Skip to content
2000
Volume 17, Issue 1
  • ISSN: 1874-4672
  • E-ISSN: 1874-4702

Abstract

Ischemia-Reperfusion Injury (IRI) is a paradoxical phenomenon where removing the source of injury can cause additional damage. Ischemia reduces ATP production and intracellular pH, reducing oxidative reactions, increasing lactic acid release, and activating anaerobic metabolism. Reperfusion restores aerobic respiration and increases ROS production, leading to malfunction of transmembrane transport, activation of proteases, DNA dissolution, and protein denaturation, leading to apoptotic cell death. Nrf2 is a transcription factor that regulates cellular inflammation and oxidative responses. It is activated by oxidants and electrophiles and enhances detoxifying enzyme expression, maintaining redox homeostasis. It also activates ARE, which activates several ARE-regulated genes that favor cell survival by exhibiting resistance to oxidants and electrophiles. Nrf2 regulates the antioxidant defense system by producing phase II and antioxidant defense enzymes, including HO-1, NQO-1, g-glutamylcysteine synthetase, and rate-limiting enzymes for glutathione synthesis. Nrf2 protects mitochondria from damage and supports mitochondrial function in stress conditions. Resveratrol is a stilbene-based compound with a wide variety of health benefits for humans, including antioxidant, anticarcinogenic, antitumor, and estrogenic/antiestrogenic. Resveratrol protects against IRI through several signaling pathways, including the Nrf2/ARE pathway. Here, we review the studies that investigated the mechanisms of resveratrol protection against IRI through modulation of the Nrf2 signaling pathway.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmp/10.2174/0118761429246578231130064830
2024-01-30
2025-01-22
Loading full text...

Full text loading...

/deliver/fulltext/cmp/17/1/BMS-CMP-2023-14.html?itemId=/content/journals/cmp/10.2174/0118761429246578231130064830&mimeType=html&fmt=ahah

References

  1. KalogerisT. BainesC.P. KrenzM. KorthuisR.J. Ischemia/reperfusion.Compr. Physiol.20167111317010.1002/cphy.c16000628135002
    [Google Scholar]
  2. KalantariH. DasD.K. Physiological effects of resveratrol.Biofactors201036540140610.1002/biof.10020623511
    [Google Scholar]
  3. GokceE. KorkmazE. DelleraE. SandriG. BonferoniM.C. OzerO. Resveratrol-loaded solid lipid nanoparticles versus nanostructured lipid carriers: Evaluation of antioxidant potential for dermal applications.Int. J. Nanomedicine201271841185010.2147/IJN.S2971022605933
    [Google Scholar]
  4. TsaiS.K. HungL.M. FuY.T. ChengH. NienM.W. LiuH.Y. ZhangF.B.Y. HuangS.S. Resveratrol neuroprotective effects during focal cerebral ischemia injury via nitric oxide mechanism in rats.J. Vasc. Surg.200746234635310.1016/j.jvs.2007.04.04417600658
    [Google Scholar]
  5. ÖztürkE. ArslanA.K.K. YererM.B. BishayeeA. Resveratrol and diabetes: A critical review of clinical studies.Biomed. Pharmacother.20179523023410.1016/j.biopha.2017.08.07028843911
    [Google Scholar]
  6. BagulP.K. MiddelaH. MatapallyS. PadiyaR. BastiaT. MadhusudanaK. ReddyB.R. ChakravartyS. BanerjeeS.K. Attenuation of insulin resistance, metabolic syndrome and hepatic oxidative stress by resveratrol in fructose-fed rats.Pharmacol. Res.201266326026810.1016/j.phrs.2012.05.00322627169
    [Google Scholar]
  7. XiJ. WangH. MuellerR.A. NorfleetE.A. XuZ. Mechanism for resveratrol-induced cardioprotection against reperfusion injury involves glycogen synthase kinase 3β and mitochondrial permeability transition pore.Eur. J. Pharmacol.20096041-311111610.1016/j.ejphar.2008.12.02419135050
    [Google Scholar]
  8. WestT. AtzevaM. HoltzmanD.M. Pomegranate polyphenols and resveratrol protect the neonatal brain against hypoxic-ischemic injury.Dev. Neurosci.2007294-536337210.1159/00010547717762204
    [Google Scholar]
  9. Abdel-WahabB.A. Abdel-WahabM.M. Protective effect of resveratrol against chronic intermittent hypoxia-induced spatial memory deficits, hippocampal oxidative DNA damage and increased p47Phox NADPH oxidase expression in young rats.Behav. Brain Res.2016305657510.1016/j.bbr.2016.02.03026940604
    [Google Scholar]
  10. DorweilerB. PrueferD. AndrasiT.B. MaksanS.M. SchmiedtW. NeufangA. VahlC.F. Ischemia-reperfusion injury.Eur. J. Trauma Emerg. Surg.200733660061210.1007/s00068‑007‑7152‑z26815087
    [Google Scholar]
  11. SlegtenhorstB.R. DorF.J.M.F. RodriguezH. VoskuilF.J. TulliusS.G. Ischemia/reperfusion injury and its consequences on immunity and inflammation.Curr. Transplant. Rep.20141314715410.1007/s40472‑014‑0017‑625419507
    [Google Scholar]
  12. SongX. LiuZ. ZengR. ShaoJ. ZhengY. YeW. Resveratrol alleviates vascular endothelial damage caused by lower-extremity ischemia reperfusion (I/R) through regulating Keap1/Nrf2 Signaling-mediated oxidative stress.Evid. Based Complement. Alternat. Med.2021202111310.1155/2021/555660333833813
    [Google Scholar]
  13. KalogerisT. BaoY. KorthuisR.J. Mitochondrial reactive oxygen species: A double edged sword in ischemia/reperfusion vs preconditioning.Redox Biol.2014270271410.1016/j.redox.2014.05.00624944913
    [Google Scholar]
  14. WuM.Y. YiangG.T. LiaoW.T. TsaiA.P.Y. ChengY.L. ChengP.W. LiC.Y. LiC.J. Current mechanistic concepts in ischemia and reperfusion injury.Cell. Physiol. Biochem.20184641650166710.1159/00048924129694958
    [Google Scholar]
  15. BoyleE.M.Jr PohlmanT.H. CornejoC.J. VerrierE.D. Endothelial cell injury in cardiovascular surgery: Ischemia-reperfusion.Ann. Thorac. Surg.19966261868187510.1016/S0003‑4975(96)00950‑28957415
    [Google Scholar]
  16. LiJ. LiR.J. LvG.Y. LiuH.Q. The mechanisms and strategies to protect from hepatic ischemia-reperfusion injury.Eur. Rev. Med. Pharmacol. Sci.201519112036204726125267
    [Google Scholar]
  17. MaglioneM. PloegR.J. FriendP.J. Donor risk factors, retrieval technique, preservation and ischemia/reperfusion injury in pancreas transplantation.Curr. Opin. Organ Transplant.2013181838810.1097/MOT.0b013e32835c29ef23254698
    [Google Scholar]
  18. LeviM. ChoiG. SchootsI. SchultzM. van der PollT. Beyond sepsis: Activated protein C and ischemia–reperfusion injury.Crit. Care Med.200432S5S309S31210.1097/01.CCM.0000126362.38567.5215118536
    [Google Scholar]
  19. Homer-VanniasinkamS. CrinnionJ.N. GoughM.J. Post-ischaemic organ dysfunction: A review.Eur. J. Vasc. Endovasc. Surg.199714319520310.1016/S1078‑5884(97)80191‑89345239
    [Google Scholar]
  20. PiperH.M. MeuterK. SchäferC. Cellular mechanisms of ischemia-reperfusion injury.Ann. Thorac. Surg.2003752S644S64810.1016/S0003‑4975(02)04686‑612607706
    [Google Scholar]
  21. LambertA.J. BrandM.D. Reactive oxygen species production by mitochondria.Methods Mol. Biol.200955416518110.1007/978‑1‑59745‑521‑3_1119513674
    [Google Scholar]
  22. BeckerL. New concepts in reactive oxygen species and cardiovascular reperfusion physiology.Cardiovasc. Res.200461346147010.1016/j.cardiores.2003.10.02514962477
    [Google Scholar]
  23. GrangerD.N. Role of xanthine oxidase and granulocytes in ischemia-reperfusion injury.Am. J. Physiol.19882556 Pt 2H1269H12753059826
    [Google Scholar]
  24. WhitemanM. ArmstrongJ.S. CheungN.S. SiauJ.L. RoseP. SchantzJ.T. JonesD.P. HalliwellB. Peroxynitrite mediates calcium‐dependent mitochondrial dysfunction and cell death via activation of calpains.FASEB J.200418121395139710.1096/fj.03‑1096fje15240564
    [Google Scholar]
  25. McCullyJ.D. WakiyamaH. HsiehY.J. JonesM. LevitskyS. Differential contribution of necrosis and apoptosis in myocardial ischemia-reperfusion injury.Am. J. Physiol. Heart Circ. Physiol.20042865H1923H193510.1152/ajpheart.00935.200314715509
    [Google Scholar]
  26. RosséT. OlivierR. MonneyL. RagerM. ConusS. FellayI. JansenB. BornerC. Bcl-2 prolongs cell survival after Bax-induced release of cytochrome c.Nature1998391666649649910.1038/351609461218
    [Google Scholar]
  27. BrunelleJ.K. LetaiA. Control of mitochondrial apoptosis by the Bcl-2 family.J. Cell Sci.2009122443744110.1242/jcs.03168219193868
    [Google Scholar]
  28. SunG.Y. HorrocksL.A. FarooquiA.A. The roles of NADPH oxidase and phospholipases A 2 in oxidative and inflammatory responses in neurodegenerative diseases.J. Neurochem.2007103111610.1111/j.1471‑4159.2007.04670.x17561938
    [Google Scholar]
  29. PasupathyS. Homer-VanniasinkamS. Ischaemic preconditioning protects against ischaemia/reperfusion injury: emerging concepts.Eur. J. Vasc. Endovasc. Surg.200529210611510.1016/j.ejvs.2004.11.00515649715
    [Google Scholar]
  30. WuH.H. HuangC.C. ChangC.P. LinM.T. NiuK.C. TianY.F. Heat shock protein 70 (HSP70) reduces hepatic inflammatory and oxidative damage in a rat model of liver ischemia/reperfusion injury with hyperbaric oxygen preconditioning.Med. Sci. Monit.2018248096810410.12659/MSM.91164130417859
    [Google Scholar]
  31. NastosC. KalimerisK. PapoutsidakisN. TasoulisM.K. LykoudisP.M. TheodorakiK. NastouD. SmyrniotisV. ArkadopoulosN. Global consequences of liver ischemia/reperfusion injury.Oxid. Med. Cell. Longev.2014201411310.1155/2014/90696524799983
    [Google Scholar]
  32. MaxwellS.R.J. LipG.Y.H. Reperfusion injury: A review of the pathophysiology, clinical manifestations and therapeutic options.Int. J. Cardiol.19975829511710.1016/S0167‑5273(96)02854‑99049675
    [Google Scholar]
  33. KhannaA. CowledP.A. FitridgeR.A. Nitric oxide and skeletal muscle reperfusion injury: Current controversies (research review).J. Surg. Res.200512819810710.1016/j.jss.2005.04.02015961106
    [Google Scholar]
  34. HensleyK. RobinsonK.A. GabbitaS.P. SalsmanS. FloydR.A. Reactive oxygen species, cell signaling, and cell injury.Free Radic. Biol. Med.200028101456146210.1016/S0891‑5849(00)00252‑510927169
    [Google Scholar]
  35. TaylorK.R. TrowbridgeJ.M. RudisillJ.A. TermeerC.C. SimonJ.C. GalloR.L. Hyaluronan fragments stimulate endothelial recognition of injury through TLR4.J. Biol. Chem.200427917170791708410.1074/jbc.M31085920014764599
    [Google Scholar]
  36. SzabóG. LiaudetL. HaglS. SzabóC. Poly(ADP-ribose) polymerase activation in the reperfused myocardium.Cardiovasc. Res.200461347148010.1016/j.cardiores.2003.09.02914962478
    [Google Scholar]
  37. OrnellasF.M. OrnellasD.S. MartiniS.V. CastiglioneR.C. VenturaG.M. RoccoP.R. GutfilenB. de SouzaS.A. TakiyaC.M. MoralesM.M. Bone marrow–derived mononuclear cell therapy accelerates renal ischemia-reperfusion injury recovery by modulating inflammatory, antioxidant and apoptotic related molecules.Cell. Physiol. Biochem.20174151736175210.1159/00047186628365681
    [Google Scholar]
  38. SoehnleinO. LindbomL. Phagocyte partnership during the onset and resolution of inflammation.Nat. Rev. Immunol.201010642743910.1038/nri277920498669
    [Google Scholar]
  39. AshleyN.T. WeilZ.M. NelsonR.J. Inflammation: Mechanisms, costs, and natural variation.Annu. Rev. Ecol. Evol. Syst.2012433852012
    [Google Scholar]
  40. KaulmannA. BohnT. Carotenoids, inflammation, and oxidative stress—implications of cellular signaling pathways and relation to chronic disease prevention.Nutr. Res.2014341190792910.1016/j.nutres.2014.07.01025134454
    [Google Scholar]
  41. KaplanM.H. STAT signaling in inflammation.JAK-STAT201321e2419810.4161/jkst.2419824058801
    [Google Scholar]
  42. MoiP. ChanK. AsunisI. CaoA. KanY.W. Isolation of NF-E2-related factor 2 (Nrf2), a NF-E2-like basic leucine zipper transcriptional activator that binds to the tandem NF-E2/AP1 repeat of the beta-globin locus control region.Proc. Natl. Acad. Sci.199491219926993010.1073/pnas.91.21.99267937919
    [Google Scholar]
  43. ItohK. ChibaT. TakahashiS. IshiiT. IgarashiK. KatohY. OyakeT. HayashiN. SatohK. HatayamaI. YamamotoM. NabeshimaY. An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements.Biochem. Biophys. Res. Commun.1997236231332210.1006/bbrc.1997.69439240432
    [Google Scholar]
  44. VenugopalR. JaiswalA.K. Nrf1 and Nrf2 positively and c-Fos and Fra1 negatively regulate the human antioxidant response element-mediated expression of NAD(P)H:quinone oxidoreductase 1 gene.Proc. Natl. Acad. Sci. USA19969325149601496510.1073/pnas.93.25.149608962164
    [Google Scholar]
  45. NguyenT. SherrattP.J. PickettC.B. Regulatory mechanisms controlling gene expression mediated by the antioxidant response element.Annu. Rev. Pharmacol. Toxicol.200343123326010.1146/annurev.pharmtox.43.100901.14022912359864
    [Google Scholar]
  46. MotohashiH. YamamotoM. Nrf2–Keap1 defines a physiologically important stress response mechanism.Trends Mol. Med.2004101154955710.1016/j.molmed.2004.09.00315519281
    [Google Scholar]
  47. KenslerT.W. WakabayashiN. BiswalS. Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway.Annu. Rev. Pharmacol. Toxicol.20074718911610.1146/annurev.pharmtox.46.120604.14104616968214
    [Google Scholar]
  48. TalalayP. Dinkova-KostovaA.T. HoltzclawW.D. Importance of phase 2 gene regulation in protection against electrophile and reactive oxygen toxicity and carcinogenesis.Adv. Enzyme Regul.200343112113410.1016/S0065‑2571(02)00038‑912791387
    [Google Scholar]
  49. HayesJ.D. McMahonM. ChowdhryS. Dinkova-KostovaA.T. Cancer chemoprevention mechanisms mediated through the Keap1-Nrf2 pathway.Antioxid. Redox Signal.201013111713174810.1089/ars.2010.322120446772
    [Google Scholar]
  50. Krajka-KuźniakV. PaluszczakJ. Baer-DubowskaW. The Nrf2-ARE signaling pathway: An update on its regulation and possible role in cancer prevention and treatment.Pharmacol. Rep.201769339340210.1016/j.pharep.2016.12.01128267640
    [Google Scholar]
  51. TaguchiK. MotohashiH. YamamotoM. Molecular mechanisms of the Keap1-Nrf2 pathway in stress response and cancer evolution.Genes Cells201116212314010.1111/j.1365‑2443.2010.01473.x21251164
    [Google Scholar]
  52. WangL. GallagherE.P. Role of Nrf2 antioxidant defense in mitigating cadmium-induced oxidative stress in the olfactory system of zebrafish.Toxicol. Appl. Pharmacol.2013266217718610.1016/j.taap.2012.11.01023174481
    [Google Scholar]
  53. ChenX.L. KunschC. Induction of cytoprotective genes through Nrf2/antioxidant response element pathway: A new therapeutic approach for the treatment of inflammatory diseases.Curr. Pharm. Des.200410887989110.2174/138161204345290115032691
    [Google Scholar]
  54. MaQ. HeX. Molecular basis of electrophilic and oxidative defense: Promises and perils of Nrf2.Pharmacol. Rev.20126441055108110.1124/pr.110.00433322966037
    [Google Scholar]
  55. AlamJ. KilleenE. GongP. NaquinR. HuB. StewartD. IngelfingerJ.R. NathK.A. Heme activates the heme oxygenase-1 gene in renal epithelial cells by stabilizing Nrf2.Am. J. Physiol. Renal Physiol.20032844F743F75210.1152/ajprenal.00376.200212453873
    [Google Scholar]
  56. ManolakouS.D. ZirosP.G. SykiotisG.P. NFE2L2 (nuclear factor, erythroid 2-like 2).Atlas Genet. Cytogenet. Oncol. Haematol.20172
    [Google Scholar]
  57. MaQ. Role of nrf2 in oxidative stress and toxicity.Annu. Rev. Pharmacol. Toxicol.201353140142610.1146/annurev‑pharmtox‑011112‑14032023294312
    [Google Scholar]
  58. LeeJ.M. JohnsonJ.A. An important role of Nrf2-ARE pathway in the cellular defense mechanism.J. Biochem. Mol. Biol.200437213914315469687
    [Google Scholar]
  59. Vomhof-DeKreyE.E. PickloM.J.Sr The Nrf2-antioxidant response element pathway: A target for regulating energy metabolism.J. Nutr. Biochem.201223101201120610.1016/j.jnutbio.2012.03.00522819548
    [Google Scholar]
  60. JayakumarS. PalD. SandurS.K. Nrf2 facilitates repair of radiation induced DNA damage through homologous recombination repair pathway in a ROS independent manner in cancer cells.Mutat. Res.2015779334510.1016/j.mrfmmm.2015.06.00726133502
    [Google Scholar]
  61. SunX. WangY. JiK. LiuY. KongY. NieS. LiN. HaoJ. XieY. XuC. DuL. LiuQ. NRF2 preserves genomic integrity by facilitating ATR activation and G2 cell cycle arrest.Nucleic Acids Res.202048169109912310.1093/nar/gkaa63132729622
    [Google Scholar]
  62. KomatsuM. KurokawaH. WaguriS. TaguchiK. KobayashiA. IchimuraY. SouY.S. UenoI. SakamotoA. TongK.I. KimM. NishitoY. IemuraS. NatsumeT. UenoT. KominamiE. MotohashiH. TanakaK. YamamotoM. The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1.Nat. Cell Biol.201012321322310.1038/ncb202120173742
    [Google Scholar]
  63. Dinkova-KostovaA.T. LibyK.T. StephensonK.K. HoltzclawW.D. GaoX. SuhN. WilliamsC. RisingsongR. HondaT. GribbleG.W. SpornM.B. TalalayP. Extremely potent triterpenoid inducers of the phase 2 response: Correlations of protection against oxidant and inflammatory stress.Proc. Natl. Acad. Sci.2005102124584458910.1073/pnas.050081510215767573
    [Google Scholar]
  64. LiW. KhorT.O. XuC. ShenG. JeongW.S. YuS. KongA.N. Activation of Nrf2-antioxidant signaling attenuates NFκB-inflammatory response and elicits apoptosis.Biochem. Pharmacol.200876111485148910.1016/j.bcp.2008.07.01718694732
    [Google Scholar]
  65. KelsenS.G. DuanX. JiR. PerezO. LiuC. MeraliS. Cigarette smoke induces an unfolded protein response in the human lung: A proteomic approach.Am. J. Respir. Cell Mol. Biol.200838554155010.1165/rcmb.2007‑0221OC18079489
    [Google Scholar]
  66. CullinanS.B. DiehlJ.A. PERK-dependent activation of Nrf2 contributes to redox homeostasis and cell survival following endoplasmic reticulum stress.J. Biol. Chem.200427919201082011710.1074/jbc.M31421920014978030
    [Google Scholar]
  67. CullinanS.B. ZhangD. HanninkM. ArvisaisE. KaufmanR.J. DiehlJ.A. Nrf2 is a direct PERK substrate and effector of PERK-dependent cell survival.Mol. Cell. Biol.200323207198720910.1128/MCB.23.20.7198‑7209.200314517290
    [Google Scholar]
  68. WangX. The expanding role of mitochondria in apoptosis.Genes Dev.200115222922293311711427
    [Google Scholar]
  69. HeX. MaQ. Disruption of Nrf2 synergizes with high glucose to cause heightened myocardial oxidative stress and severe cardiomyopathy in diabetic mice.J Diabetes Metab2012S7002
    [Google Scholar]
  70. HeX. KanH. CaiL. MaQ. Nrf2 is critical in defense against high glucose-induced oxidative damage in cardiomyocytes.J. Mol. Cell. Cardiol.2009461475810.1016/j.yjmcc.2008.10.00719007787
    [Google Scholar]
  71. PiantadosiC.A. CarrawayM.S. BabikerA. SulimanH.B. Heme oxygenase-1 regulates cardiac mitochondrial biogenesis via Nrf2-mediated transcriptional control of nuclear respiratory factor-1.Circ. Res.2008103111232124010.1161/01.RES.0000338597.71702.ad18845810
    [Google Scholar]
  72. ScarpullaR.C. Transcriptional paradigms in mammalian mitochondrial biogenesis and function.Physiol. Rev.200888261163810.1152/physrev.00025.200718391175
    [Google Scholar]
  73. LoS.C. HanninkM. PGAM5 tethers a ternary complex containing Keap1 and Nrf2 to mitochondria.Exp. Cell Res.200831481789180310.1016/j.yexcr.2008.02.01418387606
    [Google Scholar]
  74. AneddaA. López-BernardoE. Acosta-IborraB. Saadeh SuleimanM. LandázuriM.O. CadenasS. The transcription factor Nrf2 promotes survival by enhancing the expression of uncoupling protein 3 under conditions of oxidative stress.Free Radic. Biol. Med.20136139540710.1016/j.freeradbiomed.2013.04.00723597505
    [Google Scholar]
  75. ClementsC.M. McNallyR.S. ContiB.J. MakT.W. TingJ.P.Y. DJ-1, a cancer- and Parkinson’s disease-associated protein, stabilizes the antioxidant transcriptional master regulator Nrf2.Proc. Natl. Acad. Sci.200610341150911509610.1073/pnas.060726010317015834
    [Google Scholar]
  76. DixonR.A. Phytoestrogens.Annu. Rev. Plant Biol.200455122526110.1146/annurev.arplant.55.031903.14172915377220
    [Google Scholar]
  77. OvesnáZ. Horváthová-KozicsK. Structure-activity relationship of trans-resveratrol and its analogues.Neoplasma200552645045516284688
    [Google Scholar]
  78. WangY. HallsC. ZhangJ. MatsunoM. ZhangY. YuO. Stepwise increase of resveratrol biosynthesis in yeast Saccharomyces cerevisiae by metabolic engineering.Metab. Eng.201113545546310.1016/j.ymben.2011.04.00521570474
    [Google Scholar]
  79. NawazW. ZhouZ. DengS. MaX. MaX. LiC. ShuX. Therapeutic versatility of resveratrol derivatives.Nutrients2017911118810.3390/nu911118829109374
    [Google Scholar]
  80. SalehiB. MishraA. NigamM. SenerB. KilicM. Sharifi-RadM. FokouP. MartinsN. Sharifi-RadJ. Resveratrol: A double-edged sword in health benefits.Biomedicines2018639110.3390/biomedicines603009130205595
    [Google Scholar]
  81. KeylorM.H. MatsuuraB.S. StephensonC.R.J. Chemistry and biology of resveratrol-derived natural products.Chem. Rev.2015115178976902710.1021/cr500689b25835567
    [Google Scholar]
  82. ParkE.J. PezzutoJ.M. The pharmacology of resveratrol in animals and humans.Biochim. Biophys. Acta Mol. Basis Dis.2015185261071111310.1016/j.bbadis.2015.01.01425652123
    [Google Scholar]
  83. WalleT. Bioavailability of resveratrol.Ann. N. Y. Acad. Sci.20111215191510.1111/j.1749‑6632.2010.05842.x21261636
    [Google Scholar]
  84. ChenJ. WeiN. Lopez-GarciaM. AmbroseD. LeeJ. AnnelinC. PetersonT. Development and evaluation of resveratrol, Vitamin E, and epigallocatechin gallate loaded lipid nanoparticles for skin care applications.Eur. J. Pharm. Biopharm.201711728629110.1016/j.ejpb.2017.04.00828411056
    [Google Scholar]
  85. FanP. MarstonA. HayA.E. HostettmannK. Rapid separation of three glucosylated resveratrol analogues from the invasive plant Polygonum cuspidatum by high‐speed countercurrent chromatography.J. Sep. Sci.200932172979298410.1002/jssc.20090005719639547
    [Google Scholar]
  86. DuarteA. MartinhoA. LuísÂ. FigueirasA. OleastroM. DominguesF.C. SilvaF. Resveratrol encapsulation with methyl-β-cyclodextrin for antibacterial and antioxidant delivery applications.Lebensm. Wiss. Technol.20156321254126010.1016/j.lwt.2015.04.004
    [Google Scholar]
  87. Bonnefont-RousselotD. Resveratrol and cardiovascular diseases.Nutrients20168525010.3390/nu805025027144581
    [Google Scholar]
  88. LiH. XiaN. FörstermannU. Cardiovascular effects and molecular targets of resveratrol.Nitric Oxide201226210211010.1016/j.niox.2011.12.00622245452
    [Google Scholar]
  89. PriceN.L. GomesA.P. LingA.J.Y. DuarteF.V. Martin-MontalvoA. NorthB.J. AgarwalB. YeL. RamadoriG. TeodoroJ.S. HubbardB.P. VarelaA.T. DavisJ.G. VaraminiB. HafnerA. MoaddelR. RoloA.P. CoppariR. PalmeiraC.M. de CaboR. BaurJ.A. SinclairD.A. SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function.Cell Metab.201215567569010.1016/j.cmet.2012.04.00322560220
    [Google Scholar]
  90. HeQ. LiZ. WangY. HouY. LiL. ZhaoJ. Resveratrol alleviates cerebral ischemia/reperfusion injury in rats by inhibiting NLRP3 inflammasome activation through Sirt1-dependent autophagy induction.Int. Immunopharmacol.20175020821510.1016/j.intimp.2017.06.02928683365
    [Google Scholar]
  91. ZhaoH. ChenS. GaoK. ZhouZ. WangC. ShenZ. GuoY. LiZ. WanZ. LiuC. MeiX. Resveratrol protects against spinal cord injury by activating autophagy and inhibiting apoptosis mediated by the SIRT1/AMPK signaling pathway.Neuroscience201734824125110.1016/j.neuroscience.2017.02.02728238848
    [Google Scholar]
  92. SalminenA. HyttinenJ.M.T. KaarnirantaK. AMP-activated protein kinase inhibits NF-κB signaling and inflammation: impact on healthspan and lifespan.J. Mol. Med.201189766767610.1007/s00109‑011‑0748‑021431325
    [Google Scholar]
  93. ShayA.E. DiwakarB.T. GuanB.J. NarayanV. UrbanJ.F.Jr PrabhuK.S. IL-4 up-regulates cyclooxygenase-1 expression in macrophages.J. Biol. Chem.201729235145441455510.1074/jbc.M117.78501428684424
    [Google Scholar]
  94. ManciniS.J. SaltI.P. Investigating the role of AMPK in inflammation.Methods Mol. Biol.2018173230731910.1007/978‑1‑4939‑7598‑3_2029480484
    [Google Scholar]
  95. XuW. ZhaoT. XiaoH. The implication of oxidative stress and AMPK-Nrf2 antioxidative signaling in pneumonia pathogenesis.Front. Endocrinol.20201140010.3389/fendo.2020.0040032625169
    [Google Scholar]
  96. ChiangM.C. NicolC.J. ChengY.C. Resveratrol activation of AMPK-dependent pathways is neuroprotective in human neural stem cells against amyloid-beta-induced inflammation and oxidative stress.Neurochem. Int.201811511010.1016/j.neuint.2017.10.00228989083
    [Google Scholar]
  97. KobayashiA. OhtaT. YamamotoM. Unique function of the Nrf2-Keap1 pathway in the inducible expression of antioxidant and detoxifying enzymes.Methods Enzymol.200437827328610.1016/S0076‑6879(04)78021‑015038975
    [Google Scholar]
  98. ChumboatongW. ThummayotS. GovitrapongP. TocharusC. JittiwatJ. TocharusJ. Neuroprotection of agomelatine against cerebral ischemia/reperfusion injury through an antiapoptotic pathway in rat.Neurochem. Int.201710211412210.1016/j.neuint.2016.12.01128012846
    [Google Scholar]
  99. GethingM.J. SambrookJ. Protein folding in the cell.Nature19923556355334510.1038/355033a01731198
    [Google Scholar]
  100. PerdrizetA. Heat shock and recovery protects renal allografts from warm ischemic injury and enhances HSP72 production.Transplant Proc19932516701673
    [Google Scholar]
  101. WagnerA.C. WeberH. JonasL. NizzeH. StrowskiM. FiedlerF. PrintzH. SteffenH. GökeB. Hyperthermia induces heat shock protein expression and protection against cerulein-induced pancreatitis in rats.Gastroenterology199611151333134210.1053/gast.1996.v111.pm88986488898648
    [Google Scholar]
  102. AbrahamN.G. KappasA. Pharmacological and clinical aspects of heme oxygenase.Pharmacol. Rev.20086017912710.1124/pr.107.0710418323402
    [Google Scholar]
  103. VítekL. SchwertnerH.A. The heme catabolic pathway and its protective effects on oxidative stress-mediated diseases.Adv. Clin. Chem.20074315710.1016/S0065‑2423(06)43001‑817249379
    [Google Scholar]
  104. PossK.D. TonegawaS. Reduced stress defense in heme oxygenase 1-deficient cells.Proc. Natl. Acad. Sci.19979420109251093010.1073/pnas.94.20.109259380736
    [Google Scholar]
  105. SakataY. ZhuangH. KwansaH. KoehlerR.C. DoréS. Resveratrol protects against experimental stroke: Putative neuroprotective role of heme oxygenase 1.Exp. Neurol.2010224132532910.1016/j.expneurol.2010.03.03220381489
    [Google Scholar]
  106. SunithaJ. JeevaJ.S. AnanthalakshmiR. RajkumariS. RameshM. KrishnanR. Enzymatic antioxidants and its role in oral diseases.J. Pharm. Bioallied Sci.20157633110.4103/0975‑7406.16343826538872
    [Google Scholar]
  107. Mirończuk-ChodakowskaI. WitkowskaA.M. ZujkoM.E. Endogenous non-enzymatic antioxidants in the human body.Adv. Med. Sci.2018631687810.1016/j.advms.2017.05.00528822266
    [Google Scholar]
  108. RossD. SiegelD. Functions of NQO1 in cellular protection and CoQ10 metabolism and its potential role as a redox sensitive molecular switch.Front. Physiol.2017859510.3389/fphys.2017.0059528883796
    [Google Scholar]
  109. UngvariZ. BagiZ. FeherA. RecchiaF.A. SonntagW.E. PearsonK. de CaboR. CsiszarA. Resveratrol confers endothelial protection via activation of the antioxidant transcription factor Nrf2.Am. J. Physiol. Heart Circ. Physiol.20102991H18H2410.1152/ajpheart.00260.201020418481
    [Google Scholar]
  110. ZhaoH. YenariM.A. ChengD. SapolskyR.M. SteinbergG.K. Bcl‐2 overexpression protects against neuron loss within the ischemic margin following experimental stroke and inhibits cytochrome c translocation and caspase‐3 activity.J. Neurochem.20038541026103610.1046/j.1471‑4159.2003.01756.x12716434
    [Google Scholar]
  111. BrentnallM. Rodriguez-MenocalL. De GuevaraR.L. CeperoE. BoiseL.H. Caspase-9, caspase-3 and caspase-7 have distinct roles during intrinsic apoptosis.BMC Cell Biol.20131413210.1186/1471‑2121‑14‑3223834359
    [Google Scholar]
  112. LeonardS.S. XiaC. JiangB.H. StinefeltB. KlandorfH. HarrisG.K. ShiX. Resveratrol scavenges reactive oxygen species and effects radical-induced cellular responses.Biochem. Biophys. Res. Commun.200330941017102610.1016/j.bbrc.2003.08.10513679076
    [Google Scholar]
  113. RenJ. FanC. ChenN. HuangJ. YangQ. Resveratrol pretreatment attenuates cerebral ischemic injury by upregulating expression of transcription factor Nrf2 and HO-1 in rats.Neurochem. Res.201136122352236210.1007/s11064‑011‑0561‑821850487
    [Google Scholar]
  114. TruelsenT. BeggS. MathersC. The global burden of cerebrovascularWHO Int2006
    [Google Scholar]
  115. TsaoC.W. AdayA.W. AlmarzooqZ.I. AlonsoA. BeatonA.Z. BittencourtM.S. BoehmeA.K. BuxtonA.E. CarsonA.P. Commodore-MensahY. ElkindM.S.V. EvensonK.R. Eze-NliamC. FergusonJ.F. GenerosoG. HoJ.E. KalaniR. KhanS.S. KisselaB.M. KnutsonK.L. LevineD.A. LewisT.T. LiuJ. LoopM.S. MaJ. MussolinoM.E. NavaneethanS.D. PerakA.M. PoudelR. Rezk-HannaM. RothG.A. SchroederE.B. ShahS.H. ThackerE.L. VanWagnerL.B. ViraniS.S. VoecksJ.H. WangN.Y. YaffeK. MartinS.S. Heart disease and stroke statistics—2022 update: A report from the American Heart Association.Circulation20221458e153e63910.1161/CIR.000000000000105235078371
    [Google Scholar]
  116. PuyalJ. GinetV. ClarkeP.G.H. Multiple interacting cell death mechanisms in the mediation of excitotoxicity and ischemic brain damage: A challenge for neuroprotection.Prog. Neurobiol.2013105244810.1016/j.pneurobio.2013.03.00223567504
    [Google Scholar]
  117. ChenH. YoshiokaH. KimG.S. JungJ.E. OkamiN. SakataH. MaierC.M. NarasimhanP. GoedersC.E. ChanP.H. Oxidative stress in ischemic brain damage: Mechanisms of cell death and potential molecular targets for neuroprotection.Antioxid. Redox Signal.20111481505151710.1089/ars.2010.357620812869
    [Google Scholar]
  118. SimsN.R. MuydermanH. Mitochondria, oxidative metabolism and cell death in stroke.Biochim. Biophys. Acta Mol. Basis Dis.201018021809110.1016/j.bbadis.2009.09.00319751827
    [Google Scholar]
  119. BroughtonB.R.S. ReutensD.C. SobeyC.G. Apoptotic mechanisms after cerebral ischemia.Stroke2009405e331e33910.1161/STROKEAHA.108.53163219182083
    [Google Scholar]
  120. DenesL. SzilágyiG. GálA. NagyZ. Talampanel a non-competitive AMPA-antagonist attenuates caspase-3 dependent apoptosis in mouse brain after transient focal cerebral ischemia.Brain Res. Bull.200670326026210.1016/j.brainresbull.2006.02.02416861112
    [Google Scholar]
  121. YangC. ZhangX. FanH. LiuY. Curcumin upregulates transcription factor Nrf2, HO-1 expression and protects rat brains against focal ischemia.Brain Res.2009128213314110.1016/j.brainres.2009.05.00919445907
    [Google Scholar]
  122. SinhaK. ChaudharyG. Kumar GuptaY. Protective effect of resveratrol against oxidative stress in middle cerebral artery occlusion model of stroke in rats.Life Sci.200271665566510.1016/S0024‑3205(02)01691‑012072154
    [Google Scholar]
  123. YangJ. HuangJ. ShenC. ChengW. YuP. WangL. TangF. GuoS. YangQ. ZhangJ. Resveratrol treatment in different time-attenuated neuronal apoptosis after oxygen and glucose deprivation/reoxygenation via enhancing the activation of Nrf-2 signaling pathway in vitro.Cell Transplant.201827121789179710.1177/096368971878093030008229
    [Google Scholar]
  124. WangL. LiS. LiuY. FengD.L. JiangL. LongZ.Y. WuY.M. Motor neuron degeneration following glycine-mediated excitotoxicity induces spastic paralysis after spinal cord ischemia/reperfusion injury in rabbit.Am. J. Transl. Res.2017973411342128804557
    [Google Scholar]
  125. ZhanJ. LiX. LuoD. YanW. HouY. HouY. ChenS. LuanJ. ZhangQ. LinD. Polydatin attenuates OGD/R-induced neuronal injury and spinal cord ischemia/reperfusion injury by protecting mitochondrial function via Nrf2/ARE signaling pathway.Oxid. Med. Cell. Longev.2021202111910.1155/2021/668721233995825
    [Google Scholar]
  126. KurinczukJ.J. White-KoningM. BadawiN. Epidemiology of neonatal encephalopathy and hypoxic–ischaemic encephalopathy.Early Hum. Dev.201086632933810.1016/j.earlhumdev.2010.05.01020554402
    [Google Scholar]
  127. OkereaforA. AllsopJ. CounsellS.J. FitzpatrickJ. AzzopardiD. RutherfordM.A. CowanF.M. Patterns of brain injury in neonates exposed to perinatal sentinel events.Pediatrics2008121590691410.1542/peds.2007‑077018450893
    [Google Scholar]
  128. LongM. BrandonD.H. Induced hypothermia for neonates with hypoxic-ischemic encephalopathy.J. Obstet. Gynecol. Neonatal Nurs.200736329329810.1111/j.1552‑6909.2007.00150.x17489937
    [Google Scholar]
  129. AllenK.A. BrandonD.H. Hypoxic ischemic encephalopathy: Pathophysiology and experimental treatments.Newborn Infant Nurs. Rev.201111312513310.1053/j.nainr.2011.07.00421927583
    [Google Scholar]
  130. LuJ. LiY.H. ZhanX. LiG. ChenZ. ChenX. The protective effect of qiancao naomaitong mixture on neuronal damage and cerebral ischemia/reperfusion injury.Pharm. Biol.201654102304231110.3109/13880209.2016.115562726987389
    [Google Scholar]
  131. TenV.S. StarkovA. Hypoxic-ischemic injury in the developing brain: The role of reactive oxygen species originating in mitochondria.Neurol. Res. Int.2012201211010.1155/2012/54297622548167
    [Google Scholar]
  132. BuonocoreG. GroenendaalF. Anti-oxidant strategies.Semin. Fetal Neonatal Med.200712428729510.1016/j.siny.2007.01.02017368122
    [Google Scholar]
  133. LuQ. WainwrightM.S. HarrisV.A. AggarwalS. HouY. RauT. PoulsenD.J. BlackS.M. Increased NADPH oxidase-derived superoxide is involved in the neuronal cell death induced by hypoxia–ischemia in neonatal hippocampal slice cultures.Free Radic. Biol. Med.20125351139115110.1016/j.freeradbiomed.2012.06.01222728269
    [Google Scholar]
  134. PerroneS. TatarannoM.L. NegroS. LonginiM. MarzocchiB. ProiettiF. IacoponiF. CapitaniS. BuonocoreG. Early identification of the risk for free radical-related diseases in preterm newborns.Early Hum. Dev.201086424124410.1016/j.earlhumdev.2010.03.00820466493
    [Google Scholar]
  135. PingZ. LiuW. KangZ. CaiJ. WangQ. ChengN. WangS. WangS. ZhangJ.H. SunX. Sulforaphane protects brains against hypoxic–ischemic injury through induction of Nrf2-dependent phase 2 enzyme.Brain Res.2010134317818510.1016/j.brainres.2010.04.03620417626
    [Google Scholar]
  136. GaoY. FuR. WangJ. YangX. WenL. FengJ. Resveratrol mitigates the oxidative stress mediated by hypoxic-ischemic brain injury in neonatal rats via Nrf2/HO-1 pathway.Pharm. Biol.201856144044910.1080/13880209.2018.150232630460866
    [Google Scholar]
  137. LiuJ. ChenJ. ZhangJ. FanY. ZhaoS. WangB. WangP. Mechanism of resveratrol improving ischemia–reperfusion injury by regulating microglial function through microRNA-450b-5p/KEAP1/Nrf2 pathway.Mol. Biotechnol.20236591498150710.1007/s12033‑022‑00646‑236656498
    [Google Scholar]
  138. BasgutB. KaykiG. BartosovaL. OzakcaI. SeymenA. KandilciH.B. UgurM. TuranB. OzcelikayA.T. Cardioprotective effects of 44Bu, a newly synthesized compound, in rat heart subjected to ischemia/reperfusion injury.Eur. J. Pharmacol.20106401-311712310.1016/j.ejphar.2010.04.04520450906
    [Google Scholar]
  139. RamzyD. RaoV. WeiselR. Clinical applicability of preconditioning and postconditioning: The cardiothoracic surgeons’s view.Cardiovasc. Res.200670217418010.1016/j.cardiores.2006.01.02016524563
    [Google Scholar]
  140. HeuschG. MusiolikJ. GedikN. SkyschallyA. Mitochondrial STAT3 activation and cardioprotection by ischemic postconditioning in pigs with regional myocardial ischemia/reperfusion.Circ. Res.2011109111302130810.1161/CIRCRESAHA.111.25560421980124
    [Google Scholar]
  141. XiongJ. XueF.S. YuanY.J. WangQ. LiaoX. WangW.L. Cholinergic anti-inflammatory pathway: A possible approach to protect against myocardial ischemia reperfusion injury.Chin. Med. J.2010123192720272621034659
    [Google Scholar]
  142. SpeyerC.L. WardP.A. Role of endothelial chemokines and their receptors during inflammation.J. Invest. Surg.2011241182710.3109/08941939.2010.52123221275526
    [Google Scholar]
  143. LeferA.M. MaX.L. WeyrichA. LeferD.J. Endothelial dysfunction and neutrophil adherence as critical events in the development of reperfusion injury.Agents Actions Suppl.1993411271358317336
    [Google Scholar]
  144. ZhuH. ItohK. YamamotoM. ZweierJ.L. LiY. Role of Nrf2 signaling in regulation of antioxidants and phase 2 enzymes in cardiac fibroblasts: Protection against reactive oxygen and nitrogen species‐induced cell injury.FEBS Lett.2005579143029303610.1016/j.febslet.2005.04.05815896789
    [Google Scholar]
  145. Purdom-DickinsonS.E. LinY. DedekM. MorrissyS. JohnsonJ. ChenQ.M. Induction of antioxidant and detoxification response by oxidants in cardiomyocytes: Evidence from gene expression profiling and activation of Nrf2 transcription factor.J. Mol. Cell. Cardiol.200742115917610.1016/j.yjmcc.2006.09.01217081560
    [Google Scholar]
  146. ChengL. JinZ. ZhaoR. RenK. DengC. YuS. Resveratrol attenuates inflammation and oxidative stress induced by myocardial ischemia-reperfusion injury: role of Nrf2/ARE pathway.Int. J. Clin. Exp. Med.201587104201042826379832
    [Google Scholar]
  147. JiangF. Effect of type 2 diabetes mellitus on attenuation of myocardial ischemia-reperfusion injury by sufentanil postconditioning in rats.Chin J Anesthesiol2013228231
    [Google Scholar]
  148. SaeidF. AnisehJ. RezaB. ManouchehrV.S. Signaling mediators modulated by cardioprotective interventions in healthy and diabetic myocardium with ischaemia–reperfusion injury.Eur. J. Prev. Cardiol.201825141463148110.1177/204748731875642029442529
    [Google Scholar]
  149. LejayA. FangF. JohnR. VanJ.A.D. BarrM. ThaveauF. ChakfeN. GenyB. ScholeyJ.W. Ischemia reperfusion injury, ischemic conditioning and diabetes mellitus.J. Mol. Cell. Cardiol.201691112210.1016/j.yjmcc.2015.12.02026718721
    [Google Scholar]
  150. HuX. RajeshM. ZhangJ. ZhouS. WangS. SunJ. TanY. ZhengY. CaiL. Protection by dimethyl fumarate against diabetic cardiomyopathy in type 1 diabetic mice likely via activation of nuclear factor erythroid-2 related factor 2.Toxicol. Lett.201828713114110.1016/j.toxlet.2018.01.02029408448
    [Google Scholar]
  151. TanY. IchikawaT. LiJ. SiQ. YangH. ChenX. GoldblattC.S. MeyerC.J. LiX. CaiL. CuiT. Diabetic downregulation of Nrf2 activity via ERK contributes to oxidative stress-induced insulin resistance in cardiac cells in vitro and in vivo. Diabetes201160262563310.2337/db10‑116421270272
    [Google Scholar]
  152. MiaoY. WanQ. LiuX. WangY. LuoY. LiuD. LinN. ZhouH. ZhongJ. miR-503 is involved in the protective effect of phase II enzyme inducer (CPDT) in diabetic cardiomyopathy via Nrf2/ARE signaling pathway.BioMed Res. Int.2017201711010.1155/2017/916745029404371
    [Google Scholar]
  153. TomásE. LinY.S. DagherZ. SahaA. LuoZ. IdoY. RudermanN.B. Hyperglycemia and insulin resistance: Possible mechanisms.Ann. N. Y. Acad. Sci.20029671435110.1111/j.1749‑6632.2002.tb04262.x12079834
    [Google Scholar]
  154. SattaS. MahmoudA.M. WilkinsonF.L. Yvonne AlexanderM. WhiteS.J. The role of Nrf2 in cardiovascular function and disease.Oxid. Med. Cell. Longev.2017201711810.1155/2017/923726329104732
    [Google Scholar]
  155. SchweigerS. MatthesF. PoseyK. KicksteinE. WeberS. HettichM.M. PfurtschellerS. EhningerD. SchneiderR. KraußS. Resveratrol induces dephosphorylation of Tau by interfering with the MID1-PP2A complex.Sci. Rep.2017711375310.1038/s41598‑017‑12974‑429062069
    [Google Scholar]
  156. WangX. MengL. ZhaoL. WangZ. LiuH. LiuG. GuanG. Resveratrol ameliorates hyperglycemia-induced renal tubular oxidative stress damage via modulating the SIRT1/FOXO3a pathway.Diabetes Res. Clin. Pract.201712617218110.1016/j.diabres.2016.12.00528258028
    [Google Scholar]
  157. BhattJ.K. ThomasS. NanjanM.J. Resveratrol supplementation improves glycemic control in type 2 diabetes mellitus.Nutr. Res.201232753754110.1016/j.nutres.2012.06.00322901562
    [Google Scholar]
  158. UngvariZ. LabinskyyN. MukhopadhyayP. PintoJ.T. BagiZ. BallabhP. ZhangC. PacherP. CsiszarA. Resveratrol attenuates mitochondrial oxidative stress in coronary arterial endothelial cells.Am. J. Physiol. Heart Circ. Physiol.20092975H1876H188110.1152/ajpheart.00375.200919749157
    [Google Scholar]
  159. HuangK. ChenC. HaoJ. HuangJ. WangS. LiuP. HuangH. Polydatin promotes Nrf2-ARE anti-oxidative pathway through activating Sirt1 to resist AGEs-induced upregulation of fibronetin and transforming growth factor-β1 in rat glomerular messangial cells.Mol. Cell. Endocrinol.201539917818910.1016/j.mce.2014.08.01425192797
    [Google Scholar]
  160. DengC. SunZ. TongG. YiW. MaL. ZhaoB. ChengL. ZhangJ. CaoF. YiD. α-Lipoic acid reduces infarct size and preserves cardiac function in rat myocardial ischemia/reperfusion injury through activation of PI3K/Akt/Nrf2 pathway.PLoS One201383e5837110.1371/journal.pone.005837123505496
    [Google Scholar]
  161. SchmittC.A. HeissE.H. DirschV.M. Effect of resveratrol on endothelial cell function: Molecular mechanisms.Biofactors201036534234910.1002/biof.10920730905
    [Google Scholar]
  162. VoelklJ. MiaS. MeissnerA. AhmedM.S. FegerM. ElviraB. WalkerB. AlessiD.R. AlesutanI. LangF. PKB/SGK-resistant GSK-3 signaling following unilateral ureteral obstruction.Kidney Blood Press. Res.201338115616410.1159/00035576324685987
    [Google Scholar]
  163. JuhaszovaM. ZorovD.B. KimS.H. PepeS. FuQ. FishbeinK.W. ZimanB.D. WangS. YtrehusK. AntosC.L. OlsonE.N. SollottS.J. Glycogen synthase kinase-3β mediates convergence of protection signaling to inhibit the mitochondrial permeability transition pore.J. Clin. Invest.2004113111535154910.1172/JCI1990615173880
    [Google Scholar]
  164. LiH. LiuZ. WangJ. WongG.T. CheungC.W. ZhangL. ChenC. XiaZ. IrwinM.G. Susceptibility to myocardial ischemia reperfusion injury at early stage of type 1 diabetes in rats.Cardiovasc. Diabetol.201312113310.1186/1475‑2840‑12‑13324041262
    [Google Scholar]
  165. ShanmugamK. Fisetin confers cardioprotection against myocardial ischemia reperfusion injury by suppressing mitochondrial oxidative stress and mitochondrial dysfunction and inhibiting glycogen synthase kinase 3β activity.Oxid Med Cell Longev201820189173436
    [Google Scholar]
  166. XuG. ZhaoX. FuJ. WangX. Resveratrol increase myocardial Nrf2 expression in type 2 diabetic rats and alleviate myocardial ischemia/reperfusion injury (MIRI).Ann. Palliat. Med.20198556557510.21037/apm.2019.11.2531865720
    [Google Scholar]
  167. XuG. MaY. JinJ. WangX. Activation of AMPK/p38/Nrf2 is involved in resveratrol alleviating myocardial ischemia-reperfusion injury in diabetic rats as an endogenous antioxidant stress feedback.Ann. Transl. Med.2022101689010.21037/atm‑22‑378936111006
    [Google Scholar]
  168. SaatT.C. van den AkkerE.K. IJzermansJ.N.M. DorF.J.M.F. de BruinR.W.F. Improving the outcome of kidney transplantation by ameliorating renal ischemia reperfusion injury: Lost in translation?J. Transl. Med.20161412010.1186/s12967‑016‑0767‑226791565
    [Google Scholar]
  169. ChatterjeeP.K. Novel pharmacological approaches to the treatment of renal ischemia-reperfusion injury: A comprehensive review.Naunyn Schmiedebergs Arch. Pharmacol.20073761-214310.1007/s00210‑007‑0183‑518038125
    [Google Scholar]
  170. VilahurG. BadimonL. Ischemia/reperfusion activates myocardial innate immune response: The key role of the toll-like receptor.Front. Physiol.2014549610.3389/fphys.2014.0049625566092
    [Google Scholar]
  171. EleftheriadisT. PissasG. LiakopoulosV. StefanidisI. LawsonB.R. Toll-like receptors and their role in renal pathologies.Inflamm. Allergy Drug Targets201211646447710.2174/18715281280358999422931389
    [Google Scholar]
  172. ChristianF. SmithE. CarmodyR. The regulation of NF-κB subunits by phosphorylation.Cells2016511210.3390/cells501001226999213
    [Google Scholar]
  173. HaydenM.S. GhoshS. NF-κB, the first quarter-century: Remarkable progress and outstanding questions.Genes Dev.201226320323410.1101/gad.183434.11122302935
    [Google Scholar]
  174. HuangJ. YueS. KeB. ZhuJ. ShenX. ZhaiY. YamamotoM. BusuttilR.W. Kupiec-WeglinskiJ.W. Nuclear factor erythroid 2-related factor 2 regulates toll-like receptor 4 innate responses in mouse liver ischemia-reperfusion injury through Akt-forkhead box protein O1 signaling network.Transplantation201498772172810.1097/TP.000000000000031625171655
    [Google Scholar]
  175. LiJ. LiL. WangS. ZhangC. ZhengL. JiaY. XuM. ZhuT. ZhangY. RongR. Resveratrol alleviates inflammatory responses and oxidative stress in rat kidney ischemia-reperfusion injury and H2O2-induced NRK-52E cells via the Nrf2/TLR4/NF-κB pathway.Cell. Physiol. Biochem.20184541677168910.1159/00048773529490296
    [Google Scholar]
  176. LanT. DunR. YaoD. WuF. QianY. ZhouY. ZhanT. ShaoM. GaoJ. WangC. Effects of resveratrol on renal ischemia-reperfusion injury: A systematic review and meta-analysis.Front. Nutr.20239106450710.3389/fnut.2022.106450736687723
    [Google Scholar]
  177. CarrerasA. ZhangS.X.L. AlmendrosI. WangY. PerisE. QiaoZ. GozalD. Resveratrol attenuates intermittent hypoxia-induced macrophage migration to visceral white adipose tissue and insulin resistance in male mice.Endocrinology2015156243744310.1210/en.2014‑170625406018
    [Google Scholar]
  178. McNicholasW.T. COPD-OSA overlap syndrome.Chest201715261318132610.1016/j.chest.2017.04.16028442310
    [Google Scholar]
  179. HaslipM. DostanicI. HuangY. ZhangY. RussellK.S. JurczakM.J. MannamP. GiordanoF. ErzurumS.C. LeeP.J. Endothelial uncoupling protein 2 regulates mitophagy and pulmonary hypertension during intermittent hypoxia.Arterioscler. Thromb. Vasc. Biol.20153551166117810.1161/ATVBAHA.114.30486525814675
    [Google Scholar]
  180. Aparicio-SotoM. Sánchez-HidalgoM. CárdenoA. RosilloM.Á. Sánchez-FidalgoS. UtrillaJ. Martín-LacaveI. Alarcón-de-la-LastraC. Dietary extra virgin olive oil attenuates kidney injury in pristane-induced SLE model via activation of HO-1/Nrf-2 antioxidant pathway and suppression of JAK/STAT, NF-κB and MAPK activation.J. Nutr. Biochem.20162727828810.1016/j.jnutbio.2015.09.01726525667
    [Google Scholar]
  181. ZhaoD. YinC.Y. YeX.W. WanZ.F. ZhaoD.G. ZhangX.Y. Mitochondrial separation protein inhibitor inhibits cell apoptosis in rat lungs during intermittent hypoxia.Exp. Ther. Med.20191732349235810.3892/etm.2019.720130867720
    [Google Scholar]
  182. KostopanagiotouG. AvgerinosE. CostopanagiotouC. ArkadopoulosN. AndreadouI. DiamantopoulouK. LekkaM. SmyrniotisV. NakosG. Acute lung injury in a rat model of intestinal ischemia-reperfusion: the potential time depended role of phospholipases A(2).J. Surg. Res.2008147110811610.1016/j.jss.2007.07.02317981297
    [Google Scholar]
  183. SongS. TanJ. MiaoY. SunZ. ZhangQ. Intermittent-hypoxia-induced autophagy activation through the ER-stress-related PERK/eIF2α/ATF4 pathway is a protective response to pancreatic β-cell apoptosis.Cell. Physiol. Biochem.20185162955297110.1159/00049604730562747
    [Google Scholar]
  184. TudoracheV. TrailaD. MarcM. OanceaC. ManolescuD. TudoracheE. TimarB. AlbaiA. Fira-MladinescuO. Impact of moderate to severe obstructive sleep apnea on the cognition in idiopathic pulmonary fibrosis.PLoS One2019142e021145510.1371/journal.pone.021145530707735
    [Google Scholar]
  185. LiuK.X. ChenG.P. LinP.L. HuangJ.C. LinX. QiJ.C. LinQ.C. Detection and analysis of apoptosis- and autophagy-related miRNAs of mouse vascular endothelial cells in chronic intermittent hypoxia model.Life Sci.201819319419910.1016/j.lfs.2017.11.00129108914
    [Google Scholar]
  186. de LimaF.F.F. MazzottiD.R. TufikS. BittencourtL. The role inflammatory response genes in obstructive sleep apnea syndrome: A review.Sleep Breath.201620133133810.1007/s11325‑015‑1226‑726201496
    [Google Scholar]
  187. ChristouK. MoulasA.N. PastakaC. GourgoulianisK.I. Antioxidant capacity in obstructive sleep apnea patients.Sleep Med.20034322522810.1016/S1389‑9457(02)00253‑814592326
    [Google Scholar]
  188. LianN. ZhangS. HuangJ. LinT. LinQ. Resveratrol attenuates intermittent hypoxia-induced lung injury by activating the Nrf2/ARE pathway.Lung2020198232333110.1007/s00408‑020‑00321‑w31960166
    [Google Scholar]
  189. BonicoliniE. MartucciG. SimonsJ. RaffaG.M. SpinaC. Lo CocoV. ArcadipaneA. PilatoM. LorussoR. Limb ischemia in peripheral veno-arterial extracorporeal membrane oxygenation: A narrative review of incidence, prevention, monitoring, and treatment.Crit. Care201923126610.1186/s13054‑019‑2541‑331362770
    [Google Scholar]
  190. ZettervallS.L. MarshallA.P. FleserP. GuzmanR.J. Association of arterial calcification with chronic limb ischemia in patients with peripheral artery disease.J. Vasc. Surg.201867250751310.1016/j.jvs.2017.06.08628870682
    [Google Scholar]
  191. ZhuT. YaoQ. WangW. YaoH. ChaoJ. iNOS induces vascular endothelial cell migration and apoptosis via autophagy in ischemia/reperfusion injury.Cell. Physiol. Biochem.20163841575158810.1159/00044309827082814
    [Google Scholar]
  192. ShenG.H. SongY. YaoY. SunQ.F. JingB. WuJ. LiS.Y. LiuS.Q. LiH.C. YuanC. LiuG.Y. LiJ.B. LiuX.Y. WangH.Y. Downregulation of DLGAP1-Antisense RNA 1 alleviates vascular endothelial cell injury via activation of the phosphoinositide 3-kinase/akt pathway results from an acute limb ischemia rat model.Eur. J. Vasc. Endovasc. Surg.20205919810710.1016/j.ejvs.2019.06.03231744785
    [Google Scholar]
  193. GreenT.R. BennettS.R. NelsonV.M. Specificity and properties of propofol as an antioxidant free radical scavenger.Toxicol. Appl. Pharmacol.1994129116316910.1006/taap.1994.12407974491
    [Google Scholar]
  194. ZhouT. PratherE. GarrisonD. ZuoL. Interplay between ROS and antioxidants during ischemia-reperfusion injuries in cardiac and skeletal muscle.Int. J. Mol. Sci.201819241710.3390/ijms1902041729385043
    [Google Scholar]
  195. LejayA. MeyerA. SchlagowskiA.I. CharlesA.L. SinghF. BouitbirJ. PottecherJ. ChakféN. ZollJ. GenyB. Mitochondria: Mitochondrial participation in ischemia–reperfusion injury in skeletal muscle.Int. J. Biochem. Cell Biol.20145010110510.1016/j.biocel.2014.02.01324582887
    [Google Scholar]
  196. ChoiE.K. YeoJ.S. ParkC.Y. NaH. LimJ. LeeJ.E. HongS.W. ParkS.S. LimD.G. KwakK.H. Inhibition of reactive oxygen species downregulates the MAPK pathway in rat spinal cord after limb ischemia reperfusion injury.Int. J. Surg.201522747810.1016/j.ijsu.2015.08.01626283297
    [Google Scholar]
  197. GurusingheS. CoxA.G. RahmanR. ChanS.T. MuljadiR. SinghH. LeawB. MocklerJ.C. MarshallS.A. MurthiP. LimR. WallaceE.M. Resveratrol mitigates trophoblast and endothelial dysfunction partly via activation of nuclear factor erythroid 2-related factor-2.Placenta201760748510.1016/j.placenta.2017.10.00829208243
    [Google Scholar]
  198. Ditano-VázquezP. Torres-PeñaJ.D. Galeano-ValleF. Pérez-CaballeroA.I. Demelo-RodríguezP. Lopez-MirandaJ. KatsikiN. Delgado-ListaJ. Alvarez-Sala-WaltherL.A. The fluid aspect of the mediterranean diet in the prevention and management of cardiovascular disease and diabetes: The role of polyphenol content in moderate consumption of wine and olive oil.Nutrients20191111283310.3390/nu1111283331752333
    [Google Scholar]
  199. Santos-BuelgaC. González-ManzanoS. González-ParamásA.M. Wine, polyphenols, and mediterranean diets. What else is there to say?Molecules20212618553710.3390/molecules2618553734577008
    [Google Scholar]
  200. UrquiagaI. GuaschV. MarshallG. San MartínA. CastilloÓ. RozowskiJ. LeightonF. Effect of Mediterranean and Occidental diets, and red wine, on plasma fatty acids in humans. An intervention study.Biol. Res.200437225326110.4067/S0716‑9760200400020001215455655
    [Google Scholar]
  201. TuttolomondoA. SimonettaI. DaidoneM. MogaveroA. OrtelloA. PintoA. Metabolic and vascular effect of the mediterranean diet.Int. J. Mol. Sci.20192019471610.3390/ijms2019471631547615
    [Google Scholar]
  202. MontskoG. OhmachtR. MarkL. trans-resveratrol and trans-piceid content of hungarian wines.Chromatographia201071S112112410.1365/s10337‑010‑1518‑9
    [Google Scholar]
  203. MatsumotoC. MiedemaM.D. OfmanP. GazianoJ.M. SessoH.D. An expanding knowledge of the mechanisms and effects of alcohol consumption on cardiovascular disease.J. Cardiopulm. Rehabil. Prev.201434315917110.1097/HCR.000000000000004224667667
    [Google Scholar]
  204. DrosteD.W. IliescuC. VaillantM. GantenbeinM. De BremaekerN. LieunardC. VelezT. MeyerM. GuthT. KuemmerleA. GilsonG. ChiotiA. A daily glass of red wine associated with lifestyle changes independentlyimproves blood lipids in patients with carotid arteriosclerosis: results from arandomized controlled trial.Nutr. J.201312114710.1186/1475‑2891‑12‑14724228901
    [Google Scholar]
  205. O’KeefeJ.H. BhattiS.K. BajwaA. DiNicolantonioJ.J. LavieC.J. Alcohol and cardiovascular health: The dose makes the poison…or the remedy.Mayo Clin. Proc.201489338239310.1016/j.mayocp.2013.11.00524582196
    [Google Scholar]
  206. TothA. PappJ. RabaiM. KenyeresP. MartonZ. KesmarkyG. JuricskayI. MeiselmanH.J. TothK. The role of hemorheological factors in cardiovascular medicine.Clin. Hemorheol. Microcirc.201456319720410.3233/CH‑13168523445629
    [Google Scholar]
  207. CastaldoL. NarváezA. IzzoL. GrazianiG. GaspariA. MinnoG.D. RitieniA. Red wine consumption and cardiovascular health.Molecules20192419362610.3390/molecules2419362631597344
    [Google Scholar]
  208. PianoM.R. Alcohol’s effects on the cardiovascular system.Alcohol Res.201738221924128988575
    [Google Scholar]
  209. HaunschildR. MarxW. On health effects of resveratrol in wine.Int. J. Environ. Res. Public Health2022195311010.3390/ijerph1905311035270803
    [Google Scholar]
  210. SnopekL. MlcekJ. SochorovaL. BaronM. HlavacovaI. JurikovaT. KizekR. SedlackovaE. SochorJ. Contribution of red wine consumption to human health protection.Molecules2018237168410.3390/molecules2307168429997312
    [Google Scholar]
  211. ScholeyA. BensonS. StoughC. StockleyC. Effects of resveratrol and alcohol on mood and cognitive function in older individuals.Nutr. Aging201422,313313810.3233/NUA‑130037
    [Google Scholar]
  212. AsadpourS. YeganehH. KhademiF. GhanbariH. AiJ. Resveratrol-loaded polyurethane nanofibrous scaffold: Viability of endothelial and smooth muscle cells.Biomed. Mater.201915101500110.1088/1748‑605X/ab4e2331618720
    [Google Scholar]
  213. ZhuW. FanW. ZhangX. GaoM. Sustained-release solid dispersion of high-melting-point and insoluble resveratrol prepared through hot melt extrusion to improve its solubility and bioavailability.Molecules20212616498210.3390/molecules2616498234443569
    [Google Scholar]
  214. MarchettiA. YinJ. SuY. KongX. Solid-state NMR in the field of drug delivery: State of the art and new perspectives.MRI202111287010.1016/j.mrl.2021.100003
    [Google Scholar]
  215. SivakumarB. MuruganR. BaskaranA. KhadangaleB.P. MuruganS. SenthilkumarU.P. Identification and characterization of process-related impurities of trans-resveratrol.Sci. Pharm.201381368369510.3797/scipharm.1301‑1724106667
    [Google Scholar]
  216. BalataG. EassaE. ShamroolH. ZidanS. Abdo RehabM. Self-emulsifying drug delivery systems as a tool to improve solubility and bioavailability of resveratrol.Drug Des. Devel. Ther.20161011712810.2147/DDDT.S9590526792979
    [Google Scholar]
  217. IntagliataS. ModicaM.N. SantagatiL.M. MontenegroL. Strategies to improve resveratrol systemic and topical bioavailability: An update.Antioxidants20198824410.3390/antiox808024431349656
    [Google Scholar]
  218. ChenJ. YaoY. Phytoglycogen to Enhance the Solubility and in-vitro Permeation of Resveratrol.Food Biophys.202318343344210.1007/s11483‑023‑09785‑837362010
    [Google Scholar]
  219. WangB. SunX. GuoX. YiH. ChengZ. Improvement of resveratrol solubility by complexation with lactose using organic solvent spray drying technique.J. Nanomater.202120211610.1155/2021/2886450
    [Google Scholar]
  220. AlsaideN.H. MaraieN.K. Insights into medicated films as attractive dosage forms.AJPS202323111310.32947/ajps.v23i1.981
    [Google Scholar]
  221. AnsariM. SadaraniB. MajumdarA. Optimization and evaluation of mucoadhesive buccal films loaded with resveratrol.J. Drug Deliv. Sci. Technol.20184427828810.1016/j.jddst.2017.12.007
    [Google Scholar]
  222. AbbaspourM. JalayerN. Sharif MakhmalzadehB. Development and evaluation of a solid self-nanoemulsifying drug delivery system for loratadin by extrusion-spheronization.Adv. Pharm. Bull.20144211311924511474
    [Google Scholar]
  223. YenC.C. ChangC.W. HsuM.C. WuY.T. Self-nanoemulsifying drug delivery system for resveratrol: Enhanced oral bioavailability and reduced physical fatigue in rats.Int. J. Mol. Sci.2017189185310.3390/ijms1809185328841149
    [Google Scholar]
  224. SpringerM. MocoS. Resveratrol and its human metabolites—effects on metabolic health and obesity.Nutrients201911114310.3390/nu1101014330641865
    [Google Scholar]
  225. PannuN. BhatnagarA. Resveratrol: From enhanced biosynthesis and bioavailability to multitargeting chronic diseases.Biomed. Pharmacother.20191092237225110.1016/j.biopha.2018.11.07530551481
    [Google Scholar]
  226. JohnsonJ.J. NihalM. SiddiquiI.A. ScarlettC.O. BaileyH.H. MukhtarH. AhmadN. Enhancing the bioavailability of resveratrol by combining it with piperine.Mol. Nutr. Food Res.20115581169117610.1002/mnfr.20110011721714124
    [Google Scholar]
  227. KemperC. BehnamD. BrothersS. WahlestedtC. VolmarC.H. BennettD. HaywardM. Safety and pharmacokinetics of a highly bioavailable resveratrol preparation (JOTROL TM).AAPS Open2022811110.1186/s41120‑022‑00058‑135789594
    [Google Scholar]
  228. la PorteC. VoducN. ZhangG. SeguinI. TardiffD. SinghalN. CameronD.W. Steady-State pharmacokinetics and tolerability of trans-resveratrol 2000 mg twice daily with food, quercetin and alcohol (ethanol) in healthy human subjects.Clin. Pharmacokinet.201049744945410.2165/11531820‑000000000‑0000020528005
    [Google Scholar]
  229. HibiM. Potential of polyphenols for improving sleep: A preliminary results from review of human clinical trials and mechanistic insights.Nutrients2023155125710.3390/nu1505125736904255
    [Google Scholar]
  230. PlanincM. JovanovićI.N. RašićD. PeraicaM. SutlićŽ. Resveratrol as antioxidant in cardiac surgery: is there potential for clinical application?Archives of Industrial Hygiene and Toxicology202273425625910.2478/aiht‑2022‑73‑364336607724
    [Google Scholar]
  231. DrabińskaN. Jarocka-CyrtaE. Crosstalk between resveratrol and gut barrier: A review.Int. J. Mol. Sci.202223231527910.3390/ijms23231527936499603
    [Google Scholar]
  232. FanD. LiuC. ZhangZ. HuangK. WangT. ChenS. LiZ. Progress in the preclinical and clinical study of resveratrol for vascular metabolic disease.Molecules20222721752410.3390/molecules2721752436364370
    [Google Scholar]
  233. IflaifelM. SprangeK. BellJ. CookA. GambleC. JuliousS.A. JuszczakE. LinsellL. MontgomeryA. PartlettC. Developing guidance for a risk-proportionate approach to blinding statisticians within clinical trials: A mixed methods study.Trials20232417110.1186/s13063‑022‑06992‑536721215
    [Google Scholar]
  234. CorneliA. Hanlen-RosadoE. McKennaK. AraojoR. CorbettD. VasishtK. SiddiqiB. JohnsonT. ClarkL.T. CalvertS.B. Enhancing diversity and inclusion in clinical trials.Clin. Pharmacol. Ther.2023113348949910.1002/cpt.281936628990
    [Google Scholar]
  235. GoodsonN. WicksP. FarinaC. Commentary: An industry perspective on the importance of incorporating participant voice before, during, and after clinical trials.Trials202223196610.1186/s13063‑022‑06905‑636443805
    [Google Scholar]
/content/journals/cmp/10.2174/0118761429246578231130064830
Loading
/content/journals/cmp/10.2174/0118761429246578231130064830
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test