Skip to content
2000
Volume 17, Issue 1
  • ISSN: 1874-4672
  • E-ISSN: 1874-4702
side by side viewer icon HTML

Abstract

Almost 20-40% of all patients suffering from diabetes mellitus experience chronic kidney disease, which is related to higher mortality (cardiovascular and all-cause). The implication of several pathophysiological mechanisms (hemodynamic, tubular, metabolic and inflammatory) in the pathogenesis of diabetic kidney disease generates an urgent need to develop multitarget therapeutic strategies to face its development and progression. SGLT2 inhibitors are undoubtedly a practice-changing drug class for individuals who experience type 2 diabetes and diabetic kidney disease. studies, exploratory research, sub-analyses of large randomized controlled trials, and investigation of several biomarkers have demonstrated that SGLT2 inhibitors achieved multiple beneficial activities, targeting several renal cellular and molecular pathways independent of their antihyperglycemic activity. These mainly include the reduction in intraglomerular pressure through the restoration of TGF, impacts on the renin-angiotensin-aldosterone system, improvement of renal hypoxia, adaptive metabolic alterations in substrate use/energy expenditure, improvement of mitochondrial dysfunction, and reduction of inflammation, oxidative stress and fibrosis. This manuscript thoroughly investigates the possible mechanisms that underlie their salutary renal effects in patients with diabetes, focusing on several pathways involved and the interplay between them. It also explores their upcoming role in ameliorating the evolution of chronic kidney disease in patients with diabetes.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmp/10.2174/0118761429261105231011101200
2024-01-01
2025-01-23
Loading full text...

Full text loading...

/deliver/fulltext/cmp/17/1/e18761429261105.html?itemId=/content/journals/cmp/10.2174/0118761429261105231011101200&mimeType=html&fmt=ahah

References

  1. AfkarianM. SachsM.C. KestenbaumB. HirschI.B. TuttleK.R. HimmelfarbJ. de BoerI.H. Kidney disease and increased mortality risk in type 2 diabetes.J. Am. Soc. Nephrol.201324230230810.1681/ASN.201207071823362314
    [Google Scholar]
  2. RitzE. RychlíkI. LocatelliF. HalimiS. End-stage renal failure in type 2 diabetes: A medical catastrophe of worldwide dimensions.Am. J. Kidney Dis.199934579580810.1016/S0272‑6386(99)70035‑110561134
    [Google Scholar]
  3. GhaderianS.B. HayatiF. ShayanpourS. Beladi MousaviS.S. Diabetes and end-stage renal disease; A review article on new concepts.J. Renal Inj. Prev.201542283326060834
    [Google Scholar]
  4. YamanouchiM. FuruichiK. HoshinoJ. UbaraY. WadaT. Nonproteinuric diabetic kidney disease.Clin. Exp. Nephrol.202024757358110.1007/s10157‑020‑01881‑032236782
    [Google Scholar]
  5. Abdul-GhaniM.A. NortonL. DeFronzoR.A. Renal sodium-glucose cotransporter inhibition in the management of type 2 diabetes mellitus.Am. J. Physiol. Renal Physiol.201530911F889F90010.1152/ajprenal.00267.201526354881
    [Google Scholar]
  6. PapaetisG.S. Empagliflozin and the diabetic kidney: Pathophysiological concepts and future challenges.Endocr. Metab. Immune Disord. Drug Targets20212191555158910.2174/187153032199920121423342133319678
    [Google Scholar]
  7. Abdul-GhaniM.A. DeFronzoR.A. Inhibition of renal glucose reabsorption: A novel strategy for achieving glucose control in type 2 diabetes mellitus.Endocr. Pract.200814678279010.4158/EP.14.6.78218996802
    [Google Scholar]
  8. WannerC. InzucchiS.E. LachinJ.M. FitchettD. von EynattenM. MattheusM. JohansenO.E. WoerleH.J. BroedlU.C. ZinmanB. Empagliflozin and progression of kidney disease in type 2 diabetes.N. Engl. J. Med.2016375432333410.1056/NEJMoa151592027299675
    [Google Scholar]
  9. MosenzonO. WiviottS.D. CahnA. RozenbergA. YanuvI. GoodrichE.L. MurphyS.A. HeerspinkH.J.L. ZelnikerT.A. DwyerJ.P. BhattD.L. LeiterL.A. McGuireD.K. WildingJ.P.H. KatoE.T. Gause-NilssonI.A.M. FredrikssonM. JohanssonP.A. LangkildeA.M. SabatineM.S. RazI. Effects of dapagliflozin on development and progression of kidney disease in patients with type 2 diabetes: An analysis from the DECLARE-TIMI 58 randomised trial.Lancet Diabetes Endocrinol.20197860661710.1016/S2213‑8587(19)30180‑931196815
    [Google Scholar]
  10. NealB. PerkovicV. MahaffeyK.W. de ZeeuwD. FulcherG. EronduN. ShawW. LawG. DesaiM. MatthewsD.R. Canagliflozin and cardiovascular and renal events in type 2 diabetes.N. Engl. J. Med.2017377764465710.1056/NEJMoa161192528605608
    [Google Scholar]
  11. PerkovicV. de ZeeuwD. MahaffeyK.W. FulcherG. EronduN. ShawW. BarrettT.D. Weidner-WellsM. DengH. MatthewsD.R. NealB. Canagliflozin and renal outcomes in type 2 diabetes: Results from the CANVAS Program randomised clinical trials.Lancet Diabetes Endocrinol.20186969170410.1016/S2213‑8587(18)30141‑429937267
    [Google Scholar]
  12. ZelnikerT.A. WiviottS.D. RazI. ImK. GoodrichE.L. BonacaM.P. MosenzonO. KatoE.T. CahnA. FurtadoR.H.M. BhattD.L. LeiterL.A. McGuireD.K. WildingJ.P.H. SabatineM.S. SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: A systematic review and meta-analysis of cardiovascular outcome trials.Lancet201939310166313910.1016/S0140‑6736(18)32590‑X30424892
    [Google Scholar]
  13. PerkovicV. JardineM.J. NealB. BompointS. HeerspinkH.J.L. CharytanD.M. EdwardsR. AgarwalR. BakrisG. BullS. CannonC.P. CapuanoG. ChuP.L. de ZeeuwD. GreeneT. LevinA. PollockC. WheelerD.C. YavinY. ZhangH. ZinmanB. MeiningerG. BrennerB.M. MahaffeyK.W. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy.N. Engl. J. Med.2019380242295230610.1056/NEJMoa181174430990260
    [Google Scholar]
  14. NeuenB.L. YoungT. HeerspinkH.J.L. NealB. PerkovicV. BillotL. MahaffeyK.W. CharytanD.M. WheelerD.C. ArnottC. BompointS. LevinA. JardineM.J. SGLT2 inhibitors for the prevention of kidney failure in patients with type 2 diabetes: A systematic review and meta-analysis.Lancet Diabetes Endocrinol.201971184585410.1016/S2213‑8587(19)30256‑631495651
    [Google Scholar]
  15. HeerspinkH.J.L. StefánssonB.V. Correa-RotterR. ChertowG.M. GreeneT. HouF.F. MannJ.F.E. McMurrayJ.J.V. LindbergM. RossingP. SjöströmC.D. TotoR.D. LangkildeA.M. WheelerD.C. Dapagliflozin in patients with chronic kidney disease.N. Engl. J. Med.2020383151436144610.1056/NEJMoa202481632970396
    [Google Scholar]
  16. HerringtonW.G. PreissD. HaynesR. von EynattenM. StaplinN. HauskeS.J. GeorgeJ.T. GreenJ.B. LandrayM.J. BaigentC. WannerC. The potential for improving cardio-renal outcomes by sodium-glucose co-transporter-2 inhibition in people with chronic kidney disease: A rationale for the EMPA-KIDNEY study.Clin. Kidney J.201811674976110.1093/ckj/sfy09030524708
    [Google Scholar]
  17. HerringtonW.J. StaplinN. WannerC. BaigentC. HaynesR. Empagliflozin in patients with chronic kidney disease.N. Engl. J. Med.20223882117127
    [Google Scholar]
  18. DaviesM.J. ArodaV.R. CollinsB.S. GabbayR.A. GreenJ. MaruthurN.M. RosasS.E. Del PratoS. MathieuC. MingroneG. RossingP. TankovaT. TsapasA. BuseJ.B. Management of hyperglycaemia in type 2 diabetes, 2022. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD).Diabetologia202265121925196610.1007/s00125‑022‑05787‑236151309
    [Google Scholar]
  19. NavaneethanS.D. ZoungasS. CaramoriM.L. ChanJ.C.N. HeerspinkH.J.L. HurstC. LiewA. MichosE.D. OlowuW.A. SaduskyT. TandonN. TuttleK.R. WannerC. WilkensK.G. CraigJ.C. TunnicliffeD.J. TonelliM. CheungM. EarleyA. RossingP. de BoerI.H. KhuntiK. Diabetes management in chronic kidney disease: Synopsis of the KDIGO 2022 clinical practice guideline update.Ann. Intern. Med.2023176338138710.7326/M22‑290436623286
    [Google Scholar]
  20. MilderT.Y. StockerS.L. BaysariM. DayR.O. GreenfieldJ.R. Prescribing of SGLT2 inhibitors in primary care: A qualitative study of general practitioners and endocrinologists.Diabetes Res. Clin. Pract.202118010903610.1016/j.diabres.2021.10903634481911
    [Google Scholar]
  21. MichelM.C. MayouxE. VallonV. A comprehensive review of the pharmacodynamics of the SGLT2 inhibitor empagliflozin in animals and humans.Naunyn Schmiedebergs Arch. Pharmacol.2015388880181610.1007/s00210‑015‑1134‑126108304
    [Google Scholar]
  22. NeelandI.J. McGuireD.K. ChiltonR. CroweS. LundS.S. WoerleH.J. BroedlU.C. JohansenO.E. Empagliflozin reduces body weight and indices of adipose distribution in patients with type 2 diabetes mellitus.Diab. Vasc. Dis. Res.201613211912610.1177/147916411561690126873905
    [Google Scholar]
  23. BolinderJ. LjunggrenÖ. KullbergJ. JohanssonL. WildingJ. LangkildeA.M. SuggJ. ParikhS. Effects of dapagliflozin on body weight, total fat mass, and regional adipose tissue distribution in patients with type 2 diabetes mellitus with inadequate glycemic control on metformin.J. Clin. Endocrinol. Metab.20129731020103110.1210/jc.2011‑226022238392
    [Google Scholar]
  24. ZhaoY. XuL. TianD. XiaP. ZhengH. WangL. ChenL. Effects of sodium-glucose co-transporter 2 ( SGLT2 ) inhibitors on serum uric acid level: A meta-analysis of randomized controlled trials.Diabetes Obes. Metab.201820245846210.1111/dom.1310128846182
    [Google Scholar]
  25. AkbariA. RafieeM. SathyapalanT. SahebkarA. Impacts of sodium/glucose cotransporter-2 inhibitors on circulating uric acid concentrations: A systematic review and meta-analysis.J. Diabetes Res.2022202211710.1155/2022/752063235224108
    [Google Scholar]
  26. PapaetisG.S. Empagliflozin therapy and insulin resistance-associated disorders: Effects and promises beyond a diabetic state.Arch. Med. Sci. Atheroscler. Dis.20216e57e7810.5114/amsad.2021.10531434027215
    [Google Scholar]
  27. PapaetisG.S. GLP-1 receptor agonists, SGLT-2 inhibitors, and obstructive sleep apnea: Can new allies face an old enemy?Arch. Med. Sci. Atheroscler Dis.2023811934
    [Google Scholar]
  28. TeoY.H. TeoY.N. SynN.L. KowC.S. YoongC.S.Y. TanB.Y.Q. YeoT.C. LeeC.H. LinW. SiaC.H. Effects of sodium/glucose cotransporter 2 (SGLT2) inhibitors on cardiovascular and metabolic outcomes in patients without diabetes mellitus: A systematic review and meta-analysis of randomized-controlled trials.J. Am. Heart Assoc.2021105e01946310.1161/JAHA.120.01946333625242
    [Google Scholar]
  29. CherneyD. LundS.S. PerkinsB.A. GroopP.H. CooperM.E. KaspersS. PfarrE. WoerleH.J. von EynattenM. The effect of sodium glucose cotransporter 2 inhibition with empagliflozin on microalbuminuria and macroalbuminuria in patients with type 2 diabetes.Diabetologia20165991860187010.1007/s00125‑016‑4008‑227316632
    [Google Scholar]
  30. CherneyD.Z.I. CooperM.E. TikkanenI. PfarrE. JohansenO.E. WoerleH.J. BroedlU.C. LundS.S. Pooled analysis of Phase III trials indicate contrasting influences of renal function on blood pressure, body weight, and HbA1c reductions with empagliflozin.Kidney Int.201893123124410.1016/j.kint.2017.06.01728860019
    [Google Scholar]
  31. SilveiroS.P. FriedmanR. De AzevedoM.J. CananiL.H. GrossJ.L. Five-year prospective study of glomerular filtration rate and albumin excretion rate in normofiltering and hyperfiltering normoalbuminuric NIDDM patients.Diabetes Care199619217117410.2337/diacare.19.2.1718718441
    [Google Scholar]
  32. PremaratneE. MacIsaacR.J. TsalamandrisC. PanagiotopoulosS. SmithT. JerumsG. Renal hyperfiltration in type 2 diabetes: Effect of age-related decline in glomerular filtration rate.Diabetologia200548122486249310.1007/s00125‑005‑0002‑916261309
    [Google Scholar]
  33. LewisG. MaxwellA.P. Risk factor control is key in diabetic nephropathy.Practitioner20142581768131724689163
    [Google Scholar]
  34. MetcalfeW. How does early chronic kidney disease progress?: A background paper prepared for the uk consensus conference on early chronic kidney disease.Nephrol. Dial. Transplant.200722Suppl. 9ix26ix3010.1093/ndt/gfm44617998229
    [Google Scholar]
  35. SassonA.N. CherneyD.Z. Renal hyperfiltration related to diabetes mellitus and obesity in human disease.World J. Diabetes2012311610.4239/wjd.v3.i1.122253940
    [Google Scholar]
  36. VallonV. RichterK. BlantzR.C. ThomsonS. OsswaldH. Glomerular hyperfiltration in experimental diabetes mellitus: Potential role of tubular reabsorption.J. Am. Soc. Nephrol.199910122569257610.1681/ASN.V1012256910589696
    [Google Scholar]
  37. VallonV. ThomsonS.C. Renal function in diabetic disease models: The tubular system in the pathophysiology of the diabetic kidney.Annu. Rev. Physiol.201274135137510.1146/annurev‑physiol‑020911‑15333322335797
    [Google Scholar]
  38. HostetterT.H. RennkeH.G. BrennerB.M. The case for intrarenal hypertension in the initiation and progression of diabetic and other glomerulopathies.Am. J. Med.198272337538010.1016/0002‑9343(82)90490‑97036732
    [Google Scholar]
  39. GrondaE. IacovielloM. GabrielliD. CaldarolaP. TavazziL. Is the benefit of sodium-glucose cotransporter inhibitors over heart failure progression on the kidney side?Eur. J. Intern. Med.202210614014310.1016/j.ejim.2022.08.01835985952
    [Google Scholar]
  40. VallonV. GerasimovaM. RoseM.A. MasudaT. SatrianoJ. MayouxE. KoepsellH. ThomsonS.C. RiegT. SGLT2 inhibitor empagliflozin reduces renal growth and albuminuria in proportion to hyperglycemia and prevents glomerular hyperfiltration in diabetic akita mice.Am. J. Physiol. Renal Physiol.20143062F194F20410.1152/ajprenal.00520.201324226524
    [Google Scholar]
  41. KidokoroK. CherneyD.Z.I. BozovicA. NagasuH. SatohM. KandaE. SasakiT. KashiharaN. Evaluation of glomerular hemodynamic function by empagliflozin in diabetic mice using in vivo imaging.Circulation2019140430331510.1161/CIRCULATIONAHA.118.03741830773020
    [Google Scholar]
  42. NørgaardS.A. BriandF. SandF.W. GalsgaardE.D. SøndergaardH. SørensenD.B. SulpiceT. Nephropathy in diabetic db/db mice is accelerated by high protein diet and improved by the SGLT2 inhibitor dapagliflozin.Eur. J. Pharmacol.201986017253710.1016/j.ejphar.2019.17253731310751
    [Google Scholar]
  43. KroegerH. KesselF. SradnickJ. TodorovV. GembardtF. HugoC. Intravital imaging of hemodynamic glomerular effects of enalapril or/and empagliflozin in STZ-diabetic mice.Front. Physiol.20221398272210.3389/fphys.2022.98272236171965
    [Google Scholar]
  44. ThomsonS.C. VallonV. Effects of SGLT2 inhibitor and dietary NaCl on glomerular hemodynamics assessed by micropuncture in diabetic rats.Am. J. Physiol. Renal Physiol.20213205F761F77110.1152/ajprenal.00552.202033645318
    [Google Scholar]
  45. CherneyD.Z.I. PerkinsB.A. SoleymanlouN. MaioneM. LaiV. LeeA. FaganN.M. WoerleH.J. JohansenO.E. BroedlU.C. von EynattenM. Renal hemodynamic effect of sodium-glucose cotransporter 2 inhibition in patients with type 1 diabetes mellitus.Circulation2014129558759710.1161/CIRCULATIONAHA.113.00508124334175
    [Google Scholar]
  46. ŠkrtićM. YangG.K. PerkinsB.A. SoleymanlouN. LytvynY. von EynattenM. WoerleH.J. JohansenO.E. BroedlU.C. HachT. SilvermanM. CherneyD.Z.I. CherneyD.Z.I. Characterisation of glomerular haemodynamic responses to SGLT2 inhibition in patients with type 1 diabetes and renal hyperfiltration.Diabetologia201457122599260210.1007/s00125‑014‑3396‑425280671
    [Google Scholar]
  47. van BommelE.J.M. LytvynY. PerkinsB.A. SoleymanlouN. FaganN.M. Koitka-WeberA. JolesJ.A. CherneyD.Z.I. van RaalteD.H. Renal hemodynamic effects of sodium-glucose cotransporter 2 inhibitors in hyperfiltering people with type 1 diabetes and people with type 2 diabetes and normal kidney function.Kidney Int.202097463163510.1016/j.kint.2019.12.02132200854
    [Google Scholar]
  48. BjornstadP. LaffelL. TamborlaneW.V. SimonsG. HantelS. von EynattenM. GeorgeJ. MarquardJ. CherneyD.Z.I. Acute effect of empagliflozin on fractional excretion of sodium and egfr in youth with type 2 diabetes.Diabetes Care2018418e129e13010.2337/dc18‑039429941496
    [Google Scholar]
  49. MayerG.J. WannerC. WeirM.R. InzucchiS.E. Koitka-WeberA. HantelS. von EynattenM. ZinmanB. CherneyD.Z.I. Analysis from the EMPA-REG OUTCOME® trial indicates empagliflozin may assist in preventing the progression of chronic kidney disease in patients with type 2 diabetes irrespective of medications that alter intrarenal hemodynamics.Kidney Int.201996248950410.1016/j.kint.2019.02.03331142441
    [Google Scholar]
  50. ShankarS.S. BraterD.C. Loop diuretics: From the Na-K-2Cl transporter to clinical use.Am. J. Physiol. Renal Physiol.20032841F11F2110.1152/ajprenal.00119.200212473535
    [Google Scholar]
  51. van BommelE.J.M. MuskietM.H.A. van BaarM.J.B. TonneijckL. SmitsM.M. EmanuelA.L. BozovicA. DanserA.H.J. GeurtsF. HoornE.J. TouwD.J. LarsenE.L. PoulsenH.E. KramerM.H.H. NieuwdorpM. JolesJ.A. van RaalteD.H. The renal hemodynamic effects of the SGLT2 inhibitor dapagliflozin are caused by post-glomerular vasodilatation rather than pre-glomerular vasoconstriction in metformin-treated patients with type 2 diabetes in the randomized, double-blind RED trial.Kidney Int.202097120221210.1016/j.kint.2019.09.01331791665
    [Google Scholar]
  52. OttC. JungS. KornM. KannenkerilD. BoschA. KolwelterJ. StriepeK. BramlageP. SchifferM. SchmiederR.E. Renal hemodynamic effects differ between antidiabetic combination strategies: Randomized controlled clinical trial comparing empagliflozin/linagliptin with metformin/insulin glargine.Cardiovasc. Diabetol.202120117810.1186/s12933‑021‑01358‑834481498
    [Google Scholar]
  53. LytvynY. KimuraK. PeterN. LaiV. TseJ. ChamL. PerkinsB.A. SoleymanlouN. CherneyD.Z.I. Renal and vascular effects of combined SGLT2 and angiotensin-converting enzyme inhibition.Circulation2022146645046210.1161/CIRCULATIONAHA.122.05915035862082
    [Google Scholar]
  54. MuskietM.H.A. TonneijckL. SmitsM.M. KramerM.H.H. OuwensD.M. HartmannB. HolstJ.J. TouwD.J. DanserA.H.J. JolesJ.A. van RaalteD.H. Effects of DPP-4 inhibitor linagliptin versus sulfonylurea glimepiride as add-on to metformin on renal physiology in overweight patients with type 2 diabetes (RENALIS): A randomized double-blind trial.Diabetes Care202043112889289310.2337/dc20‑090232900785
    [Google Scholar]
  55. CherneyD.Z.I. DekkersC.C.J. BarbourS.J. CattranD. Abdul GaforA.H. GreasleyP.J. LavermanG.D. LimS.K. Di TannaG.L. ReichH.N. VervloetM.G. WongM.G. GansevoortR.T. Effects of the SGLT2 inhibitor dapagliflozin on proteinuria in non-diabetic patients with chronic kidney disease (DIAMOND): A randomised, doubleblind, crossover trial.Lancet Diabetes Endocrinol.2020858259310.1016/S2213‑8587(20)30162‑532559474
    [Google Scholar]
  56. DenicA. LieskeJ.C. ChakkeraH.A. PoggioE.D. AlexanderM.P. SinghP. KremersW.K. LermanL.O. RuleA.D. The substantial loss of nephrons in healthy human kidneys with aging.J. Am. Soc. Nephrol.201728131332010.1681/ASN.201602015427401688
    [Google Scholar]
  57. CupistiA. GianneseD. MoriconiD. D’AlessandroC. TorreggianiM. PiccoliG.B. Nephroprotection by SGLT2i in CKD patients: May it be modulated by low-protein plant-based diets?Front. Med.2020762259310.3389/fmed.2020.62259333425967
    [Google Scholar]
  58. ChagnacA. ZingermanB. Rozen-ZviB. Herman-EdelsteinM. Consequences of glomerular hyperfiltration: The role of physical forces in the pathogenesis of chronic kidney disease in diabetes and obesity.Nephron J.20191431384210.1159/00049948630947190
    [Google Scholar]
  59. BrezisM. RosenS. Hypoxia of the renal medulla--its implications for disease.N. Engl. J. Med.19953321064765510.1056/NEJM1995030933210067845430
    [Google Scholar]
  60. DeFronzoR.A. ReevesW.B. AwadA.S. Pathophysiology of diabetic kidney disease: Impact of SGLT2 inhibitors.Nat. Rev. Nephrol.202117531933410.1038/s41581‑021‑00393‑833547417
    [Google Scholar]
  61. BullenA. LiuZ.Z. HepokoskiM. LiY. SinghP. Renal oxygenation and hemodynamics in kidney injury.Nephron J.2017137426026310.1159/00047783028614837
    [Google Scholar]
  62. FineL.G. NormanJ.T. Chronic hypoxia as a mechanism of progression of chronic kidney diseases: From hypothesis to novel therapeutics.Kidney Int.200874786787210.1038/ki.2008.35018633339
    [Google Scholar]
  63. ZhaoM. WangS. ZuoA. ZhangJ. WenW. JiangW. ChenH. LiangD. SunJ. WangM. HIF-1α/JMJD1A signaling regulates inflammation and oxidative stress following hyperglycemia and hypoxia-induced vascular cell injury.Cell. Mol. Biol. Lett.20212614010.1186/s11658‑021‑00283‑834479471
    [Google Scholar]
  64. EckardtK.U. KurtzA. Regulation of erythropoietin production.Eur. J. Clin. Invest.200535s3Suppl. 3131910.1111/j.1365‑2362.2005.01525.x16281953
    [Google Scholar]
  65. KanbayM. TapoiL. UrecheC. TanrioverC. CevikE. DemirayA. AfsarB. CherneyD.Z.I. CovicA. Effect of sodium-glucose cotransporter 2 inhibitors on hemoglobin and hematocrit levels in type 2 diabetes: A systematic review and meta-analysis.Int. Urol. Nephrol.202254482784110.1007/s11255‑021‑02943‑234273060
    [Google Scholar]
  66. FerranniniE. BaldiS. FrascerraS. AstiarragaB. BarsottiE. ClericoA. MuscelliE. Renal handling of ketones in response to sodium–glucose cotransporter 2 inhibition in patients with type 2 diabetes.Diabetes Care201740677177610.2337/dc16‑272428325783
    [Google Scholar]
  67. SanoM. GotoS. Possible mechanism of hematocrit elevation by sodium glucose cotransporter 2 inhibitors and associated beneficial renal and cardiovascular effects.Circulation2019139171985198710.1161/CIRCULATIONAHA.118.03888131009585
    [Google Scholar]
  68. InadaA. InadaO. YasunamiY. ArakawaK. NabeshimaY. FukatsuA. Amelioration of murine diabetic nephropathy with a SGLT2 inhibitor is associated with suppressing abnormal expression of hypoxia-inducible factors.Am. J. Pathol.202219271028105210.1016/j.ajpath.2022.03.01535460614
    [Google Scholar]
  69. BesshoR. TakiyamaY. TakiyamaT. KitsunaiH. TakedaY. SakagamiH. OtaT. Hypoxia-inducible factor-1α is the therapeutic target of the SGLT2 inhibitor for diabetic nephropathy.Sci. Rep.2019911475410.1038/s41598‑019‑51343‑131611596
    [Google Scholar]
  70. LaytonA.T. VallonV. EdwardsA. Predicted consequences of diabetes and SGLT inhibition on transport and oxygen consumption along a rat nephron.Am. J. Physiol. Renal Physiol.201631011F1269F128310.1152/ajprenal.00543.201526764207
    [Google Scholar]
  71. O’NeillJ. FaschingA. PihlL. PatinhaD. FranzénS. PalmF. Acute SGLT inhibition normalizes O 2 tension in the renal cortex but causes hypoxia in the renal medulla in anaesthetized control and diabetic rats.Am. J. Physiol. Renal Physiol.20153093F227F23410.1152/ajprenal.00689.201426041448
    [Google Scholar]
  72. HareG.M.T. ZhangY. ChinK. ThaiK. JacobsE. Cazorla-BakM.P. NghiemL. WilsonD.F. VinogradovS.A. ConnellyK.A. MazerC.D. EvansR.G. GilbertR.E. Impact of sodium glucose linked cotransporter-2 inhibition on renal microvascular oxygen tension in a rodent model of diabetes mellitus.Physiol. Rep.2021912e1489010.14814/phy2.1489034184431
    [Google Scholar]
  73. GhanimH. AbuayshehS. HejnaJ. GreenK. BatraM. MakdissiA. ChaudhuriA. DandonaP. Dapagliflozin suppresses hepcidin and increases erythropoiesis.J. Clin. Endocrinol. Metab.20201054e1056e106310.1210/clinem/dgaa05732044999
    [Google Scholar]
  74. LaursenJ.C. Søndergaard-HeinrichN. de MeloJ.M.L. HaddockB. RasmussenI.K.B. SafavimaneshF. HansenC.S. StørlingJ. LarssonH.B.W. GroopP.H. Frimodt-MøllerM. AndersenU.B. RossingP. Acute effects of dapagliflozin on renal oxygenation and perfusion in type 1 diabetes with albuminuria: A randomised, double-blind, placebo-controlled crossover trial.EClinicalMedicine20213710089510.1016/j.eclinm.2021.10089534386735
    [Google Scholar]
  75. Lambers HeerspinkH.J. de ZeeuwD. WieL. LeslieB. ListJ. Dapagliflozin a glucose-regulating drug with diuretic properties in subjects with type 2 diabetes.Diabetes Obes. Metab.201315985386210.1111/dom.1212723668478
    [Google Scholar]
  76. AberleJ. MenzenM. SchmidS.M. TerkampC. JaeckelE. RohwedderK. ScheererM.F. XuJ. TangW. BirkenfeldA.L. Dapagliflozin effects on haematocrit, red blood cell count and reticulocytes in insulin-treated patients with type 2 diabetes.Sci. Rep.20201012239610.1038/s41598‑020‑78734‑z33372185
    [Google Scholar]
  77. MaruyamaT. TakashimaH. OgumaH. NakamuraY. OhnoM. UtsunomiyaK. FurukawaT. TeiR. AbeM. Canagliflozin improves erythropoiesis in diabetes patients with anemia of chronic kidney disease.Diabetes Technol. Ther.2019211271372010.1089/dia.2019.021231385724
    [Google Scholar]
  78. MazerC.D. HareG.M.T. ConnellyP.W. GilbertR.E. ShehataN. QuanA. TeohH. LeiterL.A. ZinmanB. JüniP. ZuoF. MistryN. ThorpeK.E. GoldenbergR.M. YanA.T. ConnellyK.A. VermaS. Effect of empagliflozin on erythropoietin levels, iron stores, and red blood cell morphology in patients with type 2 diabetes mellitus and coronary artery disease.Circulation2020141870470710.1161/CIRCULATIONAHA.119.04423531707794
    [Google Scholar]
  79. FerranniniE. MarkM. MayouxE. CV protection in the EMPA-REG OUTCOME trial: A “thrifty substrate” hypothesis.Diabetes Care20163971108111410.2337/dc16‑033027289126
    [Google Scholar]
  80. SatoK. KashiwayaY. KeonC.A. TsuchiyaN. KingM.T. RaddaG.K. ChanceB. ClarkeK. VeechR.L. Insulin, ketone bodies, and mitochondrial energy transduction.FASEB J.19959865165810.1096/fasebj.9.8.77683577768357
    [Google Scholar]
  81. VermaS. RawatS. HoK.L. WaggC.S. ZhangL. TeohH. DyckJ.E. UddinG.M. OuditG.Y. MayouxE. LehrkeM. MarxN. LopaschukG.D. Empagliflozin increases cardiac energy production in diabetes: Novel translational insights into the heart failure benefits of SGLT2 inhibitors.JACC Basic Transl. Sci.20183557558710.1016/j.jacbts.2018.07.00630456329
    [Google Scholar]
  82. BankirL. RousselR. BoubyN. Protein- and diabetes-induced glomerular hyperfiltration: Role of glucagon, vasopressin, and urea.Am. J. Physiol. Renal Physiol.20153091F2F2310.1152/ajprenal.00614.201425925260
    [Google Scholar]
  83. YaribeygiH. MalekiM. NasimiF. ButlerA.E. JamialahmadiT. SahebkarA. Sodium-glucose co-transporter 2 inhibitors and hematopoiesis.J. Cell. Physiol.2022237103778378710.1002/jcp.3085135951776
    [Google Scholar]
  84. ThieleK. RauM. HartmannN.U.K. MöllmannJ. JankowskiJ. BöhmM. KeszeiA.P. MarxN. LehrkeM. Effects of empagliflozin on erythropoiesis in patients with type 2 diabetes: Data from a randomized, placebo-controlled study.Diabetes Obes. Metab.202123122814281810.1111/dom.1451734378852
    [Google Scholar]
  85. CherneyD.Z.I. BjornstadP. PerkinsB.A. RosenstockJ. NeubacherD. MarquardJ. SoleymanlouN. Kidney effects of empagliflozin in people with type 1 diabetes.Clin. J. Am. Soc. Nephrol.202116111715171910.2215/CJN.0770062134535454
    [Google Scholar]
  86. RosenstockJ. MarquardJ. LaffelL.M. NeubacherD. KaspersS. CherneyD.Z. ZinmanB. SkylerJ.S. GeorgeJ. SoleymanlouN. PerkinsB.A. Empagliflozin as adjunctive to insulin therapy in type 1 diabetes: The EASE trials.Diabetes Care201841122560256910.2337/dc18‑174930287422
    [Google Scholar]
  87. FerranniniE. MuscelliE. FrascerraS. BaldiS. MariA. HeiseT. BroedlU.C. WoerleH.J. Metabolic response to sodium-glucose cotransporter 2 inhibition in type 2 diabetic patients.J. Clin. Invest.2014124249950810.1172/JCI7222724463454
    [Google Scholar]
  88. HodsonD.J. RorsmanP. A variation on the theme: SGLT2 inhibition and glucagon secretion in human islets.Diabetes202069586486610.2337/dbi19‑003532312904
    [Google Scholar]
  89. BalasseE.O. FéryF. Ketone body production and disposal: Effects of fasting, diabetes, and exercise.Diabetes Metab. Rev.19895324727010.1002/dmr.56100503042656155
    [Google Scholar]
  90. ShimazuT. HirscheyM.D. NewmanJ. HeW. ShirakawaK. Le MoanN. GrueterC.A. LimH. SaundersL.R. StevensR.D. NewgardC.B. FareseR.V.Jr de CaboR. UlrichS. AkassoglouK. VerdinE. Suppression of oxidative stress by β-hydroxybutyrate, an endogenous histone deacetylase inhibitor.Science2013339611621121410.1126/science.122716623223453
    [Google Scholar]
  91. TomitaI. KumeS. SugaharaS. OsawaN. YamaharaK. Yasuda-YamaharaM. TakedaN. Chin-KanasakiM. KanekoT. MayouxE. MarkM. YanagitaM. OgitaH. ArakiS. MaegawaH. SGLT2 inhibition mediates protection from diabetic kidney disease by promoting ketone body-induced mTORC1 inhibition.Cell Metab.2020323404419.e610.1016/j.cmet.2020.06.02032726607
    [Google Scholar]
  92. KimM.N. MoonJ.H. ChoY.M. Sodium-glucose cotransporter-2 inhibition reduces cellular senescence in the diabetic kidney by promoting ketone body-induced NRF2 activation.Diabetes Obes. Metab.202123112561257110.1111/dom.1450334318973
    [Google Scholar]
  93. FerranniniE. BaldiS. FrascerraS. AstiarragaB. HeiseT. BizzottoR. MariA. PieberT.R. MuscelliE. Shift to fatty substrate utilization in response to sodium-glucose cotransporter 2 inhibition in subjects without diabetes and patients with type 2 diabetes.Diabetes20166551190119510.2337/db15‑135626861783
    [Google Scholar]
  94. LiuH. SridharV.S. MontemayorD. LovblomL.E. LytvynY. YeH. KimJ. AliM.T. ScarrD. LawlerP.R. PerkinsB.A. SharmaK. CherneyD.Z.I. Changes in plasma and urine metabolites associated with empagliflozin in patients with type 1 diabetes.Diabetes Obes. Metab.202123112466247510.1111/dom.1448934251085
    [Google Scholar]
  95. KappelB.A. LehrkeM. SchüttK. ArtatiA. AdamskiJ. LebherzC. MarxN. Effect of empagliflozin on the metabolic signature of patients with type 2 diabetes mellitus and cardiovascular disease.Circulation20171361096997210.1161/CIRCULATIONAHA.117.02916628874423
    [Google Scholar]
  96. MinS.H. OhT.J. BaekS.I. LeeD.H. KimK.M. MoonJ.H. ChoiS.H. ParkK.S. JangH.C. LimS. Degree of ketonaemia and its association with insulin resistance after dapagliflozin treatment in type 2 diabetes.Diabetes Metab.2018441737610.1016/j.diabet.2017.09.00629074329
    [Google Scholar]
  97. PolidoriD. IijimaH. GodaM. MaruyamaN. InagakiN. CrawfordP.A. Intra- and inter-subject variability for increases in serum ketone bodies in patients with type 2 diabetes treated with the sodium glucose co-transporter 2 inhibitor canagliflozin.Diabetes Obes. Metab.20182051321132610.1111/dom.1322429341404
    [Google Scholar]
  98. MonamiM. NreuB. ZannoniS. LualdiC. MannucciE. Effects of SGLT-2 inhibitors on diabetic ketoacidosis: A meta-analysis of randomised controlled trials.Diabetes Res. Clin. Pract.2017130536010.1016/j.diabres.2017.04.01728570924
    [Google Scholar]
  99. FerranniniE. BaldiS. FríasJ.P. GujaC. HardyE. RepettoE. JabbourS.A. DeFronzoR.A. Hormone-substrate changes with exenatide plus dapagliflozin versus each drug alone: The randomized, active-controlled DURATION-8 study.Diabetes Obes. Metab.20202219910610.1111/dom.1387031469220
    [Google Scholar]
  100. BrownleeM. The pathobiology of diabetic complications: A unifying mechanism.Diabetes20055461615162510.2337/diabetes.54.6.161515919781
    [Google Scholar]
  101. WirthensohnG. GuderW.G. Renal substrate metabolism.Physiol. Rev.198666246949710.1152/physrev.1986.66.2.4692938198
    [Google Scholar]
  102. LeeW.C. ChiuC.H. ChenJ.B. ChenC.H. ChangH.W. Mitochondrial fission increases apoptosis and decreases autophagy in renal proximal tubular epithelial cells treated with high glucose.DNA Cell Biol.2016351165766510.1089/dna.2016.326127420408
    [Google Scholar]
  103. TakebayashiS. KanedaK. Mitochondrial derangement: Possible initiator of microalbuminuria in NIDDM.J. Diabet. Complications199152-310410610.1016/0891‑6632(91)90034‑M1770011
    [Google Scholar]
  104. ZhangG. DarshiM. SharmaK. The Warburg effect in diabetic kidney disease.Semin. Nephrol.201838211112010.1016/j.semnephrol.2018.01.00229602394
    [Google Scholar]
  105. LeeW.C. ChauY.Y. NgH.Y. ChenC.H. WangP.W. LiouC.W. LinT.K. ChenJ.B. Empagliflozin protects HK-2 cells from high glucose-mediated injuries via a mitochondrial mechanism.Cells201989108510.3390/cells809108531540085
    [Google Scholar]
  106. LeeY.H. KimS.H. KangJ.M. HeoJ.H. KimD.J. ParkS.H. SungM. KimJ. OhJ. YangD.H. LeeS.H. LeeS.Y. Empagliflozin attenuates diabetic tubulopathy by improving mitochondrial fragmentation and autophagy.Am. J. Physiol. Renal Physiol.20193174F767F78010.1152/ajprenal.00565.201831390268
    [Google Scholar]
  107. MoneP. VarzidehF. JankauskasS.S. PansiniA. LombardiA. FrulloneS. SantulliG. SGLT2 inhibition via empagliflozin improves endothelial function and reduces mitochondrial oxidative stress: Insights from frail hypertensive and diabetic patients.Hypertension20227981633164310.1161/HYPERTENSIONAHA.122.1958635703100
    [Google Scholar]
  108. MulderS. HammarstedtA. NagarajS.B. NairV. JuW. HedbergJ. GreasleyP.J. ErikssonJ.W. OscarssonJ. HeerspinkH.J.L. A metabolomics-based molecular pathway analysis of how the sodium-glucose co-transporter-2 inhibitor dapagliflozin may slow kidney function decline in patients with diabetes.Diabetes Obes. Metab.20202271157116610.1111/dom.1401832115853
    [Google Scholar]
  109. TakagiS. LiJ. TakagakiY. KitadaM. NittaK. TakasuT. KanasakiK. KoyaD. Ipragliflozin improves mitochondrial abnormalities in renal tubules induced by a high-fat diet.J. Diabetes Investig.2018951025103210.1111/jdi.1280229352520
    [Google Scholar]
  110. YangX. LiuQ. LiY. TangQ. WuT. ChenL. PuS. ZhaoY. ZhangG. HuangC. ZhangJ. ZhangZ. HuangY. ZouM. ShiX. JiangW. WangR. HeJ. The diabetes medication canagliflozin promotes mitochondrial remodelling of adipocyte via the AMPK-Sirt1-Pgc-1α signalling pathway.Adipocyte20209148449410.1080/21623945.2020.180785032835596
    [Google Scholar]
  111. MulderS. HeerspinkH.J.L. DarshiM. KimJ.J. LavermanG.D. SharmaK. PenaM.J. Effects of dapagliflozin on urinary metabolites in people with type 2 diabetes.Diabetes Obes. Metab.201921112422242810.1111/dom.1382331264758
    [Google Scholar]
  112. HuggettR.J. ScottE.M. GilbeyS.G. StokerJ.B. MackintoshA.F. MaryD.A.S.G. Impact of type 2 diabetes mellitus on sympathetic neural mechanisms in hypertension.Circulation2003108253097310110.1161/01.CIR.0000103123.66264.FE14676139
    [Google Scholar]
  113. KishiT. HirookaY. KimuraY. ItoK. ShimokawaH. TakeshitaA. Increased reactive oxygen species in rostral ventrolateral medulla contribute to neural mechanisms of hypertension in stroke-prone spontaneously hypertensive rats.Circulation2004109192357236210.1161/01.CIR.0000128695.49900.1215117836
    [Google Scholar]
  114. DiBonaG.F. Sympathetic nervous system and the kidney in hypertension.Curr. Opin. Nephrol. Hypertens.200211219720010.1097/00041552‑200203000‑0001111856913
    [Google Scholar]
  115. RafiqK. NomaT. FujisawaY. IshiharaY. AraiY. NabiA.H.M.N. SuzukiF. NagaiY. NakanoD. HitomiH. KitadaK. UrushiharaM. KoboriH. KohnoM. NishiyamaA. Renal sympathetic denervation suppresses de novo podocyte injury and albuminuria in rats with aortic regurgitation.Circulation2012125111402141310.1161/CIRCULATIONAHA.111.06409722328542
    [Google Scholar]
  116. HijmeringM.L. StroesE.S.G. OlijhoekJ. HuttenB.A. BlankestijnP.J. RabelinkT.J. Sympathetic activation markedly reduces endothelium-dependent, flow-mediated vasodilation.J. Am. Coll. Cardiol.200239468368810.1016/S0735‑1097(01)01786‑711849869
    [Google Scholar]
  117. HallowK.M. HelmlingerG. GreasleyP.J. McMurrayJ.J.V. BoultonD.W. Why do SGLT2 inhibitors reduce heart failure hospitalization? A differential volume regulation hypothesis.Diabetes Obes. Metab.201820347948710.1111/dom.1312629024278
    [Google Scholar]
  118. HiroseS. NakajimaS. IwahashiY. SeoA. TakahashiT. TamoriY. Impact of the 8-week administration of tofogliflozin for glycemic control and body composition in japanese patients with type 2 diabetes mellitus.Intern. Med.201655223239324510.2169/internalmedicine.55.636727853064
    [Google Scholar]
  119. BakerW.L. SmythL.R. RicheD.M. BourretE.M. ChamberlinK.W. WhiteW.B. Effects of sodium-glucose co-transporter 2 inhibitors on blood pressure: A systematic review and meta-analysis.J. Am. Soc. Hypertens.201484262275.e910.1016/j.jash.2014.01.00724602971
    [Google Scholar]
  120. HeratL.Y. MagnoA.L. RudnickaC. HricovaJ. CarnagarinR. WardN.C. ArcambalA. KiuchiM.G. HeadG.A. SchlaichM.P. MatthewsV.B. SGLT2 inhibitor-induced sympathoinhibition. A novel mechanism for cardiorenal protection.JACC Basic Transl. Sci.20205216917910.1016/j.jacbts.2019.11.00732140623
    [Google Scholar]
  121. InzucchiS.E. ZinmanB. FitchettD. WannerC. FerranniniE. SchumacherM. SchmoorC. OhnebergK. JohansenO.E. GeorgeJ.T. HantelS. BluhmkiE. LachinJ.M. How does empagliflozin reduce cardiovascular mortality? Insights from a mediation analysis of the EMPA-REG OUTCOME trial.Diabetes Care201841235636310.2337/dc17‑109629203583
    [Google Scholar]
  122. ChiltonR. TikkanenI. CannonC.P. CroweS. WoerleH.J. BroedlU.C. JohansenO.E. Effects of empagliflozin on blood pressure and markers of arterial stiffness and vascular resistance in patients with type 2 diabetes.Diabetes Obes. Metab.201517121180119310.1111/dom.1257226343814
    [Google Scholar]
  123. MoriH. OkadaY. KawaguchiM. TanakaY. A case of type 2 diabetes with a change from a non-dipper to a dipper blood pressure pattern by dapagliflozin.J. UOEH201638214915310.7888/juoeh.38.14927302728
    [Google Scholar]
  124. SanoM. ChenS. ImazekiH. OchiaiH. SeinoY. Changes in heart rate in patients with type 2 diabetes mellitus after treatment with luseogliflozin: Subanalysis of placebo-controlled, double-blind clinical trials.J. Diabetes Investig.20189363864110.1111/jdi.1272629750107
    [Google Scholar]
  125. ShimizuW. KubotaY. HoshikaY. MozawaK. TaraS. TokitaY. YodogawaK. IwasakiY. YamamotoT. TakanoH. TsukadaY. AsaiK. MiyamotoM. MiyauchiY. KodaniE. IshikawaM. MaruyamaM. OganoM. TanabeJ. ShiomuraR. FukuizumiI. MatsudaJ. NomaS. SangenH. KomiyamaH. ImoriY. NakamuraS. NakataJ. MiyachiH. TakagiG. TodorokiT. IkedaT. MiyakuniT. ShimaA. MatsushitaM. OkazakiH. ShirakabeA. KobayashiN. TakanoM. SeinoY. NishiY. SuzukiK. ShibuyaJ. SaitoT. NakanoH. TaichirouM. FuruseE. NakamaK. HosokawaY. TsuboiI. KawanakaH. Effects of empagliflozin versus placebo on cardiac sympathetic activity in acute myocardial infarction patients with type 2 diabetes mellitus: The EMBODY trial.Cardiovasc. Diabetol.202019114810.1186/s12933‑020‑01127‑z32977831
    [Google Scholar]
  126. GueguenC. BurkeS.L. BarzelB. EikelisN. WatsonA.M.D. JhaJ.C. JacksonK.L. SataY. LimK. LambertG.W. Jandeleit-DahmK.A.M. CooperM.E. ThomasM.C. HeadG.A. Empagliflozin modulates renal sympathetic and heart rate baroreflexes in a rabbit model of diabetes.Diabetologia20206371424143410.1007/s00125‑020‑05145‑032372207
    [Google Scholar]
  127. MatthewsV.B. ElliotR.H. RudnickaC. HricovaJ. HeratL. SchlaichM.P. Role of the sympathetic nervous system in regulation of the sodium glucose cotransporter 2.J. Hypertens.201735102059206810.1097/HJH.000000000000143428598954
    [Google Scholar]
  128. JordanJ. TankJ. HeusserK. HeiseT. WannerC. HeerM. MachaS. MattheusM. LundS.S. WoerleH.J. BroedlU.C. The effect of empagliflozin on muscle sympathetic nerve activity in patients with type II diabetes mellitus.J. Am. Soc. Hypertens.201711960461210.1016/j.jash.2017.07.00528757109
    [Google Scholar]
  129. FilippatosT.D. LiontosA. PapakitsouI. ElisafM.S. SGLT2 inhibitors and cardioprotection: A matter of debate and multiple hypotheses.Postgrad. Med.20191312828810.1080/00325481.2019.158197130757937
    [Google Scholar]
  130. LymperopoulosA. BorgesJ.I. CoraN. SizovaA. Sympatholytic mechanisms for the beneficial cardiovascular effects of SGLT2 inhibitors: A research hypothesis for dapagliflozin’s effects in the adrenal gland.Int. J. Mol. Sci.20212214768410.3390/ijms2214768434299304
    [Google Scholar]
  131. ChibaY. YamadaT. TsukitaS. TakahashiK. MunakataY. ShiraiY. KodamaS. AsaiY. SugisawaT. UnoK. SawadaS. ImaiJ. NakamuraK. KatagiriH. Dapaglifozin, a sodium-glucose co-transporter 2 inhibitor, acutely reduces energy expenditure in BAT via neural signals in mice.PLoS One2016113e015075610.1371/journal.pone.015075626963613
    [Google Scholar]
  132. GirardiA.C.C. Di SoleF. Deciphering the mechanisms of the Na + /H + exchanger-3 regulation in organ dysfunction.Am. J. Physiol. Cell Physiol.201230211C1569C158710.1152/ajpcell.00017.201222460714
    [Google Scholar]
  133. FentonR.A. PoulsenS.B. de la Mora ChavezS. SoleimaniM. Dominguez RiegJ.A. RiegT. Renal tubular NHE3 is required in the maintenance of water and sodium chloride homeostasis.Kidney Int.201792239741410.1016/j.kint.2017.02.00128385297
    [Google Scholar]
  134. CoadyM.J. El TaraziA. SanterR. BissonnetteP. SassevilleL.J. CaladoJ. LussierY. DumayneC. BichetD.G. LapointeJ.Y. MAP17 is a necessary activator of renal Na+/Glucose cotransporter SGLT2.J. Am. Soc. Nephrol.2017281859310.1681/ASN.201511128227288013
    [Google Scholar]
  135. KlisicJ. NiefV. ReyesL. AmbühlP.M. Acute and chronic regulation of the renal Na/H+ exchanger NHE3 in rats with STZ-induced diabetes mellitus.Nephron, Physiol.20061022p27p3510.1159/00008909116244498
    [Google Scholar]
  136. BriffaJ.F. McAinchA.J. PoronnikP. HryciwD.H. Adipokines as a link between obesity and chronic kidney disease.Am. J. Physiol. Renal Physiol.201330512F1629F163610.1152/ajprenal.00263.201324107418
    [Google Scholar]
  137. MaT.K.W. SzetoC.C. Mineralocorticoid receptor antagonist for renal protection.Ren. Fail.201234681081710.3109/0886022X.2012.67215622463731
    [Google Scholar]
  138. HryciwD.H. LeeE.M. PollockC.A. PoronnikP. Molecular changes in proximal tubule function in diabetes mellitus.Clin. Exp. Pharmacol. Physiol.2004315-637237910.1111/j.1440‑1681.2004.04001.x15191416
    [Google Scholar]
  139. SempliciniA. CeolottoG. SartoriM. MarescaA. BaritonoE. De ToniR. PaparellaI. CalòL. Regulation of glomerular filtration in essential hypertension: Role of abnormal Na+ transport and atrial natriuretic peptide.J. Nephrol.200215548949612455714
    [Google Scholar]
  140. VergaraA. Llorens-CebriàC. MartosN. Martínez-DíazI. SteinF. Domínguez-BáezP. Molina-Van den BoschM. RettelM. BenitoB. BermejoS. PieperM.P. Jacobs-CacháC. SolerM.J. The membrane-associated protein 17 (MAP17) is up-regulated in response to empagliflozin on top of RAS blockade in experimental diabetic nephropathy.Clin. Sci.202313718710410.1042/CS2022044736524468
    [Google Scholar]
  141. PessoaT.D. CamposL.C.G. Carraro-LacroixL. GirardiA.C.C. MalnicG. Functional role of glucose metabolism, osmotic stress, and sodium-glucose cotransporter isoform-mediated transport on Na+/H+ exchanger isoform 3 activity in the renal proximal tubule.J. Am. Soc. Nephrol.20142592028203910.1681/ASN.201306058824652792
    [Google Scholar]
  142. FuY. GerasimovaM. MayouxE. MasudaT. VallonV. SGLT2 inhibitor empagliflozin increases renal NHE3 phosphorylation in diabetic Akita mice: Possible implications for the prevention of glomerular hyperfiltration.Diabetes201463Suppl. 1A132
    [Google Scholar]
  143. ChungS. KimS. SonM. KimM. KohE.S. ShinS.J. KoS.H. KimH.S. Empagliflozin contributes to polyuria via regulation of sodium transporters and water channels in diabetic rat kidneys.Front. Physiol.20191027110.3389/fphys.2019.0027130941057
    [Google Scholar]
  144. OnishiA. FuY. PatelR. DarshiM. Crespo-MasipM. HuangW. SongP. FreemanB. KimY.C. SoleimaniM. SharmaK. ThomsonS.C. VallonV. A role for tubular Na + /H + exchanger NHE3 in the natriuretic effect of the SGLT2 inhibitor empagliflozin.Am. J. Physiol. Renal Physiol.20203194F712F72810.1152/ajprenal.00264.202032893663
    [Google Scholar]
  145. Borges-JúniorF.A. Silva dos SantosD. BenettiA. PolidoroJ.Z. WisniveskyA.C.T. CrajoinasR.O. AntônioE.L. JensenL. CaramelliB. MalnicG. TucciP.J. GirardiA.C.C. Empagliflozin inhibits proximal tubule NHE3 activity, Preserves GFR, and restores euvolemia in nondiabetic rats with induced heart failure.J. Am. Soc. Nephrol.20213271616162910.1681/ASN.202007102933846238
    [Google Scholar]
  146. SternlichtH. BakrisG.L. Blood pressure lowering and sodium-glucose co-transporter 2 inhibitors (SGLT2is): More than osmotic diuresis.Curr. Hypertens. Rep.20192121210.1007/s11906‑019‑0920‑430747296
    [Google Scholar]
  147. LiJ. NealB. PerkovicV. de ZeeuwD. NeuenB.L. ArnottC. SimpsonR. OhR. MahaffeyK.W. HeerspinkH.J.L. Mediators of the effects of canagliflozin on kidney protection in patients with type 2 diabetes.Kidney Int.202098376977710.1016/j.kint.2020.04.05132470492
    [Google Scholar]
  148. MaC. de BaaijJ.H.F. MillarP.J. GaultV.A. de GalanB.E. BindelsR.J.M. HoenderopJ.G.J. Effect of dapagliflozin treatment on the expression of renal sodium transporters/channels on high-fat diet diabetic mice.Nephron J.20191421516010.1159/00049661730799406
    [Google Scholar]
  149. BurnsK.D. CherneyD. Renal angiotensinogen and sodium-glucose cotransporter-2 inhibition: Insights from experimental diabetic kidney disease.Am. J. Nephrol.201949432833010.1159/00049959830921790
    [Google Scholar]
  150. MurphyS. WuW. WhiteT. WilliamsJ.M. MayouxE. RomanR. Renoprotective effects of empagliflozin in type 1 and type 2 models of diabetic nephropathy with hypertension.Diabetes201463Suppl. 1A217
    [Google Scholar]
  151. KojimaN. WilliamsJ.M. SlaughterT.N. KatoS. TakahashiT. MiyataN. RomanR.J. Renoprotective effects of combined SGLT2 and ACE inhibitor therapy in diabetic Dahl S rats.Physiol. Rep.201537e1243610.14814/phy2.1243626169541
    [Google Scholar]
  152. HeerspinkH.J.L. JohnssonE. Gause-NilssonI. CainV.A. SjöströmC.D. Dapagliflozin reduces albuminuria in patients with diabetes and hypertension receiving renin-angiotensin blockers.Diabetes Obes. Metab.201618659059710.1111/dom.1265426936519
    [Google Scholar]
  153. LawlerP.R. LiuH. FrankfurterC. LovblomL.E. LytvynY. BurgerD. BurnsK.D. BrincD. CherneyD.Z.I. Changes in cardiovascular biomarkers associated with the Sodium-Glucose Cotransporter 2 (SGLT2) inhibitor ertugliflozin in patients with chronic kidney disease and type 2 diabetes.Diabetes Care2021443e45e4710.2337/dc20‑226533436398
    [Google Scholar]
  154. PuglisiS. RossiniA. PoliR. DugheraF. PiaA. TerzoloM. ReimondoG. Effects of SGLT2 inhibitors and GLP-1 receptor agonists on renin-angiotensin-aldosterone system.Front. Endocrinol.20211273884810.3389/fendo.2021.73884834745006
    [Google Scholar]
  155. SchorkA. SaynischJ. VosselerA. JaghutrizB.A. HeyneN. PeterA. HäringH.U. StefanN. FritscheA. ArtuncF. Effect of SGLT2 inhibitors on body composition, fluid status and renin-angiotensin-aldosterone system in type 2 diabetes: A prospective study using bioimpedance spectroscopy.Cardiovasc. Diabetol.20191814610.1186/s12933‑019‑0852‑y30953516
    [Google Scholar]
  156. de Albuquerque RochaN. NeelandI.J. McCulloughP.A. TotoR.D. McGuireD.K. Effects of sodium glucose co-transporter 2 inhibitors on the kidney.Diab. Vasc. Dis. Res.201815537538610.1177/147916411878375629963920
    [Google Scholar]
  157. JessupJ.A. BrosnihanK.B. GallagherP.E. ChappellM.C. FerrarioC.M. Differential effect of low-dose thiazides on the renin angiotensin system in genetically hypertensive and normotensive rats.J. Am. Soc. Hypertens.20082210611510.1016/j.jash.2007.10.00519343087
    [Google Scholar]
  158. ChappellM.C. Nonclassical renin-angiotensin system and renal function.Compr. Physiol.2012242733275210.1002/cphy.c12000223720263
    [Google Scholar]
  159. OsorioH. BautistaR. RiosA. FrancoM. SantamaríaJ. EscalanteB. Effect of treatment with losartan on salt sensitivity and SGLT2 expression in hypertensive diabetic rats.Diabetes Res. Clin. Pract.2009863e46e4910.1016/j.diabres.2009.09.00619800706
    [Google Scholar]
  160. KopeckyC. LytvynY. DomenigO. AntlangerM. KovarikJ.J. KalteneckerC.C. PoglitschM. PerkinsB.A. RyeK.A. CherneyD.Z.I. SäemannM.D. Molecular regulation of the renin-angiotensin system by sodium-glucose cotransporter 2 inhibition in type 1 diabetes mellitus.Diabetologia20196261090109310.1007/s00125‑019‑4871‑830976852
    [Google Scholar]
  161. AntlangerM. DomenigO. KalteneckerC.C. KovarikJ.J. RathkolbV. MüllerM.M. SchwaigerE. HeckingM. PoglitschM. SäemannM.D. KopeckyC. Combined sodium glucose co-transporter-2 inhibitor and angiotensin-converting enzyme inhibition upregulates the renin-angiotensin system in chronic kidney disease with type 2 diabetes: Results of a randomized, double-blind, placebo-controlled exploratory trial.Diabetes Obes. Metab.202224581682610.1111/dom.1463934984822
    [Google Scholar]
  162. WoodsT.C. SatouR. MiyataK. KatsuradaA. DugasC.M. KlingenbergN.C. FonsecaV.A. NavarL.G. Canagliflozin prevents intrarenal angiotensinogen augmentation and mitigates kidney injury and hypertension in mouse model of type 2 diabetes mellitus.Am. J. Nephrol.201949433134210.1159/00049959730921791
    [Google Scholar]
  163. ShinS.J. ChungS. KimS.J. LeeE.M. YooY.H. KimJ.W. AhnY.B. KimE.S. MoonS.D. KimM.J. KoS.H. Effect of sodium-glucose co-transporter 2 inhibitor, dapagliflozin, on renal renin-angiotensin system in an animal model of type 2 diabetes.PLoS One20161111e016570310.1371/journal.pone.016570327802313
    [Google Scholar]
  164. YoshimotoT. FurukiT. KoboriH. MiyakawaM. ImachiH. MuraoK. NishiyamaA. Effects of sodium-glucose cotransporter 2 inhibitors on urinary excretion of intact and total angiotensinogen in patients with type 2 diabetes.J. Investig. Med.20176571057106110.1136/jim‑2017‑00044528596160
    [Google Scholar]
  165. PetrykivS. LavermanG.D. de ZeeuwD. HeerspinkH.J.L. Does SGLT 2 inhibition with dapagliflozin overcome individual therapy resistance to RAAS inhibition?Diabetes Obes. Metab.201820122422710.1111/dom.1305728685934
    [Google Scholar]
  166. HeerspinkH.J.L. GreeneT. TighiouartH. GansevoortR.T. CoreshJ. SimonA.L. ChanT.M. HouF.F. LewisJ.B. LocatelliF. PragaM. SchenaF.P. LeveyA.S. InkerL.A. SevillanoA. KamperA-L. van ZuilenA.D. BrennerB.M. MaesB. IhleB.U. BarretB. LeungC.B. SzetoC.C. FitznerC. WannerC. PozziC. MontagninoC.P. XieD. de ZeeuwD. LewisE. VerdeE. GutierrezE. ImaiE. HouF.F. CaravacaF. FervenzaF.C. LocatelliF. SchenaF.P. KobayashiF. MoroniG. BeckerG.J. BeckG.J. AppelG.B. FrischG. van EssenG.G. MaschioG. RemuzziG. MontogrinoG. ParvingH-H. HeerspinkH.J.L. MakinoH. JehanI. WetzelsJ.F.M. DonadioJ. DwyerJ. van den BrandJ. KusekJ. LachinJ.M. LuñoJ. LewisJ.B. FloegeJ. AbebeK.Z. ChowK.M. HunsickerL.G. del VecchioL. CarloM. PragaM. GoicoecheaM. von EynattenM. PoulterN. ChaturvediN. PasseriniP. de JongP.E. BlankestijnP.J. LiP. RuggenentiP. ZucchelliP. Kincaid-SmithP.S. HilgersR-D. EstacioR.O. RohdeR.D. KatafuchiR. TotoR.D. SchrierR.W. RodbyR.A. PerroneR.D. ItoS. KlahrS. AndrulliS. StrandgaardS. ChanT.M. HannedoucheT.P. RauenT. GreeneT. VerdallesU. PerkovicV. KeaneW. Change in albuminuria as a surrogate endpoint for progression of kidney disease: A meta-analysis of treatment effects in randomised clinical trials.Lancet Diabetes Endocrinol.20197212813910.1016/S2213‑8587(18)30314‑030635226
    [Google Scholar]
  167. Navarro-GonzálezJ.F. Mora-FernándezC. de FuentesM.M. García-PérezJ. Inflammatory molecules and pathways in the pathogenesis of diabetic nephropathy.Nat. Rev. Nephrol.20117632734010.1038/nrneph.2011.5121537349
    [Google Scholar]
  168. TesfamariamB. Free radicals in diabetic endothelial cell dysfunction.Free Radic. Biol. Med.199416338339110.1016/0891‑5849(94)90040‑X8063201
    [Google Scholar]
  169. Calles-EscandonJ. CipollaM. Diabetes and endothelial dysfunction: A clinical perspective.Endocr. Rev.2001221365210.1210/edrv.22.1.041711159815
    [Google Scholar]
  170. CohenL. The cardiorenal syndrome: Pathophysiologic crosstalk, outcomes, and treatment targets.Cardiovasc. Hematol. Disord. Drug Targets201414317017610.2174/1871529X1466614070110091324993122
    [Google Scholar]
  171. NguyenD. PingF. MuW. HillP. AtkinsR.C. ChadbanS.J. Macrophage accumulation in human progressive diabetic nephropathy.Nephrology200611322623110.1111/j.1440‑1797.2006.00576.x16756636
    [Google Scholar]
  172. PapaetisG. Pioglitazone in diabetic kidney disease: Forgotten but not gone.Arch. Med. Sci. Atheroscler. Dis.202271789310.5114/amsad/15104636158067
    [Google Scholar]
  173. SunH. TianJ. XianW. XieT. YangX. Pentraxin-3 attenuates renal damage in diabetic nephropathy by promoting M2 macrophage differentiation.Inflammation20153851739174710.1007/s10753‑015‑0151‑z25761429
    [Google Scholar]
  174. PanchapakesanU. PeggK. GrossS. KomalaM.G. MudaliarH. ForbesJ. PollockC. MatherA. Effects of SGLT2 inhibition in human kidney proximal tubular cells--renoprotection in diabetic nephropathy?PLoS One201382e5444210.1371/journal.pone.005444223390498
    [Google Scholar]
  175. CooperS. TeohH. CampeauM.A. VermaS. LeaskR.L. Empagliflozin restores the integrity of the endothelial glycocalyx in vitro.Mol. Cell. Biochem.20194591-212113010.1007/s11010‑019‑03555‑231127491
    [Google Scholar]
  176. DasN.A. CarpenterA.J. BelenchiaA. AroorA.R. NodaM. SiebenlistU. ChandrasekarB. DeMarcoV.G. Empagliflozin reduces high glucose-induced oxidative stress and miR-21-dependent TRAF3IP2 induction and RECK suppression, and inhibits human renal proximal tubular epithelial cell migration and epithelial-to-mesenchymal transition.Cell. Signal.20206810950610.1016/j.cellsig.2019.10950631862399
    [Google Scholar]
  177. XieL. XiaoY. TaiS. YangH. ZhouS. ZhouZ. Emerging roles of sodium glucose cotransporter 2 (SGLT-2) inhibitors in diabetic cardiovascular diseases: Focusing on immunity, inflammation and metabolism.Front. Pharmacol.20221383684910.3389/fphar.2022.83684935295328
    [Google Scholar]
  178. IshibashiY. MatsuiT. YamagishiS. Tofogliflozin, a highly selective inhibitor of SGLT2 blocks proinflammatory and proapoptotic effects of glucose overload on proximal tubular cells partly by suppressing oxidative stress generation.Horm. Metab. Res.201648319119526158396
    [Google Scholar]
  179. HasanR. LaskerS. HasanA. ZerinF. ZamilaM. ParvezF. RahmanM.M. KhanF. SubhanN. AlamM.A. Canagliflozin ameliorates renal oxidative stress and inflammation by stimulating AMPK-Akt-eNOS pathway in the isoprenaline-induced oxidative stress model.Sci. Rep.20201011465910.1038/s41598‑020‑71599‑232887916
    [Google Scholar]
  180. TaharaA. TakasuT. YokonoM. ImamuraM. KurosakiE. Characterization and comparison of SGLT2 inhibitors: Part 3. Effects on diabetic complications in type 2 diabetic mice.Eur. J. Pharmacol.201780916317110.1016/j.ejphar.2017.05.01928506912
    [Google Scholar]
  181. OjimaA. MatsuiT. NishinoY. NakamuraN. YamagishiS. Empagliflozin, an inhibitor of sodium-glucose cotransporter 2 exerts anti-inflammatory and antifibrotic effects on experimental diabetic nephropathy partly by suppressing AGEs-receptor axis.Horm. Metab. Res.201547968669210.1055/s‑0034‑139560925611208
    [Google Scholar]
  182. ManciniS.J. BoydD. KatwanO.J. StrembitskaA. AlmabroukT.A. KennedyS. PalmerT.M. SaltI.P. Canagliflozin inhibits interleukin-1β-stimulated cytokine and chemokine secretion in vascular endothelial cells by AMP-activated protein kinase-dependent and -independent mechanisms.Sci. Rep.201881527610.1038/s41598‑018‑23420‑429588466
    [Google Scholar]
  183. OelzeM. Kröller-SchönS. WelschofP. JansenT. HausdingM. MikhedY. StammP. MaderM. ZinßiusE. AgdauletovaS. GottschlichA. StevenS. SchulzE. BottariS.P. MayouxE. MünzelT. DaiberA. The sodium-glucose co-transporter 2 inhibitor empagliflozin improves diabetes-induced vascular dysfunction in the streptozotocin diabetes rat model by interfering with oxidative stress and glucotoxicity.PLoS One2014911e11239410.1371/journal.pone.011239425402275
    [Google Scholar]
  184. LiZ. ZhaoH. WangJ. Metabolism and chronic inflammation: The links between chronic heart failure and comorbidities.Front. Cardiovasc. Med.2021865027810.3389/fcvm.2021.65027834026868
    [Google Scholar]
  185. TeramiN. OgawaD. TachibanaH. HatanakaT. WadaJ. NakatsukaA. EguchiJ. HoriguchiC.S. NishiiN. YamadaH. TakeiK. MakinoH. Long-term treatment with the sodium glucose cotransporter 2 inhibitor, dapagliflozin, ameliorates glucose homeostasis and diabetic nephropathy in db/db mice.PLoS One201496e10077710.1371/journal.pone.010077724960177
    [Google Scholar]
  186. WangX.X. LeviJ. LuoY. MyakalaK. Herman-EdelsteinM. QiuL. WangD. PengY. GrenzA. LuciaS. DobrinskikhE. D’AgatiV.D. KoepsellH. KoppJ.B. RosenbergA.Z. LeviM. SGLT2 protein expression is increased in human diabetic nephropathy.J. Biol. Chem.2017292135335534810.1074/jbc.M117.77952028196866
    [Google Scholar]
  187. Pulakazhi VenuV.K. El-DalyM. SaifeddineM. HirotaS.A. DingH. TriggleC.R. HollenbergM.D. Minimizing hyperglycemia-induced vascular endothelial dysfunction by inhibiting endothelial sodium-glucose cotransporter 2 and attenuating oxidative stress: Implications for treating individuals with type 2 diabetes.Can. J. Diabetes201943751051410.1016/j.jcjd.2019.01.00530930073
    [Google Scholar]
  188. MiyachiY. TsuchiyaK. ShibaK. MoriK. KomiyaC. OgasawaraN. OgawaY. A reduced M1-like/M2-like ratio of macrophages in healthy adipose tissue expansion during SGLT2 inhibition.Sci. Rep.2018811611310.1038/s41598‑018‑34305‑x30382157
    [Google Scholar]
  189. HatanakaT. OgawaD. TachibanaH. EguchiJ. InoueT. YamadaH. TakeiK. MakinoH. WadaJ. Inhibition of SGLT2 alleviates diabetic nephropathy by suppressing high glucose-induced oxidative stress in type 1 diabetic mice.Pharmacol. Res. Perspect.201644e0023910.1002/prp2.23928116093
    [Google Scholar]
  190. PackerM. Role of deranged energy deprivation signaling in the pathogenesis of cardiac and renal disease in states of perceived nutrient overabundance.Circulation2020141252095210510.1161/CIRCULATIONAHA.119.04556132164457
    [Google Scholar]
  191. BonnetF. ScheenA.J. Effects of SGLT2 inhibitors on systemic and tissue low-grade inflammation: The potential contribution to diabetes complications and cardiovascular disease.Diabetes Metab.201844645746410.1016/j.diabet.2018.09.00530266577
    [Google Scholar]
  192. YaribeygiH. ButlerA.E. AtkinS.L. KatsikiN. SahebkarA. Sodium–glucose cotransporter 2 inhibitors and inflammation in chronic kidney disease: Possible molecular pathways.J. Cell. Physiol.2019234122323010.1002/jcp.2685130076706
    [Google Scholar]
  193. DekkersC.C.J. PetrykivS. LavermanG.D. CherneyD.Z. GansevoortR.T. HeerspinkH.J.L. Effects of the SGLT-2 inhibitor dapagliflozin on glomerular and tubular injury markers.Diabetes Obes. Metab.20182081988199310.1111/dom.1330129573529
    [Google Scholar]
  194. GarveyW.T. Van GaalL. LeiterL.A. VijapurkarU. ListJ. CuddihyR. RenJ. DaviesM.J. Effects of canagliflozin versus glimepiride on adipokines and inflammatory biomarkers in type 2 diabetes.Metabolism201885323710.1016/j.metabol.2018.02.00229452178
    [Google Scholar]
  195. SenT. KoshinoA. NealB. BijlsmaM.J. ArnottC. LiJ. HansenM.K. IxJ.H. HeerspinkH.J.L. Mechanisms of action of the sodium-glucose cotransporter-2 ( SGLT2) inhibitor canagliflozin on tubular inflammation and damage: A post hoc mediation analysis of the CANVAS trial.Diabetes Obes. Metab.202224101950195610.1111/dom.1477935635326
    [Google Scholar]
  196. OsonoiT. GoudaM. KuboM. ArakawaK. HashimotoT. AbeM. Effect of canagliflozin on urinary albumin excretion in japanese patients with type 2 diabetes mellitus and microalbuminuria: A pilot study.Diabetes Technol. Ther.2018201068168810.1089/dia.2018.016930096243
    [Google Scholar]
  197. GohariS. ReshadmaneshT. KhodabandehlooH. Karbalaee-HasaniA. AhangarH. Arsang-JangS. Ismail-BeigiF. DadashiM. GhanbariS. TaheriH. FathiM. MuhammadiM.J. MahmoodianR. AsgariA. TayaranianM. MoharramiM. MahjaniM. GhobadianB. ChitiH. GohariS. The effect of EMPAgliflozin on markers of inflammation in patients with concomitant type 2 diabetes mellitus and Coronary ARtery Disease: The EMPA-CARD randomized controlled trial.Diabetol. Metab. Syndr.202214117010.1186/s13098‑022‑00951‑536397128
    [Google Scholar]
  198. CanetF. IannantuoniF. MarañonA.M. Díaz-PozoP. López-DomènechS. VezzaT. NavarroB. SoláE. FalcónR. BañulsC. MorillasC. RochaM. VíctorV.M. Does empagliflozin modulate leukocyte-endothelium interactions, oxidative stress, and inflammation in type 2 diabetes?Antioxidants2021108122810.3390/antiox1008122834439476
    [Google Scholar]
  199. TanakaA. ImaiT. ShimabukuroM. NakamuraI. MatsunagaK. OzakiY. MinaminoT. SataM. NodeK. Effect of canagliflozin on white blood cell counts in patients with type 2 diabetes and heart failure: A subanalysis of the randomized CANDLE trial.J. Diabetes Investig.202213121990199910.1111/jdi.1389936114704
    [Google Scholar]
  200. HaoZ. SunY. LiG. ShenY. WenY. LiuY. Effects of canagliflozin and metformin on insulin resistance and visceral adipose tissue in people with newly-diagnosed type 2 diabetes.BMC Endocr. Disord.20222213710.1186/s12902‑022‑00949‑035144596
    [Google Scholar]
  201. D’OnofrioN. SarduC. TrottaM.C. ScisciolaL. TurrizianiF. FerraraccioF. PanareseI. PetrellaL. FanelliM. ModugnoP. MassettiM. MarfellaL.V. SassoF.C. RizzoM.R. BarbieriM. FurbattoF. MinicucciF. MauroC. FedericiM. BalestrieriM.L. PaolissoG. MarfellaR. Sodium-glucose co-transporter2 expression and inflammatory activity in diabetic atherosclerotic plaques: Effects of sodium-glucose co-transporter2 inhibitor treatment.Mol. Metab.20215410133710.1016/j.molmet.2021.10133734500107
    [Google Scholar]
  202. YangJ. LiuZ. Mechanistic pathogenesis of endothelial dysfunction in diabetic nephropathy and retinopathy.Front. Endocrinol.20221381640010.3389/fendo.2022.81640035692405
    [Google Scholar]
  203. CorrealeM. MazzeoP. MallardiA. LeopizziA. TricaricoL. FortunatoM. MagnesaM. TucciS. MaiellaroP. PastoreG. LamacchiaO. IacovielloM. Di BiaseM. BrunettiN.D. Switch to SGLT2 inhibitors and improved endothelial function in diabetic patients with chronic heart failure.Cardiovasc. Drugs Ther.20223661157116410.1007/s10557‑021‑07254‑334519913
    [Google Scholar]
  204. DaiosS. KaiafaG. PilalasD. NakouI. KanellosI. KirdasK. DespoudiK. PapanasN. SavopoulosC. Endothelial dysfunction and platelet hyperaggregation in type 2 diabetes mellitus: The era of novel anti-diabetic agents.Curr. Med. Chem.202128203935396310.2174/092986732766620100914381633038906
    [Google Scholar]
  205. SugiyamaS. JinnouchiH. KurinamiN. HieshimaK. YoshidaA. JinnouchiK. NishimuraH. SuzukiT. MiyamotoF. KajiwaraK. JinnouchiT. The SGLT2 inhibitor dapagliflozin significantly improves the peripheral microvascular endothelial function in patients with uncontrolled type 2 diabetes mellitus.Intern. Med.201857152147215610.2169/internalmedicine.0701‑1729607968
    [Google Scholar]
  206. TochiyaM. MakinoH. TamanahaT. MatsuoM. HishidaA. KoezukaR. OhataY. TomitaT. SonC. MiyamotoY. YasudaS. HosodaK. Effect of tofogliflozin on cardiac and vascular endothelial function in patients with type 2 diabetes and heart diseases: A pilot study.J. Diabetes Investig.202011240040410.1111/jdi.1312231361403
    [Google Scholar]
  207. HongJ.Y. ParkK.Y. KimJ.D. HwangW.M. LimD.M. Effects of 6 months of dapagliflozin treatment on metabolic profile and endothelial cell dysfunction for obese type 2 diabetes mellitus patients without atherosclerotic cardiovascular disease.J. Obes. Metab. Syndr.202029321522110.7570/jomes2004032990259
    [Google Scholar]
  208. SawadaT. UzuK. HashimotoN. OnishiT. TakayaT. ShimaneA. TaniguchiY. YasakaY. OharaT. KawaiH. Empagliflozin’s ameliorating effect on plasma triglycerides: Association with endothelial function recovery in diabetic patients with coronary artery disease.J. Atheroscler. Thromb.202027764465610.5551/jat.5080731631099
    [Google Scholar]
  209. IraceC. CutruzzolàA. PariseM. FiorentinoR. FrazzettoM. GnassoC. CasciaroF. GnassoA. Effect of empagliflozin on brachial artery shear stress and endothelial function in subjects with type 2 diabetes: Results from an exploratory study.Diab. Vasc. Dis. Res.20201710.1177/147916411988354031726866
    [Google Scholar]
  210. TamuraH. KondoY. ItoK. HasebeM. SatohS. TerauchiY. Comparison of the effects of empagliflozin and glimepiride on endothelial function in patients with type 2 diabetes: A randomized controlled study.PLoS One2022172e026283110.1371/journal.pone.026283135171918
    [Google Scholar]
  211. MaF. ZhangJ. WangH. WuY. WuY. Efficacy of dapagliflozin in patients with diabetes mellitus complicated with coronary artery disease and its impact on the vascular endothelial function.Dis. Markers202220221610.1155/2022/482975036118673
    [Google Scholar]
  212. MoneP. LombardiA. KansakarU. VarzidehF. JankauskasS.S. PansiniA. De GennaroS. FamigliettiM. MacinaG. FrulloneS. MarzoccoS. SantulliG. Empagliflozin improves the microRNA signature of endothelial dysfunction in patients with HFpEF and diabetes.J. Pharmacol. Exp. Ther.2022
    [Google Scholar]
  213. ShigiyamaF. KumashiroN. MiyagiM. IkeharaK. KandaE. UchinoH. HiroseT. Effectiveness of dapagliflozin on vascular endothelial function and glycemic control in patients with early-stage type 2 diabetes mellitus: DEFENCE study.Cardiovasc. Diabetol.20171618410.1186/s12933‑017‑0564‑028683796
    [Google Scholar]
  214. SpositoA.C. BrederI. SoaresA.A.S. Kimura-MedorimaS.T. MunhozD.B. CintraR.M.R. BonilhaI. OliveiraD.C. BrederJ.C. CavalcanteP. MoreiraC. MouraF.A. de Lima-JuniorJ.C. do CarmoH.R.P. BarretoJ. NadruzW. CarvalhoL.S.F. QuinagliaT. Dapagliflozin effect on endothelial dysfunction in diabetic patients with atherosclerotic disease: A randomized active-controlled trial.Cardiovasc. Diabetol.20212017410.1186/s12933‑021‑01264‑z33771149
    [Google Scholar]
  215. SpositoA.C. BrederI. BarretoJ. BrederJ. BonilhaI. LimaM. OliveiraA. WolfV. LuchiariB. do CarmoH.R. MunhozD. OliveiraD. Coelho-FilhoO.R. CoelhoO.R. Matos-SouzaJ.R. MouraF.A. de CarvalhoL.S.F. NadruzW. QuinagliaT. Kimura-MedorimaS.T. Evolocumab on top of empagliflozin improves endothelial function of individuals with diabetes: Randomized active-controlled trial.Cardiovasc. Diabetol.202221114710.1186/s12933‑022‑01584‑835933413
    [Google Scholar]
  216. WeiR. WangW. PanQ. GuoL. Effects of SGLT-2 inhibitors on vascular endothelial function and arterial stiffness in subjects with type 2 diabetes: A systematic review and meta-analysis of randomized controlled trials.Front. Endocrinol.20221382660410.3389/fendo.2022.82660435250882
    [Google Scholar]
  217. PatouliasD. PapadopoulosC. KassimisG. VassilikosV. KaragiannisA. DoumasM. Meta-analysis addressing the effect of sodium-glucose cotransporter 2 inhibitors on flow-mediated dilation in patients with type 2 diabetes mellitus.Am. J. Cardiol.202216513313510.1016/j.amjcard.2021.11.00334857364
    [Google Scholar]
  218. TanakaA. ShimabukuroM. MachiiN. TeragawaH. OkadaY. ShimaK.R. TakamuraT. TaguchiI. HisauchiI. ToyodaS. MatsuzawaY. TomiyamaH. Yamaoka-TojoM. YoshidaH. SatoY. IkeharaY. UedaS. HigashiY. NodeK. AkoJ. AmanoH. InoueT. JinnouchiH. KawaguchiA. KawanoY. KimuraK. KurozumiA. KusumotoT. MaruhashiT. MisuH. NakamuraK. NarisawaM. NishiJ. OtaT. OyamaJ. SakumaM. ShiinaK. SugiyamaS. SuzukiK. TakahashiN. TakemotoY. TakeshitaY. TamakiH. TamuraA. TanakaK. ToitaT. TorimotoK. UeharaH. UemuraF. YamakawaK. YufuK. Effect of empagliflozin on endothelial function in patients with type 2 diabetes and cardiovascular disease: Results from the multicenter, randomized, placebo-controlled, double-blind EMBLEM trial.Diabetes Care20194210e159e16110.2337/dc19‑117731533913
    [Google Scholar]
  219. TanakaA. ShimabukuroM. MachiiN. TeragawaH. OkadaY. ShimaK.R. TakamuraT. TaguchiI. HisauchiI. ToyodaS. MatsuzawaY. TomiyamaH. Yamaoka-TojoM. UedaS. HigashiY. NodeK. Secondary analyses to assess the profound effects of empagliflozin on endothelial function in patients with type 2 diabetes and established cardiovascular diseases: The placebo-controlled double-blind randomized effect of empagliflozin on endothelial function in cardiovascular high risk diabetes mellitus: Multi-center placebo-controlled double-blind randomized trial.J. Diabetes Investig.20201161551156310.1111/jdi.1328932537887
    [Google Scholar]
  220. TanakaA. ShimabukuroM. OkadaY. SugimotoK. KurozumiA. TorimotoK. HiraiH. NodeK. Rationale and design of an investigator-initiated, multicenter, prospective open-label, randomized trial to evaluate the effect of ipragliflozin on endothelial dysfunction in type 2 diabetes and chronic kidney disease: The PROCEED trial.Cardiovasc. Diabetol.20201918510.1186/s12933‑020‑01065‑w32534578
    [Google Scholar]
  221. LiuY. Epithelial to mesenchymal transition in renal fibrogenesis: Pathologic significance, molecular mechanism, and therapeutic intervention.J. Am. Soc. Nephrol.200415111210.1097/01.ASN.0000106015.29070.E714694152
    [Google Scholar]
  222. QiW. TwiggS. ChenX. PolhillT.S. PoronnikP. GilbertR.E. PollockC.A. Integrated actions of transforming growth factor-β 1 and connective tissue growth factor in renal fibrosis.Am. J. Physiol. Renal Physiol.20052884F800F80910.1152/ajprenal.00179.200415536170
    [Google Scholar]
  223. GuY.Y. LiuX.S. HuangX.R. YuX.Q. LanH.Y. TGF-β in renal fibrosis: Triumphs and challenges.Future Med. Chem.202012985386610.4155/fmc‑2020‑000532233802
    [Google Scholar]
  224. RyszJ. BanachM. StolarekR.A. PasnikJ. Cialkowska-RyszA. KoktyszR. PiechotaM. BajZ. Serum matrix metalloproteinases MMP-2 and MMP-9 and metalloproteinase tissue inhibitors TIMP-1 and TIMP-2 in diabetic nephropathy.J. Nephrol.200720444445217879211
    [Google Scholar]
  225. GalloL.A. WardM.S. FotheringhamA.K. ZhuangA. BorgD.J. FlemmingN.B. HarvieB.M. KinneallyT.L. YehS.M. McCarthyD.A. KoepsellH. VallonV. PollockC. PanchapakesanU. ForbesJ.M. Once daily administration of the SGLT2 inhibitor, empagliflozin, attenuates markers of renal fibrosis without improving albuminuria in diabetic db/db mice.Sci. Rep.2016612642810.1038/srep2642827226136
    [Google Scholar]
  226. NdibalemaA. KabuyeD. WenS. LiL. LiX. FanQ. Empagliflozin protects against proximal renal tubular cell injury induced by high glucose via regulation of hypoxia-inducible factor 1-alpha.Diabetes Metab. Syndr. Obes.2020131953196710.2147/DMSO.S24317032606855
    [Google Scholar]
  227. PirklbauerM. SchupartR. FuchsL. StaudingerP. CorazzaU. SallabergerS. LeiererJ. MayerG. SchramekH. Unraveling reno-protective effects of SGLT2 inhibition in human proximal tubular cells.Am. J. Physiol. Renal Physiol.20193163F449F46210.1152/ajprenal.00431.201830539648
    [Google Scholar]
  228. TangL. WuY. TianM. SjöströmC.D. JohanssonU. PengX.R. SmithD.M. HuangY. Dapagliflozin slows the progression of the renal and liver fibrosis associated with type 2 diabetes.Am. J. Physiol. Endocrinol. Metab.20173135E563E57610.1152/ajpendo.00086.201728811292
    [Google Scholar]
  229. Kogot-LevinA. HindenL. RiahiY. IsraeliT. TiroshB. CerasiE. MizrachiE.B. TamJ. MosenzonO. LeibowitzG. Proximal tubule mTORC1 is a central player in the pathophysiology of diabetic nephropathy and its correction by SGLT2 inhibitors.Cell Rep.202032410795410.1016/j.celrep.2020.10795432726619
    [Google Scholar]
  230. SchaubJ.A. AlAkwaaF.M. McCownP.J. NaikA.S. NairV. EddyS. MenonR. OttoE.A. DemekeD. HartmanJ. FerminD. O’ConnorC.L. SubramanianL. BitzerM. HarnedR. LaddP. PyleL. PennathurS. InokiK. HodginJ.B. BrosiusF.C.III NelsonR.G. KretzlerM. BjornstadP. SGLT2 inhibitors mitigate kidney tubular metabolic and mTORC1 perturbations in youth-onset type 2 diabetes.J. Clin. Invest.20231335e16448610.1172/JCI16448636637914
    [Google Scholar]
  231. HeerspinkH.J.L. PercoP. MulderS. LeiererJ. HansenM.K. HeinzelA. MayerG. Canagliflozin reduces inflammation and fibrosis biomarkers: A potential mechanism of action for beneficial effects of SGLT2 inhibitors in diabetic kidney disease.Diabetologia20196271154116610.1007/s00125‑019‑4859‑431001673
    [Google Scholar]
  232. CefaluW.T. LeiterL.A. YoonK.H. AriasP. NiskanenL. XieJ. BalisD.A. CanovatchelW. MeiningerG. Efficacy and safety of canagliflozin versus glimepiride in patients with type 2 diabetes inadequately controlled with metformin (CANTATA-SU): 52 week results from a randomised, double-blind, phase 3 non-inferiority trial.Lancet2013382989694195010.1016/S0140‑6736(13)60683‑223850055
    [Google Scholar]
  233. O’RourkeM.F. SafarM.E. Relationship between aortic stiffening and microvascular disease in brain and kidney: Cause and logic of therapy.Hypertension200546120020410.1161/01.HYP.0000168052.00426.6515911742
    [Google Scholar]
  234. CameronJ.D. CruickshankJ.K. Glucose, insulin, diabetes and mechanisms of arterial dysfunction.Clin. Exp. Pharmacol. Physiol.200734767768210.1111/j.1440‑1681.2007.04659.x17581229
    [Google Scholar]
  235. SaladiniF. PalatiniP. Arterial distensibility, physical activity, and the metabolic syndrome.Curr. Hypertens. Rep.20182053910.1007/s11906‑018‑0837‑329717392
    [Google Scholar]
  236. CavalcanteJ.L. LimaJ.A.C. RedheuilA. Al-MallahM.H. Aortic stiffness.J. Am. Coll. Cardiol.201157141511152210.1016/j.jacc.2010.12.01721453829
    [Google Scholar]
  237. PrennerS.B. ChirinosJ.A. Arterial stiffness in diabetes mellitus.Atherosclerosis2015238237037910.1016/j.atherosclerosis.2014.12.02325558032
    [Google Scholar]
  238. AroorA.R. DasN.A. CarpenterA.J. HabibiJ. JiaG. Ramirez-PerezF.I. Martinez-LemusL. Manrique-AcevedoC.M. HaydenM.R. DutaC. NistalaR. MayouxE. PadillaJ. ChandrasekarB. DeMarcoV.G. Glycemic control by the SGLT2 inhibitor empagliflozin decreases aortic stiffness, renal resistivity index and kidney injury.Cardiovasc. Diabetol.20181710810.1186/s12933‑018‑0750‑830060748
    [Google Scholar]
  239. SoliniA. GianniniL. SeghieriM. VitoloE. TaddeiS. GhiadoniL. BrunoR.M. Dapagliflozin acutely improves endothelial dysfunction, reduces aortic stiffness and renal resistive index in type 2 diabetic patients: A pilot study.Cardiovasc. Diabetol.201716113810.1186/s12933‑017‑0621‑829061124
    [Google Scholar]
  240. KrummeB. Renal Doppler sonography--update in clinical nephrology.Nephron Clin. Pract.20061032c24c2810.1159/00009060516543752
    [Google Scholar]
  241. KorbutA.I. TaskaevaI.S. BgatovaN.P. MuralevaN.A. OrlovN.B. DashkinM.V. KhotskinaA.S. ZavyalovE.L. KonenkovV.I. KleinT. KlimontovV.V. SGLT2 inhibitor empagliflozin and dpp4 inhibitor linagliptin reactivate glomerular autophagy in db/db mice, a model of type 2 diabetes.Int. J. Mol. Sci.2020218298710.3390/ijms2108298732340263
    [Google Scholar]
  242. PackerM. Interplay of adenosine monophosphate-activated protein kinase/sirtuin-1 activation and sodium influx inhibition mediates the renal benefits of sodium-glucose co-transporter-2 inhibitors in type 2 diabetes: A novel conceptual framework.Diabetes Obes. Metab.202022573474210.1111/dom.1396131916329
    [Google Scholar]
  243. XuJ. KitadaM. OguraY. LiuH. KoyaD. Dapagliflozin restores impaired autophagy and suppresses inflammation in high glucose-treated HK-2 cells.Cells2021106145710.3390/cells1006145734200774
    [Google Scholar]
  244. CassisP. LocatelliM. CerulloD. CornaD. BuelliS. ZanchiC. VillaS. MorigiM. RemuzziG. BenigniA. ZojaC. SGLT2 inhibitor dapagliflozin limits podocyte damage in proteinuric nondiabetic nephropathy.JCI Insight2018315e9872010.1172/jci.insight.9872030089717
    [Google Scholar]
  245. TianY. ChenX. LiangX. WuX. YaoC. SGLT2 inhibitors attenuate nephrin loss and enhance TGF-β1 secretion in type 2 diabetes patients with albuminuria: A randomized clinical trial.Sci. Rep.20221211569510.1038/s41598‑022‑19988‑736127497
    [Google Scholar]
  246. LocatelliM. ZojaC. ContiS. CerulloD. CornaD. RottoliD. ZanchiC. TomasoniS. RemuzziG. BenigniA. Empagliflozin protects glomerular endothelial cell architecture in experimental diabetes through the VEGF-A /caveolin-1/ PV -1 signaling pathway.J. Pathol.2022256446847910.1002/path.586235000230
    [Google Scholar]
  247. ElkazzazS.K. KhodeerD.M. El FayoumiH.M. MoustafaY.M. Role of sodium glucose cotransporter type 2 inhibitors dapagliflozin on diabetic nephropathy in rats; Inflammation, angiogenesis and apoptosis.Life Sci.202128011901810.1016/j.lfs.2021.11901833549594
    [Google Scholar]
  248. BenettiE. MastrocolaR. VitarelliG. CutrinJ.C. NigroD. ChiazzaF. MayouxE. CollinoM. FantozziR. Empagliflozin protects against diet-induced NLRP-3 inflammasome activation and lipid accumulation.J. Pharmacol. Exp. Ther.20163591455310.1124/jpet.116.23506927440421
    [Google Scholar]
  249. NiuY. ZhangY. ZhangW. LuJ. ChenY. HaoW. ZhouJ. WangL. XieW. Canagliflozin ameliorates NLRP3 inflammasome-mediated inflammation through inhibiting NF-κB signaling and upregulating bif-1.Front. Pharmacol.20221382054110.3389/fphar.2022.82054135418866
    [Google Scholar]
  250. KunoA. KimuraY. MizunoM. OshimaH. SatoT. MoniwaN. TanakaM. YanoT. TannoM. MikiT. MiuraT. Empagliflozin attenuates acute kidney injury after myocardial infarction in diabetic rats.Sci. Rep.2020101723810.1038/s41598‑020‑64380‑y32350374
    [Google Scholar]
  251. OpingariE. VermaS. ConnellyK.A. MazerC.D. TeohH. QuanA. ZuoF. PanY. BhattD.L. ZinmanB. LeiterL.A. YanA.T. CherneyD.Z.I. GilbertR.E. The impact of empagliflozin on kidney injury molecule-1: A subanalysis of the effects of empagliflozin on cardiac structure, function, and circulating biomarkers in patients with type 2 diabetes cardiolink-6 trial.Nephrol. Dial. Transplant.202035589589710.1093/ndt/gfz29432159783
    [Google Scholar]
  252. Ashrafi JighehZ. Ghorbani HaghjoA. ArganiH. RoshangarL. RashtchizadehN. SanajouD. Nazari Soltan AhmadS. RashediJ. DastmalchiS. Mesgari AbbasiM. Empagliflozin attenuates renal and urinary markers of tubular epithelial cell injury in streptozotocin-induced diabetic rats.Indian J. Clin. Biochem.202035110911410.1007/s12291‑018‑0790‑632071503
    [Google Scholar]
  253. ShimohataH. IwakiY. YamashitaM. OhgiK. MaruyamaH. TakayasuM. HirayamaK. KobayashiM. The effect of sodium-glucose cotransporter 2 inhibitor (tofogliflozin) on renal tubular damage in diabetic patients without albuminuria.Int. Urol. Nephrol.20225481907191410.1007/s11255‑021‑03064‑634843041
    [Google Scholar]
  254. CherneyD. PerkinsB.A. LytvynY. HeerspinkH. Rodríguez-OrtizM.E. MischakH. The effect of sodium/glucose cotransporter 2 (SGLT2) inhibition on the urinary proteome.PLoS One20171210e018691010.1371/journal.pone.018691029084249
    [Google Scholar]
  255. PercoP. JuW. KerschbaumJ. LeiererJ. MenonR. ZhuC. KretzlerM. MayerG. RudnickiM. Identification of dicarbonyl and L-xylulose reductase as a therapeutic target in human chronic kidney disease.JCI Insight2019412e12812010.1172/jci.insight.12812031217356
    [Google Scholar]
  256. ShelkeV. KaleA. AndersH.J. GaikwadA.B. Toll-like receptors 2 and 4 stress signaling and sodium-glucose cotransporter-2 in kidney disease.Mol. Cell. Biochem.202347891987199810.1007/s11010‑022‑04652‑536586092
    [Google Scholar]
  257. LiuH. SridharV.S. LovblomL.E. LytvynY. BurgerD. BurnsK. BrincD. LawlerP.R. CherneyD.Z.I. Markers of kidney injury, inflammation, and fibrosis associated with ertugliflozin in patients with CKD and diabetes.Kidney Int. Rep.2021682095210410.1016/j.ekir.2021.05.02234386658
    [Google Scholar]
  258. EvenepoelP. MeijersB. MasereeuwR. LowensteinJ. Effects of an SGLT inhibitor on the production, toxicity, and elimination of gut-derived uremic toxins: A call for additional evidence.Toxins202214321010.3390/toxins1403021035324707
    [Google Scholar]
  259. NakagawaT. Sanchez-LozadaL.G. Andres-HernandoA. KojimaH. KasaharaM. Rodriguez-IturbeB. BjornstadP. LanaspaM.A. JohnsonR.J. Endogenous fructose metabolism could explain the warburg effect and the protection of SGLT2 inhibitors in chronic kidney disease.Front. Immunol.20211269445710.3389/fimmu.2021.69445734220855
    [Google Scholar]
  260. LiuH. SridharV.S. BouletJ. DhariaA. KhanA. LawlerP.R. CherneyD.Z.I. Cardiorenal protection with SGLT2 inhibitors in patients with diabetes mellitus: From biomarkers to clinical outcomes in heart failure and diabetic kidney disease.Metabolism202212615491810.1016/j.metabol.2021.15491834699838
    [Google Scholar]
  261. DioumE.M. ChenR. AlexanderM.S. ZhangQ. HoggR.T. GerardR.D. GarciaJ.A. Regulation of hypoxia-inducible factor 2alpha signaling by the stress-responsive deacetylase sirtuin 1.Science200932459321289129310.1126/science.116995619498162
    [Google Scholar]
  262. ChangD.Y. LiX.Q. ChenM. ZhaoM.H. Dapagliflozin ameliorates diabetic kidney disease via upregulating crry and alleviating complement over-activation in db/db mice.Front. Pharmacol.20211272933410.3389/fphar.2021.72933434712135
    [Google Scholar]
  263. NosadiniR. TrevisanR. FiorettoP. SempliciniA. SamàB. VelussiM. Luigi Da CampoG. AvogaroA. VizzaccaroA. DonadonV. MongilloS. DoriaA. Kidney hemodynamics after ketone body and amino acid infusion in normal and IDDM subjects.Diabetes1989381758310.2337/diab.38.1.752909415
    [Google Scholar]
  264. SongP. HuangW. OnishiA. PatelR. KimY.C. van GinkelC. FuY. FreemanB. KoepsellH. ThomsonS. LiuR. VallonV. Knockout of Na + -glucose cotransporter SGLT1 mitigates diabetes-induced upregulation of nitric oxide synthase NOS1 in the macula densa and glomerular hyperfiltration.Am. J. Physiol. Renal Physiol.20193171F207F21710.1152/ajprenal.00120.201931091127
    [Google Scholar]
  265. ZhangJ. WeiJ. JiangS. XuL. WangL. ChengF. BuggsJ. KoepsellH. VallonV. LiuR. Macula densa SGLT1-NOS1-TGF pathway-a new mechanism for glomerular hyperfiltration during hyperglycemia.J. Am. Soc. Nephrol.201930457893
    [Google Scholar]
  266. PapaetisG.S. Pioglitazone, bladder cancer, and the presumption of innocence.Curr. Drug Saf.202217429431810.2174/157488631766622030412475635249505
    [Google Scholar]
  267. CaiY. LiuX. XuG. Combination therapy with SGLT2 inhibitors for diabetic kidney disease.Biomed. Pharmacother.202012711019210.1016/j.biopha.2020.11019232559844
    [Google Scholar]
  268. TaharaA. Effects of SGLT2 inhibitor ipragliflozin alone and combined with pioglitazone on fluid retention in type 2 diabetic mice with NASH.Eur. J. Pharmacol.202190117407610.1016/j.ejphar.2021.17407633798599
    [Google Scholar]
  269. RyderB. DeFronzoR. Diabetes medications with cardiovascular protection after HARMONY Outcomes and DECLARE-TIMI 58: Could metformin, pioglitazone, SGLT2 inhibitors and long-acting GLP-1 receptor agonists complement each other to save lives by different mechanisms?British J. Diabetes20191911510.15277/bjd.2019.207
    [Google Scholar]
  270. RyderR.E.J. DefronzoR.A. Diabetes medications with cardiovascular protection in the wake of EMPA-REG OUTCOME: The optimal combination may be metformin, pioglitazone and empagliflozin.Br. J. Diabetes Vasc. Dis.201515415115410.15277/bjdvd.2015.045
    [Google Scholar]
  271. GourdyP. DarmonP. DievartF. HalimiJ.M. GuerciB. Combining glucagon-like peptide-1 receptor agonists (GLP-1RAs) and sodium-glucose cotransporter-2 inhibitors (SGLT2is) in patients with type 2 diabetes mellitus (T2DM).Cardiovasc. Diabetol.20232217910.1186/s12933‑023‑01798‑437005640
    [Google Scholar]
  272. BakrisG.L. RuilopeL.M. AnkerS.D. FilippatosG. PittB. RossingP. FriedL. Roy-ChaudhuryP. SarafidisP. AhlersC. BrinkerM. JosephA. LawatscheckR. AgarwalR. A prespecified exploratory analysis from FIDELITY examined finerenone use and kidney outcomes in patients with chronic kidney disease and type 2 diabetes.Kidney Int.2023103119620610.1016/j.kint.2022.08.04036367466
    [Google Scholar]
  273. RossingP. FilippatosG. AgarwalR. AnkerS.D. PittB. RuilopeL.M. ChanJ.C.N. KooyA. McCaffertyK. SchernthanerG. WannerC. JosephA. ScheererM.F. ScottC. BakrisG.L. Finerenone in predominantly advanced CKD and type 2 diabetes with or without sodium-glucose cotransporter-2 inhibitor therapy.Kidney Int. Rep.202271364510.1016/j.ekir.2021.10.00835005312
    [Google Scholar]
  274. NeuenB.L. OshimaM. AgarwalR. ArnottC. CherneyD.Z. EdwardsR. LangkildeA.M. MahaffeyK.W. McGuireD.K. NealB. PerkovicV. PongA. SabatineM.S. RazI. ToyamaT. WannerC. WheelerD.C. WiviottS.D. ZinmanB. HeerspinkH.J.L. Sodium-glucose cotransporter 2 inhibitors and risk of hyperkalemia in people with type 2 diabetes: A meta-analysis of individual participant data from randomized, controlled trials.Circulation2022145191460147010.1161/CIRCULATIONAHA.121.05773635394821
    [Google Scholar]
  275. CharlwoodC. ChudasamaJ. DarlingA.L. Logan EllisH. WhyteM.B. Effect of sodium-glucose co-transporter 2 inhibitors on plasma potassium: A meta-analysis.Diabetes Res. Clin. Pract.202319611023910.1016/j.diabres.2023.11023936610543
    [Google Scholar]
  276. GuedesM. Pecoits-FilhoR. Can we cure diabetic kidney disease? Present and future perspectives from a nephrologist’s point of view.J. Intern. Med.2022291216518010.1111/joim.1342434914852
    [Google Scholar]
  277. TyeS.C. DenigP. HeerspinkH.J.L. Precision medicine approaches for diabetic kidney disease: Opportunities and challenges.Nephrol. Dial. Transplant.202136Suppl. 2ii3ii910.1093/ndt/gfab04534153985
    [Google Scholar]
  278. MistryN. BakrisG.L. The changing trajectory of diabetic kidney disease.Curr. Opin. Nephrol. Hypertens.20233219810210.1097/MNH.000000000000084436250469
    [Google Scholar]
/content/journals/cmp/10.2174/0118761429261105231011101200
Loading
/content/journals/cmp/10.2174/0118761429261105231011101200
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Albuminuria; Chronic kidney disease; Glucosuria; SGLT2 inhibitors; TGF; Type 2 diabetes
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test