Skip to content
2000
Volume 17, Issue 1
  • ISSN: 1874-4672
  • E-ISSN: 1874-4702
side by side viewer icon HTML

Abstract

Background:

Systemic lupus erythematosus (SLE) is a complex autoimmune disease recognized by elevated activity of autoimmune cells, loss of tolerance, and decreased regulatory T cells producing inhibitory cytokines. Despite many efforts, the definitive treatment for lupus has not been fully understood. Curcumin (CUR) and berberine (BBR) have significant immunomodulatory roles and anti-inflammatory properties that have been demonstrated in various studies. This study aimed to investigate the anti-inflammatory properties of CUR and BBR on human monocyte-derived dendritic cells (DCs) with an special focus on the maturation and activation of DCs.

Methods:

Human monocytes were isolated from the heparinized blood of SLE patients and healthy individuals, which were then exposed to cytokines (IL-4 and GM-CSF) for five days to produce immature DCs. Then, the obtained DCs were characterized by FITC-uptake assay and then cultured in the presence of CUR, BBR, or lipopolysaccharide (LPS) for 48 h. Finally, the maturation of DCs was analyzed by the level of maturation using flow cytometry or real-time PCR methods.

Results:

The results showed promising anti-inflammatory effects of CUR and BBR in comparison with LPS, supported by a significant reduction of not only co-stimulatory and antigen-presenting factors such as CD80, CD86, CD83, CD1a, CD14, and HLA-DR but also inflammatory cytokines such as IL-12.

Conclusion:

CUR and BBR could arrest DC maturation and develop a tolerogenic DC phenotype that subsequently promoted the expression of inhibitory cytokines and reduced the secretion of proinflammatory markers.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmp/10.2174/0118761429249908231221080806
2024-01-26
2024-11-22
Loading full text...

Full text loading...

/deliver/fulltext/cmp/17/1/BMS-CMP-2023-49.html?itemId=/content/journals/cmp/10.2174/0118761429249908231221080806&mimeType=html&fmt=ahah

References

  1. DoriaA. IaccarinoL. GhirardelloA. ZampieriS. ArientiS. Sarzi-PuttiniP. AtzeniF. PiccoliA. TodescoS. Long-term prognosis and causes of death in systemic lupus erythematosus.Am. J. Med.2006119870070610.1016/j.amjmed.2005.11.03416887417
    [Google Scholar]
  2. RadmaneshF. MahmoudiM. YazdanpanahE. KeyvaniV. KiaN. NikpoorA.R. ZafariP. EsmaeiliS.A. The immunomodulatory effects of mesenchymal stromal cell‐based therapy in human and animal models of systemic lupus erythematosus.IUBMB Life202072112366238110.1002/iub.238733006813
    [Google Scholar]
  3. OhlK. TenbrockK. Inflammatory cytokines in systemic lupus erythematosus.J. Biomed. Biotechnol.2011201111410.1155/2011/43259522028588
    [Google Scholar]
  4. HerradaA.A. EscobedoN. IruretagoyenaM. ValenzuelaR.A. BurgosP.I. CuitinoL. LlanosC. Innate immune cells’ contribution to systemic lupus erythematosus.Front. Immunol.20191077210.3389/fimmu.2019.0077231037070
    [Google Scholar]
  5. EsmaeiliS-A. TaheriR.A. MahmoudiM. Momtazi-BorojeniA.A. MorshediM. BahramifarA. Fasihi-RamandiM. Inhibitory effects of tolerogenic probiotics on migratory potential of lupus patient-derived DCs.Iran. J. Basic Med. Sci.202124111509151435317107
    [Google Scholar]
  6. KlarquistJ. ZhouZ. ShenN. JanssenE.M. Dendritic cells in systemic lupus erythematosus: From pathogenic players to therapeutic tools.Mediators Inflamm.2016201611210.1155/2016/504524827122656
    [Google Scholar]
  7. EsmaeiliS.A. MahmoudiM. MomtaziA.A. SahebkarA. DoulabiH. RastinM. Tolerogenic probiotics: Potential immunoregulators in Systemic Lupus Erythematosus.J. Cell. Physiol.201723281994200710.1002/jcp.2574827996081
    [Google Scholar]
  8. EsmaeiliS.A. MahmoudiM. RezaieyazdiZ. SahebariM. TabasiN. SahebkarA. RastinM. Generation of tolerogenic dendritic cells using Lactobacillus rhamnosus and Lactobacillus delbrueckii as tolerogenic probiotics.J. Cell. Biochem.201811997865787210.1002/jcb.2720329943843
    [Google Scholar]
  9. KaewraemruaenC. RitprajakP. HirankarnN. Dendritic cells as key players in systemic lupus erythematosus.Asian Pac. J. Allergy Immunol.202038422523231837212
    [Google Scholar]
  10. MardaniF. MahmoudiM. EsmaeiliS.A. KhorasaniS. TabasiN. RastinM. In vivo study: Th1–Th17 reduction in pristane‐induced systemic lupus erythematosus mice after treatment with tolerogenic Lactobacillus probiotics.J. Cell. Physiol.2019234164264910.1002/jcp.2681930078223
    [Google Scholar]
  11. KhorasaniS. MahmoudiM. KalantariM.R. Lavi ArabF. EsmaeiliS.A. MardaniF. TabasiN. RastinM. Amelioration of regulatory T cells by Lactobacillus delbrueckii and Lactobacillus rhamnosus in pristane‐induced lupus mice model.J. Cell. Physiol.201923469778978610.1002/jcp.2766330370554
    [Google Scholar]
  12. YazdanpanahE. MahmoudiM. SahebariM. RezaieyazdiZ. EsmaeiliS.A. TabasiN. JaberiS. SahebkarA. RastinM. Vitamin D3 alters the expression of toll‐like receptors in peripheral blood mononuclear cells of patients with systemic lupus erythematosus.J. Cell. Biochem.2017118124831483510.1002/jcb.2615528544067
    [Google Scholar]
  13. KothaR.R. LuthriaD.L. Curcumin: biological, pharmaceutical, nutraceutical, and analytical aspects.Molecules20192416293010.3390/molecules2416293031412624
    [Google Scholar]
  14. ShirleyS.A. MontpetitA.J. LockeyR.F. MohapatraS.S. Curcumin prevents human dendritic cell response to immune stimulants.Biochem. Biophys. Res. Commun.2008374343143610.1016/j.bbrc.2008.07.05118639521
    [Google Scholar]
  15. KimG.Y. KimK.H. LeeS.H. YoonM.S. LeeH.J. MoonD.O. LeeC.M. AhnS.C. ParkY.C. ParkY.M. Curcumin inhibits immunostimulatory function of dendritic cells: MAPKs and translocation of NF-κ B as potential targets.J. Immunol.2005174128116812410.4049/jimmunol.174.12.811615944320
    [Google Scholar]
  16. Momtazi-BorojeniA.A. HaftcheshmehS.M. EsmaeiliS.A. JohnstonT.P. AbdollahiE. SahebkarA. Curcumin: A natural modulator of immune cells in systemic lupus erythematosus.Autoimmun. Rev.201817212513510.1016/j.autrev.2017.11.01629180127
    [Google Scholar]
  17. ChehrehR. SayehmiriK. ShohaniM. VahidniaS. TavanH. Comparing the effect of herbal drugs and non-steroidal anti-inflammatory drugs on primary dysmenorrhea in iran: A systematic review and meta-analysis.J. Chem. Health Risks20211114153
    [Google Scholar]
  18. RogersN.M. KiretaS. CoatesP.T.H. Curcumin induces maturation-arrested dendritic cells that expand regulatory T cells in vitro and in vivo.Clin. Exp. Immunol.2010162346047310.1111/j.1365‑2249.2010.04232.x21070208
    [Google Scholar]
  19. HabtemariamS. Berberine and inflammatory bowel disease: A concise review.Pharmacol. Res.2016113Pt A59259910.1016/j.phrs.2016.09.04127697643
    [Google Scholar]
  20. RahimiK. HassanzadehK. KhanbabaeiH. HaftcheshmehS.M. AhmadiA. IzadpanahE. MohammadiA. SahebkarA. Curcumin: A dietary phytochemical for targeting the phenotype and function of dendritic cells.Curr. Med. Chem.20212881549156410.2174/1875533XMTA2fNjQ3332410550
    [Google Scholar]
  21. BaoY. WuY. ChenT. JinY. ShaX. GeX. MengY. GuoG. XiaY. YangJ. SunC. DongC. JiJ. XueZ. GuZ. Berberine modulates lupus syndrome via the regulation of gut microbiota in MRL/Lpr miceResearch Square2021
    [Google Scholar]
  22. SimW.J. MalinarichF. FairhurstA-M. ConnollyJ.E. Generation of immature, mature and tolerogenic dendritic cells with differing metabolic phenotypes.J. Vis. Exp.2016112e54128e5412827404554
    [Google Scholar]
  23. FursetG. FløisandY. SioudM. Impaired expression of indoleamine 2, 3‐dioxygenase in monocyte‐derived dendritic cells in response to Toll‐like receptor‐7/8 ligands.Immunology2008123226327110.1111/j.1365‑2567.2007.02695.x17725606
    [Google Scholar]
  24. AnX.J. BaiC.X. XiaJ.B. DangT. QianP. QianG.S. LiaoW. Immature dendritic cells expressing indoleamine 2,3-dioxygenase suppress ovalbumin-induced allergic airway inflammation in mice.J. Investig. Allergol. Clin. Immunol.201121318519221548446
    [Google Scholar]
  25. ZhuK-J. ChengH. MaoX.H. LaoL.M. CenJ.P. YeJ. Increased endocytic activity in monocyte-derived dendritic cells in patients with psoriasis vulgaris.Indian J. Med. Res.20061231435016567867
    [Google Scholar]
  26. TarteK. FiolG. RossiJ-F. KleinB. Extensive characterization of dendritic cells generated in serum-free conditions: Regulation of soluble antigen uptake, apoptotic tumor cell phagocytosis, chemotaxis and T cell activation during maturation in vitro. Leukemia200014122182219210.1038/sj.leu.240192511187909
    [Google Scholar]
  27. SlobodinG. KesselA. KofmanN. ToubiE. RosnerI. OdehM. Phenotype of resting and activated monocyte-derived dendritic cells grown from peripheral blood of patients with ankylosing spondylitis.Inflammation201235277277510.1007/s10753‑011‑9373‑x21833763
    [Google Scholar]
  28. RigbyR.J. KnightS.C. KammM.A. StaggA.J. Production of interleukin (IL)-10 and IL-12 by murine colonic dendritic cells in response to microbial stimuli.Clin. Exp. Immunol.2004139224525610.1111/j.1365‑2249.2004.02674.x15654823
    [Google Scholar]
  29. Yuandani JantanI. RohaniA.S. SumantriI.B. Immunomodulatory effects and mechanisms of curcuma species and their bioactive compounds: A review.Front. Pharmacol.20211264311910.3389/fphar.2021.64311933995049
    [Google Scholar]
  30. MollazadehH. CiceroA.F.G. BlessoC.N. PirroM. MajeedM. SahebkarA. Immune modulation by curcumin: The role of interleukin-10.Crit. Rev. Food Sci. Nutr.20195918910110.1080/10408398.2017.135813928799796
    [Google Scholar]
  31. EhteshamfarS.M. AkhbariM. AfshariJ.T. SeyediM. NikfarB. Shapouri-MoghaddamA. GhanbarzadehE. Momtazi-BorojeniA.A. Anti‐inflammatory and immune‐modulatory impacts of berberine on activation of autoreactive T cells in autoimmune inflammation.J. Cell. Mol. Med.20202423135731358810.1111/jcmm.1604933135395
    [Google Scholar]
  32. HuZ. JiaoQ. DingJ. LiuF. LiuR. ShanL. ZengH. ZhangJ. ZhangW. Berberine induces dendritic cell apoptosis and has therapeutic potential for rheumatoid arthritis.Arthritis Rheum.201163494995910.1002/art.3020221162100
    [Google Scholar]
  33. MigitaK. MiyashitaT. MaedaY. NakamuraM. YatsuhashiH. KimuraH. IshibashiH. EguchiK. Toll-like receptor expression in lupus peripheral blood mononuclear cells.J. Rheumatol.200734349350017295441
    [Google Scholar]
  34. MozaffarianN. WiedemanA.E. StevensA.M. Active systemic lupus erythematosus is associated with failure of antigen-presenting cells to express programmed death ligand-1.Rheumatology20084791335134110.1093/rheumatology/ken25618650228
    [Google Scholar]
  35. ZhaoH.M. XuR. HuangX.Y. ChengS.M. HuangM.F. YueH.Y. WangX. ZouY. LuA.P. LiuD.Y. Curcumin suppressed activation of dendritic cells via JAK/STAT/SOCS signal in mice with experimental colitis.Front. Pharmacol.2016745510.3389/fphar.2016.0045527932984
    [Google Scholar]
/content/journals/cmp/10.2174/0118761429249908231221080806
Loading
/content/journals/cmp/10.2174/0118761429249908231221080806
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Berberine; Curcumin; Cytokines; Dendritic cells; PCR methods; SLE
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test