX. LiC.G. Drug-herb interactions between Scutellaria baicalensis and pharmaceutical drugs: Insights from experimental studies, mechanistic actions to clinical applications.Biomed. Pharmacother.202113811144510.1016/j.biopha.2021.11144533711551
    [Google Scholar]
  13. de OliveiraM.R. NabaviS.F. HabtemariamS. Erdogan OrhanI. DagliaM. NabaviS.M. The effects of baicalein and baicalin on mitochondrial function and dynamics: A review.Pharmacol. Res.201510029630810.1016/j.phrs.2015.08.02126318266
    [Google Scholar]
  14. YangJ. JiaZ. XiaoZ. ZhaoJ. LuY. ChuL. ShaoH. PeiL. ZhangS. ChenY. Baicalin Rescues Cognitive Dysfunction, Mitigates Neurodegeneration, and Exerts Anti-Epileptic Effects Through Activating TLR4/MYD88/Caspase-3 Pathway in Rats.Drug Des. Devel. Ther.2021153163318010.2147/DDDT.S31407634321866
    [Google Scholar]
  15. SamarghandianS. Azimi-NezhadM. SaminiF. Preventive effect of safranal against oxidative damage in aged male rat brain.Experimental Animals20156416571
    [Google Scholar]
  16. KangC. WangL. KangM. LiuX. FuY. GaoJ. Baicalin alleviates 6-hydroxydopamine-induced neurotoxicity in PC12 cells by down-regulation of microRNA-192-5p.Brain Res.20191708849210.1016/j.brainres.2018.12.01530552896
    [Google Scholar]
  17. LiB. WangM. ChenS. LiM. ZengJ. WuS. TuY. LiY. ZhangR. HuangF. TongX. Baicalin Mitigates the Neuroinflammation through the TLR4/MyD88/NF-κB and MAPK Pathways in LPS-Stimulated BV-2 Microglia.BioMed Res. Int.2022202211510.1155/2022/326344636408278
    [Google Scholar]
  18. LongY. XiangY. LiuS. ZhangY. WanJ. CiZ. CuiM. ShenL. LiN. GuanY. Macrophage membrane modified baicalin liposomes improve brain targeting for alleviating cerebral ischemia reperfusion injury.Nanomedicine20224310254710.1016/j.nano.2022.10254735292367
    [Google Scholar]
  19. WuJ. ChenH. QinJ. ChenN. LuS. JinJ. LiY. Baicalin Improves Cardiac Outcome and Survival by Suppressing Drp1-Mediated Mitochondrial Fission after Cardiac Arrest-Induced Myocardial Damage.Oxid. Med. Cell. Longev.2021202111410.1155/2021/886576233603953
    [Google Scholar]
  20. El-ElaS.R.A. ZaghloulR.A. EissaL.A. Promising cardioprotective effect of baicalin in doxorubicin-induced cardiotoxicity through targeting toll-like receptor 4/nuclear factor-κB and Wnt/β-catenin pathways.Nutrition202210211173210.1016/j.nut.2022.11173235816809
    [Google Scholar]
  21. BaiJ. WangQ. QiJ. YuH. WangC. WangX. RenY. YangF. Promoting effect of baicalin on nitric oxide production in CMECs via activating the PI3K-AKT-eNOS pathway attenuates myocardial ischemia–reperfusion injury.Phytomedicine20196315303510.1016/j.phymed.2019.15303531377586
    [Google Scholar]
  22. XuM. LiX. SongL. Baicalin regulates macrophages polarization and alleviates myocardial ischaemia/reperfusion injury via inhibiting JAK/STAT pathway.Pharm. Biol.202058165566310.1080/13880209.2020.177931832649845
    [Google Scholar]
  23. ZhaoJ WangZ YuanZ LvS SuQ Baicalin ameliorates atherosclerosis by inhibiting NLRP3 inflammasome in apolipoprotein E-deficient mice.Diab Vasc Dis Res.20201761479164120977441
    [Google Scholar]
  24. DindaB. DindaS. DasSharmaS. BanikR. ChakrabortyA. DindaM. Therapeutic potentials of baicalin and its aglycone, baicalein against inflammatory disorders.Eur. J. Med. Chem.2017131688010.1016/j.ejmech.2017.03.00428288320
    [Google Scholar]
  25. ChenH. GaoY. WuJ. ChenY. ChenB. HuJ. ZhouJ. Exploring therapeutic potentials of baicalin and its aglycone baicalein for hematological malignancies.Cancer Lett.2014354151110.1016/j.canlet.2014.08.00325128647
    [Google Scholar]
  26. GongW. ZhaoZ. LiuB. LuL. DongJ. Exploring the chemopreventive properties and perspectives of baicalin and its aglycone baicalein in solid tumors.Eur. J. Med. Chem.201712684485210.1016/j.ejmech.2016.11.05827960146
    [Google Scholar]
  27. SinghS. MeenaA. LuqmanS. Baicalin mediated regulation of key signaling pathways in cancer.Pharmacol. Res.202116410538710.1016/j.phrs.2020.10538733352232
    [Google Scholar]
  28. NaseriM.H. MahdaviM. DavoodiJ. TackallouS.H. GoudarzvandM. NeishabouriS.H. Up regulation of Bax and down regulation of Bcl2 during 3-NC mediated apoptosis in human cancer cells.Cancer Cell Int.20151515510.1186/s12935‑015‑0204‑226074734
    [Google Scholar]
  29. WangN. TangL.J. ZhuG.Q. PengD.Y. WangL. SunF.N. LiQ.L. Apoptosis induced by baicalin involving up-regulation of P53 and bax in MCF-7 cells.J. Asian Nat. Prod. Res.200810121129113510.1080/1028602080241066419031258
    [Google Scholar]
  30. WangY. WangH. ZhouR. ZhongW. LuS. MaZ. ChaiY. Baicalin inhibits human osteosarcoma cells invasion, metastasis, and anoikis resistance by suppressing the transforming growth factor-β1-induced epithelial-to-mesenchymal transition.Anticancer Drugs201728658158710.1097/CAD.000000000000049528379900
    [Google Scholar]
  31. ZhengJ. AsakawaT. ChenY. ZhengZ. ChenB. LinM. LiuT. HuJ. Synergistic effect of baicalin and adriamycin in resistant HL-60/ADM leukaemia cells.Cell. Physiol. Biochem.201743141943010.1159/00048042028869936
    [Google Scholar]
  32. HuangY. HuJ. ZhengJ. LiJ. WeiT. ZhengZ. ChenY. Down-regulation of the PI3K/Akt signaling pathway and induction of apoptosis in CA46 Burkitt lymphoma cells by baicalin.J. Exp. Clin. Cancer Res.20123114810.1186/1756‑9966‑31‑4822607709
    [Google Scholar]
  33. YouJ. ChengJ. YuB. DuanC. PengJ. Baicalin, a Chinese herbal medicine, inhibits the proliferation and migration of human non-small cell lung carcinoma (NSCLC) cells, A549 and H1299, by activating the SIRT1/AMPK signaling pathway.Med. Sci. Monit.2018242126213310.12659/MSM.90962729632297
    [Google Scholar]
  34. BressenotA. MarchalS. BezdetnayaL. GarrierJ. GuilleminF. PlénatF. Assessment of apoptosis by immunohistochemistry to active caspase-3, active caspase-7, or cleaved PARP in monolayer cells and spheroid and subcutaneous xenografts of human carcinoma.J. Histochem. Cytochem.200957428930010.1369/jhc.2008.95204419029405
    [Google Scholar]
  35. TaniguchiK. KarinM. NF-κB, inflammation, immunity and cancer: Coming of age.Nat. Rev. Immunol.201818530932410.1038/nri.2017.14229379212
    [Google Scholar]
  36. JiaY. ChenL. GuoS. LiY. Baicalin induced colon cancer cells apoptosis through miR-217/DKK1-mediated inhibition of Wnt signaling pathway.Mol. Biol. Rep.20194621693170010.1007/s11033‑019‑04618‑930737617
    [Google Scholar]
  37. LiuT.J. HuS. QiuZ.D. LiuD. Anti-Tumor Mechanisms Associated With Regulation of Non-Coding RNA by Active Ingredients of Chinese Medicine: A Review.Front. Oncol.20211063493610.3389/fonc.2020.63493633680956
    [Google Scholar]
  38. BrayF. FerlayJ. SoerjomataramI. SiegelR.L. TorreL.A. JemalA. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.201868639442410.3322/caac.2149230207593
    [Google Scholar]
  39. WoganG.N. HechtS.S. FeltonJ.S. ConneyA.H. LoebL.A. Environmental and chemical carcinogenesis.Semin. Cancer Biol.200414647348610.1016/j.semcancer.2004.06.01015489140
    [Google Scholar]
  40. TeegardenD. RomieuI. LelièvreS.A. Redefining the impact of nutrition on breast cancer incidence: Is epigenetics involved?Nutr. Res. Rev.2012251689510.1017/S095442241100019922853843
    [Google Scholar]
  41. LiN WangZ ZhangY ZhangK XieJ LiuY Curcumin-loaded redox-responsive mesoporous silica nanoparticles for targeted breast cancer therapy.Artif Cells Nanomed Biotechnol.201846sup292193510.1080/21691401.2018.1473412
    [Google Scholar]
  42. TerretC. RussoC. Pharmacotherapeutic Management of Breast Cancer in Elderly Patients: The Promise of Novel Agents.Drugs Aging20183529311510.1007/s40266‑018‑0519‑529388072
    [Google Scholar]
  43. InotaiA. ÁghT. MarisR. ErdősiD. KovácsS. KalóZ. SenkusE. Systematic review of real-world studies evaluating the impact of medication non-adherence to endocrine therapies on hard clinical endpoints in patients with non-metastatic breast cancer.Cancer Treat. Rev.202110010226410.1016/j.ctrv.2021.10226434388473
    [Google Scholar]
  44. BurguinA. DiorioC. DurocherF. Breast Cancer Treatments: Updates and New Challenges.J. Pers. Med.202111880810.3390/jpm1108080834442452
    [Google Scholar]
  45. RegassaH. SourirajanA. KumarV. PandeyS. KumarD. DevK. A Review of Medicinal Plants of the Himalayas with Anti-Proliferative Activity for the Treatment of Various Cancers.Cancers (Basel)20221416389810.3390/cancers1416389836010892
    [Google Scholar]
  46. MvondoMA Wego KamgaingMT Wansi NgnokamSL Aqueous Extract of Dacryodes edulis (Burseraceae) Leaves Inhibited Tumor Growth in Female Wistar Rats with 7,12-Dimethylbenz[a]anthracene-Induced Breast Cancer.Evid Based Complement Alternat Med.202120219960950
    [Google Scholar]
  47. MefegueF.A. MichelT. KamtoE.L.D. KenmogneL.V. AwounfackC.F. NoundouX.S. NdintehD.T. NjamenD. ZingueS. Anti-breast cancer potential of Anonidium mannii (Oliv.) Engl. & Diels barks ethanolic extract: UPLC-ESI-QTOF-MS detection of anticancer alkaloids.J. Ethnopharmacol.202127611413110.1016/j.jep.2021.11413133894284
    [Google Scholar]
  48. DuanX. GuoG. PeiX. WangX. LiL. XiongY. QiuX. Baicalin inhibits cell viability, migration and invasion in breast cancer by regulating miR-338-3p and MORC4.OncoTargets Ther.201912111831119310.2147/OTT.S21710131908485
    [Google Scholar]
  49. GaoY. LiuH. WangH. HuH. HeH. GuN. HanX. GuoQ. LiuD. CuiS. ShaoH. JinC. WuQ. Baicalin inhibits breast cancer development via inhibiting IĸB kinase activation in vitro and in vivo.Int. J. Oncol.20185362727273610.3892/ijo.2018.459430320365
    [Google Scholar]
  50. WangB. HuangT. FangQ. ZhangX. YuanJ. LiM. GeH. Bone-protective and anti-tumor effect of baicalin in osteotropic breast cancer via induction of apoptosis.Breast Cancer Res. Treat.2020184371172110.1007/s10549‑020‑05904‑y32939591
    [Google Scholar]
  51. de AlmodóvarC.R. Ruiz-RuizC. Muñoz-PinedoC. RobledoG. López-RivasA. The differential sensitivity of Bc1-2-overexpressing human breast tumor cells to TRAIL or doxorubicin-induced apoptosis is dependent on Bc1-2 protein levels.Oncogene200120487128713310.1038/sj.onc.120488711704839
    [Google Scholar]
  52. PommierY. SordetO. AntonyS. HaywardR.L. KohnK.W. Apoptosis defects and chemotherapy resistance: Molecular interaction maps and networks.Oncogene200423162934294910.1038/sj.onc.120751515077155
    [Google Scholar]
  53. LinM.Y. ChengW.T. ChengH.C. ChouW.C. ChenH.I. OuH.C. TsaiK.L. Baicalin Enhances Chemosensitivity to Doxorubicin in Breast Cancer Cells via Upregulation of Oxidative Stress-Mediated Mitochondria-Dependent Apoptosis.Antioxidants20211010150610.3390/antiox1010150634679641
    [Google Scholar]
  54. PanY. LinS. XingR. ZhuM. LinB. CuiJ. LiW. GaoJ. ShenL. ZhaoY. GuoM. WangJ.M. HuangJ. LuY. Epigenetic upregulation of metallothionein 2A by diallyl trisulfide enhances chemosensitivity of human gastric cancer cells to docetaxel through attenuating NF-κB activation.Antioxid. Redox Signal.2016241583985410.1089/ars.2014.612826801633
    [Google Scholar]
  55. KaniK. MomotaY. HaradaM. YamamuraY. AotaK. YamanoiT. TakanoH. MotegiK. AzumaM. γ-tocotrienol enhances the chemosensitivity of human oral cancer cells to docetaxel through the downregulation of the expression of NF-κB-regulated anti-apoptotic gene products.Int. J. Oncol.2013421758210.3892/ijo.2012.169223138939
    [Google Scholar]
  56. ShaoN. ChenL.H. YeR.Y. LinY. WangS.M. The depletion of Interleukin-8 causes cell cycle arrest and increases the efficacy of docetaxel in breast cancer cells.Biochem. Biophys. Res. Commun.2013431353554110.1016/j.bbrc.2013.01.02223321310
    [Google Scholar]
  57. ZengA. LiangX. ZhuS. LiuC. LuoX. ZhangQ. SongL. Baicalin, a potent inhibitor of NF-κB signaling pathway, enhances chemosensitivity of breast cancer cells to docetaxel and inhibits tumor growth and metastasis both in vitro and in vivo.Front. Pharmacol.20201187910.3389/fphar.2020.0087932625089
    [Google Scholar]
  58. ZhouT. ZhangA. KuangG. GongX. JiangR. LinD. LiJ. LiH. ZhangX. WanJ. LiH. Baicalin inhibits the metastasis of highly aggressive breast cancer cells by reversing epithelial-to-mesenchymal transition by targeting β-catenin signaling.Oncol. Rep.20173863599360710.3892/or.2017.601129039569
    [Google Scholar]
  59. YangK. ZengL. GeA. ChenZ. BaoT. LongZ. GeJ. HuangL. Investigating the regulation mechanism of baicalin on triple negative breast cancer’s biological network by a systematic biological strategy.Biomed. Pharmacother.201911810925310.1016/j.biopha.2019.10925331545288
    [Google Scholar]
  60. PeiferM. RauskolbC. WilliamsM. RigglemanB. WieschausE. The segment polarity gene armadillo interacts with the wingless signaling pathway in both embryonic and adult pattern formation.Development199111141029104310.1242/dev.111.4.10291879348
    [Google Scholar]
  61. SamarghandianS. BorjiA. HidarTabasi, S. Effects of Cichorium intybus linn on blood glucose, lipid constituents and selected oxidative stress parameters in streptozotocin-induced diabetic rats.Cardiovascular & Haematological Disorders-Drug Targets (Formerly Current Drug Targets-Cardiovascular & Hematological Disorders)199513323123610.1016/0925‑4773(95)00348‑77547463
    [Google Scholar]
  62. PeiferM. BergS. ReynoldsA.B. A repeating amino acid motif shared by proteins with diverse cellular roles.Cell199476578979110.1016/0092‑8674(94)90353‑07907279
    [Google Scholar]
  63. LiuD.K. DongH.F. LiuR.F. XiaoX.L. Baicalin inhibits the TGF-β1/p-Smad3 pathway to suppress epithelial-mesenchymal transition-induced metastasis in breast cancer.Oncotarget202011292863287210.18632/oncotarget.2767732754303
    [Google Scholar]
  64. ChungH. ChoiH.S. SeoE.K. KangD.H. OhE.S. Baicalin and baicalein inhibit transforming growth factor-β1-mediated epithelial-mesenchymal transition in human breast epithelial cells.Biochem. Biophys. Res. Commun.2015458370771310.1016/j.bbrc.2015.02.03225686495
    [Google Scholar]
  65. GeA LiuL DengXg LuoJ XuY. Exploring the Mechanism of Baicalin Intervention in Breast Cancer Based on MicroRNA Microarrays and Bioinformatics Strategies.Evid Based Complement Alternat Med.20212021762441510.1155/2021/7624415
    [Google Scholar]
  66. AsghariF. HaghnavazN. BaradaranB. HemmatzadehM. KazemiT. Tumor suppressor microRNAs: Targeted molecules and signaling pathways in breast cancer.Biomed. Pharmacother.20168130531710.1016/j.biopha.2016.04.01127261608
    [Google Scholar]
  67. ZhouQ. WangS. ZhangH. LuY. WangX. MotooY. SuS. The combination of baicalin and baicalein enhances apoptosis via the ERK/p38 MAPK pathway in human breast cancer cells.Acta Pharmacol. Sin.200930121648165810.1038/aps.2009.16619960010
    [Google Scholar]
  68. LeeD. KoW.K. HwangD.S. HeoD.N. LeeS.J. HeoM. LeeK.S. AhnJ.Y. JoJ. KwonI.K. Use of baicalin-conjugated gold nanoparticles for apoptotic induction of breast cancer cells.Nanoscale Res. Lett.201611138110.1186/s11671‑016‑1586‑327576521
    [Google Scholar]
  69. MiX. HuM. DongM. YangZ. ZhanX. ChangX. LuJ. ChenX. Folic Acid Decorated Zeolitic Imidazolate Framework (ZIF-8) Loaded with Baicalin as a Nano-Drug Delivery System for Breast Cancer Therapy.Int. J. Nanomedicine2021168337835210.2147/IJN.S34076434992370
    [Google Scholar]
  70. VargasA.N. Natural history of ovarian cancer.Ecancermedicalscience2014846525371706
    [Google Scholar]
  71. ZareH. ShafabakhshR. ReiterR.J. AsemiZ. Melatonin is a potential inhibitor of ovarian cancer: Molecular aspects.J. Ovarian Res.20191212610.1186/s13048‑019‑0502‑830914056
    [Google Scholar]
  72. SteinbergaI. JanssonK. SorbeB. Quality Indicators and Survival Outcome in Stage IIIB-IVB Epithelial Ovarian Cancer Treated at a Single Institution.In Vivo20193351521153010.21873/invivo.1163231471400
    [Google Scholar]
  73. GaoC. ZhouY. LiH. CongX. JiangZ. WangX. CaoR. TianW. Antitumor effects of baicalin on ovarian cancer cells through induction of cell apoptosis and inhibition of cell migration in vitro.Mol. Med. Rep.20171668729873410.3892/mmr.2017.775729039573
    [Google Scholar]
  74. ChenJ. LiZ. ChenA. YeX. LuoH. RankinG. ChenY. Inhibitory effect of baicalin and baicalein on ovarian cancer cells.Int. J. Mol. Sci.20131436012602510.3390/ijms1403601223502466
    [Google Scholar]
  75. FarkhondehT. SamarghandianS. Azimin-NezhadM. SaminiF. Effect of chrysin on nociception in formalin test and serum levels of noradrenalin and corticosterone in rats.International journal of clinical and experimental medicine2015822465
    [Google Scholar]
  76. PancieraT. AzzolinL. CordenonsiM. PiccoloS. Mechanobiology of YAP and TAZ in physiology and disease.Nat. Rev. Mol. Cell Biol.2017181275877010.1038/nrm.2017.8728951564
    [Google Scholar]
  77. LiY. WangD. LiuJ. LiY. ChenD. ZhouL. LangT. ZhouQ. Baicalin Attenuates YAP Activity to Suppress Ovarian Cancer Stemness.OncoTargets Ther.2020137151716310.2147/OTT.S25460732801747
    [Google Scholar]
  78. ArbynM. WeiderpassE. BruniL. de SanjoséS. SaraiyaM. FerlayJ. BrayF. Estimates of incidence and mortality of cervical cancer in 2018: A worldwide analysis.Lancet Glob. Health202082e191e20310.1016/S2214‑109X(19)30482‑631812369
    [Google Scholar]
  79. AnttilaT. SaikkuP. KoskelaP. BloiguA. DillnerJ. IkäheimoI. JellumE. LehtinenM. LennerP. HakulinenT. NärvänenA. PukkalaE. ThoresenS. YoungmanL. PaavonenJ. Serotypes of Chlamydia trachomatis and risk for development of cervical squamous cell carcinoma.JAMA20012851475110.1001/jama.285.1.4711150108
    [Google Scholar]
  80. HuK. WangW. LiuX. MengQ. ZhangF. Comparison of treatment outcomes between squamous cell carcinoma and adenocarcinoma of cervix after definitive radiotherapy or concurrent chemoradiotherapy.Radiat. Oncol.201813124910.1186/s13014‑018‑1197‑530558636
    [Google Scholar]
  81. JanicekM.F. AveretteH.E. Cervical cancer: Prevention, diagnosis, and therapeutics.CA Cancer J. Clin.20015129211410.3322/canjclin.51.2.9211577486
    [Google Scholar]
  82. WangR. PanW. JinL. HuangW. LiY. WuD. GaoC. MaD. LiaoS. Human papillomavirus vaccine against cervical cancer: Opportunity and challenge.Cancer Lett.20204718810210.1016/j.canlet.2019.11.03931812696
    [Google Scholar]
  83. Beyranvand NejadE. WeltersM.J.P. ArensR. van der BurgS.H. The importance of correctly timing cancer immunotherapy.Expert Opin. Biol. Ther.2017178710310.1080/14712598.2017.125638827802061
    [Google Scholar]
  84. LaVigneA.W. TriedmanS.A. RandallT.C. TrimbleE.L. ViswanathanA.N. Cervical cancer in low and middle income countries: Addressing barriers to radiotherapy delivery.Gynecol. Oncol. Rep.201722162010.1016/j.gore.2017.08.00428948205
    [Google Scholar]
  85. PaskehMDA MirzaeiS GholamiMH ZarrabiA ZabolianA HashemiM Cervical cancer progression is regulated by SOX transcription factors: Revealing signaling networks and therapeutic strategies.Biomed Pharmacother.2021144112335
    [Google Scholar]
  86. FuZ DiY GaoL WuJ ShiM ZhengF The drug metabolism and pharmacokinetics investigation about baicalin effect and baicalein on mice U14 cervical cancer.J Spectroscopy2015201541710.1155/2015/632062
    [Google Scholar]
  87. ZhangY. Inhibitory effect of baicalin on invasion of cervical cancer HeLa cells and its mechanism.Xi’an Jiaotong Daxue Xuebao. Yixue Ban2016•••599603
    [Google Scholar]
  88. WangQ. XuH. ZhaoX. Baicalin Inhibits Human Cervical Cancer Cells by Suppressing Protein Kinase C/Signal Transducer and Activator of Transcription (PKC/STAT3) Signaling Pathway.Med. Sci. Monit.2018241955196110.12659/MSM.90964029610452
    [Google Scholar]
  89. PengY. FuZ. GuoC-S. ZhangY-X. DiY. JiangB. Effects and mechanism of baicalin on apoptosis of cervical cancer HeLa cells in-vitro.Iranian J Pharmaceut Res.201514125125561931
    [Google Scholar]
  90. JoJ. KoW.K. LeeJ. The effects of baicalin-conjugated gold nanoparticles for inducing apoptosis of cervical cancer cells.J. Nanosci. Nanotechnol.201717118593859710.1166/jnn.2017.15175
    [Google Scholar]
  91. SamarghandianS. Asadi-SamaniM. FarkhondehT. BahmaniM. Assessment the effect of saffron ethanolic extract (Crocus sativus L.) on oxidative damages in aged male rat liver.Der Pharm Lett.20168328390
    [Google Scholar]
  92. SuriV. AroraA. Management of Endometrial Cancer: A Review.Rev. Recent Clin. Trials201510430931610.2174/157488711066615092311522826411949
    [Google Scholar]
  93. KimJ.J. KuritaT. BulunS.E. Progesterone action in endometrial cancer, endometriosis, uterine fibroids, and breast cancer.Endocr. Rev.201334113016210.1210/er.2012‑104323303565
    [Google Scholar]
  94. ChaudhryP. AsselinE. Resistance to chemotherapy and hormone therapy in endometrial cancer.Endocr. Relat. Cancer200916236338010.1677/ERC‑08‑026619190080
    [Google Scholar]
  95. YeramianA GarcíaV BergadàL DomingoM SantacanaM VallsJ Bioluminescence Imaging to Monitor the Effects of the Hsp90 Inhibitor NVP-AUY922 on NF-κB Pathway in Endometrial Cancer.Mol Imaging Biol.201618454556
    [Google Scholar]
  96. KavandiL. LeeL.R. BokhariA.A. PirogJ.E. JiangY. AhmadK.A. SyedV. The Chinese herbs Scutellaria baicalensis and Fritillaria cirrhosa target NFκB to inhibit proliferation of ovarian and endometrial cancer cells.Mol. Carcinog.201554536837810.1002/mc.2210724249479
    [Google Scholar]
  97. BokhariA.A. SyedV. Inhibition of Transforming Growth Factor-β (TGF-β) Signaling by Scutellaria baicalensis and Fritillaria cirrhosa Extracts in Endometrial Cancer.J. Cell. Biochem.201511681797180510.1002/jcb.2513825683036
    [Google Scholar]
  98. I El-GogaryR. GaberS.A.A. NasrM. Polymeric nanocapsular baicalin: Chemometric optimization, physicochemical characterization and mechanistic anticancer approaches on breast cancer cell lines.Sci. Rep.2019911106410.1038/s41598‑019‑47586‑731363132
    [Google Scholar]
  99. ShehattaN.H. OkdaT.M. OmranG.A. Abd-AlhaseebM.M. Baicalin; a promising chemopreventive agent, enhances the antitumor effect of 5-FU against breast cancer and inhibits tumor growth and angiogenesis in Ehrlich solid tumor.Biomed. Pharmacother.202214611259910.1016/j.biopha.2021.11259934968922
    [Google Scholar]
  100. WangX. ZhouQ. DuJ. ZhangH. LuY. SuS. Baicalin suppresses migration, invasion and metastasis of breast cancer via p38MAPK signaling pathway.Anticancer. Agents Med. Chem.201313692393110.2174/1871520611313999014323387975
    [Google Scholar]
  101. LiuZ.H. YangC.X. ZhangL. YangC.Y. XuX.Q. Baicalein, as a Prooxidant, Triggers Mitochondrial Apoptosis in MCF-7 Human Breast Cancer Cells Through Mobilization of Intracellular Copper and Reactive Oxygen Species Generation.OncoTargets Ther.201912107491076110.2147/OTT.S22281931849483
    [Google Scholar]
  102. LanM. KongZ. LiuF. ZouT. LiL. CaiT. TianH. CaiY. Activating caspase-8/Bid/ROS signaling to promote apoptosis of breast cancer cells by folate-modified albumin baicalin-loaded nanoparticles.Nanotechnology2022334343510110.1088/1361‑6528/ac197b34330116
    [Google Scholar]
  103. ChoiB.Y. JooJ.C. LeeY.K. JangI.S. ParkS.J. ParkY.J. Anti-cancer effect of Scutellaria baicalensis in combination with cisplatin in human ovarian cancer cell.BMC Complement. Altern. Med.20171727710.1186/s12906‑017‑1776‑228545442
    [Google Scholar]
  104. HussainI. WaheedS. AhmadK.A. PirogJ.E. SyedV. Scutellaria baicalensis targets the hypoxia‐inducible factor‐1α and enhances cisplatin efficacy in ovarian cancer.J. Cell. Biochem.201811997515752410.1002/jcb.2706329797601
    [Google Scholar]
/content/journals/cmp/10.2174/0118761429263063231204095516
Loading
/content/journals/cmp/10.2174/0118761429263063231204095516
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Baicalin; Breast cancer; Cervical cancer; Endometrial cancer; MAPK/ERK; Ovarian cancer
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test