Skip to content
2000
Volume 17, Issue 1
  • ISSN: 1874-4672
  • E-ISSN: 1874-4702

Abstract

Resveratrol, a polyphenolic phytoalexin found in a wide range of plants, including grapes, berries, and peanuts, is an extensively researched phytochemical with unique pharmacological capabilities and amazing potential to affect many targets in various cancers. Resveratrol's anti-cancer activities are due to its targeting of a variety of cellular and molecular mechanisms and crucial processes involved in cancer pathogenesis, such as the promotion of growth arrest, stimulation of apoptosis, suppression of cell proliferation, induction of autophagy, regulating oxidative stress and inflammation, and improving the influence of some of the other chemotherapeutic agents. MicroRNAs (miRNAs) are non-coding RNAs that modulate gene expression by degrading mRNA or inhibiting translation. MiRNAs serve critical roles in a wide range of biological activities, and disruption of miRNA expression is strongly linked to cancer progression. Recent research has shown that resveratrol has anti-proliferative and/or pro-apoptotic properties modulating the miRNA network, which leads to the inhibition of tumor cell proliferation, the activation of apoptosis, or the increase of traditional cancer therapy effectiveness. As a result, employing resveratrol to target miRNAs will be a unique and potential anticancer approach. Here, we discuss the main advances in the modulation of miRNA expression by resveratrol, as well as the several miRNAs that may be influenced by resveratrol in different types of cancer and the significance of this natural drug as a promising strategy in cancer treatment.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmp/10.2174/0118761429249717230920113227
2023-10-23
2025-01-22
Loading full text...

Full text loading...

/deliver/fulltext/cmp/17/1/CMP-17-E18761429249717.html?itemId=/content/journals/cmp/10.2174/0118761429249717230920113227&mimeType=html&fmt=ahah

References

  1. MattiuzziC. LippiG. Current cancer epidemiology.J. Epidemiol. Glob. Health20199421722210.2991/jegh.k.191008.00131854162
    [Google Scholar]
  2. NelsonA.R. FingletonB. RothenbergM.L. MatrisianL.M. Matrix metalloproteinases: Biologic activity and clinical implications.J. Clin. Oncol.20001851135114910.1200/JCO.2000.18.5.113510694567
    [Google Scholar]
  3. SinghS.S. YapW.N. ArfusoF. KarS. WangC. CaiW. DharmarajanA.M. SethiG. KumarA.P. Targeting the PI3K/Akt signaling pathway in gastric carcinoma: A reality for personalized medicine?World J. Gastroenterol.20152143122611227310.3748/wjg.v21.i43.1226126604635
    [Google Scholar]
  4. ShanmugamM.K. LeeJ.H. ChaiE.Z.P. KanchiM.M. KarS. ArfusoF. DharmarajanA. KumarA.P. RamarP.S. LooiC.Y. MustafaM.R. TergaonkarV. BishayeeA. AhnK.S. SethiG. Cancer prevention and therapy through the modulation of transcription factors by bioactive natural compounds.Semin. Cancer Biol.201640-41354710.1016/j.semcancer.2016.03.00527038646
    [Google Scholar]
  5. LiF. ZhangJ. ArfusoF. ChinnathambiA. ZayedM.E. AlharbiS.A. KumarA.P. AhnK.S. SethiG. NF-κB in cancer therapy.Arch. Toxicol.201589571173110.1007/s00204‑015‑1470‑425690730
    [Google Scholar]
  6. ChaiE.Z.P. ShanmugamM.K. ArfusoF. DharmarajanA. WangC. KumarA.P. SamyR.P. LimL.H.K. WangL. GohB.C. AhnK.S. HuiK.M. SethiG. Targeting transcription factor STAT3 for cancer prevention and therapy.Pharmacol. Ther.2016162869710.1016/j.pharmthera.2015.10.00426478441
    [Google Scholar]
  7. SethiG. TergaonkarV. Potential pharmacological control of the NF-κB pathway.Trends Pharmacol. Sci.200930631332110.1016/j.tips.2009.03.00419446347
    [Google Scholar]
  8. OkimotoR.A. BivonaT.G. Recent advances in personalized lung cancer medicine.Per. Med.201411330932110.2217/pme.14.1925506379
    [Google Scholar]
  9. FisusiF.A. AkalaE.O. Drug combinations in breast cancer therapy.Pharm. Nanotechnol.20197132310.2174/221173850766619012211122430666921
    [Google Scholar]
  10. ChatterjeeN. BivonaT.G. Polytherapy and targeted cancer drug resistance.Trends Cancer20195317018210.1016/j.trecan.2019.02.00330898264
    [Google Scholar]
  11. AnwarD.M. El-SayedM. RedaA. FangJ.Y. KhattabS.N. ElzoghbyA.O. Recent advances in herbal combination nanomedicine for cancer: delivery technology and therapeutic outcomes.Expert Opin. Drug Deliv.202118111609162510.1080/17425247.2021.195585334254868
    [Google Scholar]
  12. LinS.R. ChangC.H. HsuC.F. TsaiM.J. ChengH. LeongM.K. SungP.J. ChenJ.C. WengC.F. Natural compounds as potential adjuvants to cancer therapy: Preclinical evidence.Br. J. Pharmacol.202017761409142310.1111/bph.1481631368509
    [Google Scholar]
  13. LiX. QinY. LiuW. ZhouX. LiY. WangL. Efficacy of ginger in ameliorating acute and delayed chemotherapy-induced nausea and vomiting among patients with lung cancer receiving cisplatin-based regimens: A randomized controlled trial.Integr. Cancer Ther.201817374775410.1177/153473541775354129417850
    [Google Scholar]
  14. MahammediH. PlanchatE. PougetM. DurandoX. CuréH. GuyL. Van-PraaghI. SavareuxL. AtgerM. Bayet-RobertM. GadeaE. AbrialC. ThivatE. CholletP. EymardJ.C. The new combination docetaxel, prednisone and curcumin in patients with castration-resistant prostate cancer: A pilot phase ii study.Oncology2016902697810.1159/00044114826771576
    [Google Scholar]
  15. UpretiS. PandeyS.C. BishtI. SamantM. Evaluation of the target-specific therapeutic potential of herbal compounds for the treatment of cancer.Mol. Divers.20222631823183510.1007/s11030‑021‑10271‑x34240331
    [Google Scholar]
  16. BukowskiK. KciukM. KontekR. Mechanisms of multidrug resistance in cancer chemotherapy.Int. J. Mol. Sci.2020219323310.3390/ijms2109323332370233
    [Google Scholar]
  17. NewmanD.J. CraggG.M. Natural products as sources of new drugs from 1981 to 2014.J. Nat. Prod.201679362966110.1021/acs.jnatprod.5b0105526852623
    [Google Scholar]
  18. SalamiM. SalamiR. MafiA. AarabiM.H. VakiliO. AsemiZ. Therapeutic potential of resveratrol in diabetic nephropathy according to molecular signaling.Curr. Mol. Pharmacol.202215571673510.2174/187446721566621121712252334923951
    [Google Scholar]
  19. CraggG.M. NewmanD.J. Plants as a source of anti-cancer agents.J. Ethnopharmacol.20051001-2727910.1016/j.jep.2005.05.01116009521
    [Google Scholar]
  20. ThakurV.S. DebG. BabcookM.A. GuptaS. Plant phytochemicals as epigenetic modulators: Role in cancer chemoprevention.AAPS J.201416115116310.1208/s12248‑013‑9548‑524307610
    [Google Scholar]
  21. KhanS.I. AumsuwanP. KhanI.A. WalkerL.A. DasmahapatraA.K. Epigenetic events associated with breast cancer and their prevention by dietary components targeting the epigenome.Chem. Res. Toxicol.2012251617310.1021/tx200378c21992498
    [Google Scholar]
  22. Landis-PiwowarK.R. MilacicV. DouQ.P. Relationship between the methylation status of dietary flavonoids and their growth-inhibitory and apoptosis-inducing activities in human cancer cells.J. Cell. Biochem.2008105251452310.1002/jcb.2185318636546
    [Google Scholar]
  23. MondalA. BennettL.L. Resveratrol enhances the efficacy of sorafenib mediated apoptosis in human breast cancer MCF7 cells through ROS, cell cycle inhibition, caspase 3 and PARP cleavage.Biomed. Pharmacother.2016841906191410.1016/j.biopha.2016.10.09627863838
    [Google Scholar]
  24. LeeY.J. LeeG.J. YiS.S. HeoS.H. ParkC.R. NamH.S. ChoM.K. LeeS.H. Cisplatin and resveratrol induce apoptosis and autophagy following oxidative stress in malignant mesothelioma cells.Food Chem. Toxicol.2016979610710.1016/j.fct.2016.08.03327591926
    [Google Scholar]
  25. AggarwalB.B. BhardwajA. AggarwalR.S. SeeramN.P. ShishodiaS. TakadaY. Role of resveratrol in prevention and therapy of cancer: preclinical and clinical studies.Anticancer Res.2004245A2783284015517885
    [Google Scholar]
  26. Tomé-CarneiroJ. LarrosaM. González-SarríasA. Tomás-BarberánF. García-ConesaM. EspínJ. Resveratrol and clinical trials: The crossroad from in vitro studies to human evidence.Curr. Pharm. Des.201319346064609310.2174/1381612811319999040723448440
    [Google Scholar]
  27. KunduJ.K. SurhY.J. Cancer chemopreventive and therapeutic potential of resveratrol: Mechanistic perspectives.Cancer Lett.2008269224326110.1016/j.canlet.2008.03.05718550275
    [Google Scholar]
  28. HarikumarK.B. KunnumakkaraA.B. SethiG. DiagaradjaneP. AnandP. PandeyM.K. GelovaniJ. KrishnanS. GuhaS. AggarwalB.B. Resveratrol, a multitargeted agent, can enhance antitumor activity of gemcitabine in vitro and in orthotopic mouse model of human pancreatic cancer.Int. J. Cancer2010127225726819908231
    [Google Scholar]
  29. FuX. LiM. TangC. HuangZ. NajafiM. Targeting of cancer cell death mechanisms by resveratrol: A review.Apoptosis20212611-1256157310.1007/s10495‑021‑01689‑734561763
    [Google Scholar]
  30. LeeR.C. FeinbaumR.L. AmbrosV. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14.cell1993755843854
    [Google Scholar]
  31. PengY. CroceC.M. The role of MicroRNAs in human cancer.Signal Transduct. Target. Ther.2016111500410.1038/sigtrans.2015.429263891
    [Google Scholar]
  32. CalinG.A. DumitruC.D. ShimizuM. BichiR. ZupoS. NochE. AldlerH. RattanS. KeatingM. RaiK. RassentiL. KippsT. NegriniM. BullrichF. CroceC.M. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia.Proc. Natl. Acad. Sci. USA20029924155241552910.1073/pnas.24260679912434020
    [Google Scholar]
  33. CimminoA. CalinG.A. FabbriM. IorioM.V. FerracinM. ShimizuM. WojcikS.E. AqeilanR.I. ZupoS. DonoM. RassentiL. AlderH. VoliniaS. LiuC. KippsT.J. NegriniM. CroceC.M. miR-15 and miR-16 induce apoptosis by targeting BCL2.Proc. Natl. Acad. Sci. USA200510239139441394910.1073/pnas.050665410216166262
    [Google Scholar]
  34. SaitoY. JonesP.M. Epigenetic activation of tumor suppressor microRNAs in human cancer cells.Cell Cycle20065192220222210.4161/cc.5.19.334017012846
    [Google Scholar]
  35. PengY. DaiY. HitchcockC. YangX. KassisE.S. LiuL. LuoZ. SunH.L. CuiR. WeiH. KimT. LeeT.J. JeonY.J. NuovoG.J. VoliniaS. HeQ. YuJ. Nana-SinkamP. CroceC.M. Insulin growth factor signaling is regulated by microRNA-486, an underexpressed microRNA in lung cancer.Proc. Natl. Acad. Sci.201311037150431504810.1073/pnas.130710711023980150
    [Google Scholar]
  36. HatleyM.E. PatrickD.M. GarciaM.R. RichardsonJ.A. Bassel-DubyR. van RooijE. OlsonE.N. Modulation of K-Ras-dependent lung tumorigenesis by MicroRNA-21.Cancer Cell201018328229310.1016/j.ccr.2010.08.01320832755
    [Google Scholar]
  37. LimaR.T. BusaccaS. AlmeidaG.M. GaudinoG. FennellD.A. VasconcelosM.H. MicroRNA regulation of core apoptosis pathways in cancer.Eur. J. Cancer201147216317410.1016/j.ejca.2010.11.00521145728
    [Google Scholar]
  38. LiC. HashimiS.M. GoodD.A. CaoS. DuanW. PlummerP.N. MellickA.S. WeiM.Q. Apoptosis and microRNA aberrations in cancer.Clin. Exp. Pharmacol. Physiol.201239873974610.1111/j.1440‑1681.2012.05700.x22409455
    [Google Scholar]
  39. FerraraN. VEGF and the quest for tumour angiogenesis factors.Nat. Rev. Cancer200221079580310.1038/nrc90912360282
    [Google Scholar]
  40. KongW. YangH. HeL. ZhaoJ. CoppolaD. DaltonW.S. ChengJ.Q. MicroRNA-155 is regulated by the transforming growth factor beta/Smad pathway and contributes to epithelial cell plasticity by targeting RhoA.Mol. Cell. Biol.200828226773678410.1128/MCB.00941‑0818794355
    [Google Scholar]
  41. SaldanhaS.N. TollefsbolT.O. The role of nutraceuticals in chemoprevention and chemotherapy and their clinical outcomes.J. Oncol.2012201212310.1155/2012/19246422187555
    [Google Scholar]
  42. KimW. LeeW.B. LeeJ.W. MinB.I. BaekS.K. LeeH.S. ChoS.H. Traditional herbal medicine as adjunctive therapy for breast cancer: A systematic review.Complement. Ther. Med.201523462663210.1016/j.ctim.2015.03.01126275657
    [Google Scholar]
  43. AlimohammadiM. RahimiA. FaramarziF. GolpourM. Jafari-ShakibR. Alizadeh-NavaeiR. RafieiA. Effects of coenzyme Q10 supplementation on inflammation, angiogenesis, and oxidative stress in breast cancer patients: A systematic review and meta-analysis of randomized controlled- trials.Inflammopharmacology202129357959310.1007/s10787‑021‑00817‑834008150
    [Google Scholar]
  44. FaramarziF. AlimohammadiM. RahimiA. Alizadeh-NavaeiR. ShakibR.J. RafieiA. Naringenin induces intrinsic and extrinsic apoptotic signaling pathways in cancer cells: A systematic review and meta-analysis of in vitro and in vivo data.Nutr. Res.2022105335210.1016/j.nutres.2022.05.00335797732
    [Google Scholar]
  45. MitraS. DashR. Natural products for the management and prevention of breast cancer, evid based complement alternat med.201820188324696
    [Google Scholar]
  46. DegnerS.C. PapoutsisA.J. SelminO. RomagnoloD.F. Targeting of aryl hydrocarbon receptor-mediated activation of cyclooxygenase-2 expression by the indole-3-carbinol metabolite 3,3′-diindolylmethane in breast cancer cells.J. Nutr.20091391263210.3945/jn.108.09925919056653
    [Google Scholar]
  47. KimH.N. KimD.H. KimE.H. LeeM.H. KunduJ.K. NaH.K. ChaY.N. SurhY.J. Sulforaphane inhibits phorbol ester-stimulated IKK-NF-κB signaling and COX-2 expression in human mammary epithelial cells by targeting NF-κB activating kinase and ERK.Cancer Lett.20143511414910.1016/j.canlet.2014.03.03724747121
    [Google Scholar]
  48. ChoudhuriT. PalS. AgwarwalM.L. DasT. SaG. Curcumin induces apoptosis in human breast cancer cells through p53-dependent Bax induction.FEBS Lett.20025121-333434010.1016/S0014‑5793(02)02292‑511852106
    [Google Scholar]
  49. PengS.J. LiJ. ZhouY. TuoM. QinX.X. YuQ. ChengH. LiY.M. In vitro effects and mechanisms of lycopene in MCF-7 human breast cancer cells.Genet. Mol. Res.201716210.4238/gmr1602943428407181
    [Google Scholar]
  50. HanS.G. HanS.S. ToborekM. HennigB. EGCG protects endothelial cells against PCB 126-induced inflammation through inhibition of AhR and induction of Nrf2-regulated genes.Toxicol. Appl. Pharmacol.2012261218118810.1016/j.taap.2012.03.02422521609
    [Google Scholar]
  51. HongO.Y. NohE.M. JangH.Y. LeeY.R. LeeB.K. JungS.H. KimJ.S. YounH.J. Epigallocatechin gallate inhibits the growth of MDA-MB-231 breast cancer cells via inactivation of the β-catenin signaling pathway.Oncol. Lett.201714144144610.3892/ol.2017.610828693189
    [Google Scholar]
  52. RahmanK.M.W. LiY. WangZ. SarkarS.H. SarkarF.H. Gene expression profiling revealed survivin as a target of 3,3′-diindolylmethane-induced cell growth inhibition and apoptosis in breast cancer cells.Cancer Res.20066694952496010.1158/0008‑5472.CAN‑05‑391816651453
    [Google Scholar]
  53. SehdevV. LaiJ.C.K. BhushanA. BiochaninA. Biochanin A modulates cell viability, invasion, and growth promoting signaling pathways in her-2-positive breast cancer cells.J. Oncol.2009200911010.1155/2009/12145820169097
    [Google Scholar]
  54. ZongH. WangF. FanQ. WangL. Curcumin inhibits metastatic progression of breast cancer cell through suppression of urokinase-type plasminogen activator by NF-kappa B signaling pathways.Mol. Biol. Rep.20123944803480810.1007/s11033‑011‑1273‑521947854
    [Google Scholar]
  55. WadeC. KyprianouN. Profiling prostate cancer therapeutic resistance.Int. J. Mol. Sci.201819390410.3390/ijms1903090429562686
    [Google Scholar]
  56. ThomsonC.A. ChowH.H.S. WertheimB.C. RoeD.J. StopeckA. MaskarinecG. AltbachM. ChalasaniP. HuangC. StromM.B. GalonsJ.P. ThompsonP.A. A randomized, placebo-controlled trial of diindolylmethane for breast cancer biomarker modulation in patients taking tamoxifen.Breast Cancer Res. Treat.201716519710710.1007/s10549‑017‑4292‑728560655
    [Google Scholar]
  57. TurriniE. FerruzziL. FimognariC. Natural compounds to overcome cancer chemoresistance: Toxicological and clinical issues.Expert Opin. Drug Metab. Toxicol.201410121677169010.1517/17425255.2014.97293325339439
    [Google Scholar]
  58. HosseiniA. GhorbaniA. Cancer therapy with phytochemicals: Evidence from clinical studies.Avicenna J. Phytomed.201552849725949949
    [Google Scholar]
  59. WenzelE. SomozaV. Metabolism and bioavailability oftrans-resveratrol.Mol. Nutr. Food Res.200549547248110.1002/mnfr.20050001015779070
    [Google Scholar]
  60. LeviF. PascheC. LucchiniF. GhidoniR. FerraroniM. La VecchiaC. Resveratrol and breast cancer risk.Eur. J. Cancer Prev.200514213914210.1097/00008469‑200504000‑0000915785317
    [Google Scholar]
  61. BishayeeA. Cancer prevention and treatment with resveratrol: From rodent studies to clinical trials.Cancer Prev. Res.20092540941810.1158/1940‑6207.CAPR‑08‑016019401532
    [Google Scholar]
  62. VaroniE.M. Lo FaroA.F. Sharifi-RadJ. IritiM. Anticancer molecular mechanisms of resveratrol.Front. Nutr.20163810.3389/fnut.2016.0000827148534
    [Google Scholar]
  63. AlaviM. FarkhondehT. AschnerM. SamarghandianS. Resveratrol mediates its anti-cancer effects by Nrf2 signaling pathway activation.Cancer Cell Int.202121157910.1186/s12935‑021‑02280‑534717625
    [Google Scholar]
  64. SharmaS. StutzmanJ.D. KelloffG.J. SteeleV.E. Screening of potential chemopreventive agents using biochemical markers of carcinogenesis.Cancer Res.19945422584858557954413
    [Google Scholar]
  65. VergaraD. ValenteC.M. TinelliA. SicilianoC. LorussoV. AciernoR. GiovinazzoG. SantinoA. StorelliC. MaffiaM. Resveratrol inhibits the epidermal growth factor-induced epithelial mesenchymal transition in MCF-7 cells.Cancer Lett.201131011810.1016/j.canlet.2011.04.00921794976
    [Google Scholar]
  66. BaiY. MaoQ.Q. QinJ. ZhengX.Y. WangY.B. YangK. ShenH.F. XieL.P. Resveratrol induces apoptosis and cell cycle arrest of human T24 bladder cancer cells in vitro and inhibits tumor growth in vivo.Cancer Sci.2010101248849310.1111/j.1349‑7006.2009.01415.x20028382
    [Google Scholar]
  67. WongJ.C. FiscusR.R. Resveratrol at anti-angiogenesis/anticancer concentrations suppresses protein kinase G signaling and decreases IAPs expression in HUVECs.Anticancer Res.201535127328125550561
    [Google Scholar]
  68. YangT. WangL. ZhuM. ZhangL. YanL. Properties and molecular mechanisms of resveratrol: A review.Pharmazie201570850150626380517
    [Google Scholar]
  69. RezaeeM. MohammadiF. KeshavarzmotamedA. YahyazadehS. VakiliO. MilasiY.E. VeisiV. DehmordiR.M. AsadiS. GhorbanhosseiniS.S. RostamiM. AlimohammadiM. AzadiA. MoussaviN. AsemiZ. AminianfarA. MirzaeiH. MafiA. The landscape of exosomal non-coding RNAs in breast cancer drug resistance, focusing on underlying molecular mechanisms.Front. Pharmacol.202314115267210.3389/fphar.2023.115267237153758
    [Google Scholar]
  70. AlimohammadiM. GholinezhadY. MousaviV. KahkeshS. RezaeeM. YaghoobiA. MafiA. AraghiM. Circular RNAs: Novel actors of Wnt signaling pathway in lung cancer progression.EXCLI J.202322645669
    [Google Scholar]
  71. ShankarS. SiddiquiI. SrivastavaR.K. Molecular mechanisms of resveratrol (3,4,5-trihydroxy-trans-stilbene) and its interaction with TNF-related apoptosis inducing ligand (TRAIL) in androgen-insensitive prostate cancer cells.Mol. Cell. Biochem.20073041-227328510.1007/s11010‑007‑9510‑x17636462
    [Google Scholar]
  72. MaL. LiW. WangR. NanY. WangQ. LiuW. JinF. Resveratrol enhanced anticancer effects of cisplatin on non-small cell lung cancer cell lines by inducing mitochondrial dysfunction and cell apoptosis.Int. J. Oncol.20154741460146810.3892/ijo.2015.312426314326
    [Google Scholar]
  73. BuhrmannC. ShayanP. KraeheP. PopperB. GoelA. ShakibaeiM. Resveratrol induces chemosensitization to 5-fluorouracil through up-regulation of intercellular junctions, Epithelial-to-mesenchymal transition and apoptosis in colorectal cancer.Biochem. Pharmacol.2015981516810.1016/j.bcp.2015.08.10526310874
    [Google Scholar]
  74. SchroeterA. GrohI.A.M. Del FaveroG. PignitterM. SchuellerK. SomozaV. MarkoD. Inhibition of topoisomerase II by phase II metabolites of resveratrol in human colon cancer cells.Mol. Nutr. Food Res.201559122448245910.1002/mnfr.20150035226455438
    [Google Scholar]
  75. ZhengM. WuY. Piceatannol suppresses proliferation and induces apoptosis by regulation of the microRNA‑21/phosphatase and tensin homolog/protein kinase B signaling pathway in osteosarcoma cells.Mol. Med. Rep.20202253985399310.3892/mmr.2020.1148432901863
    [Google Scholar]
  76. PuM. ChenJ. TaoZ. MiaoL. QiX. WangY. RenJ. Regulatory network of miRNA on its target: coordination between transcriptional and post-transcriptional regulation of gene expression.Cell. Mol. Life Sci.201976344145110.1007/s00018‑018‑2940‑730374521
    [Google Scholar]
  77. CaiX. HagedornC.H. CullenB.R. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs.RNA200410121957196610.1261/rna.713520415525708
    [Google Scholar]
  78. HutvágnerG. McLachlanJ. PasquinelliA.E. BálintÉ. TuschlT. ZamoreP.D. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA.Science2001293553183483810.1126/science.106296111452083
    [Google Scholar]
  79. CifuentesD. XueH. TaylorD.W. PatnodeH. MishimaY. CheloufiS. MaE. ManeS. HannonG.J. LawsonN.D. WolfeS.A. GiraldezA.J. A novel miRNA processing pathway independent of Dicer requires Argonaute2 catalytic activity.Science201032859861694169810.1126/science.119080920448148
    [Google Scholar]
  80. ForterreA. KomuroH. AminovaS. HaradaM. A comprehensive review of cancer microrna therapeutic delivery strategies.Cancers2020127185210.3390/cancers1207185232660045
    [Google Scholar]
  81. GaurA. JewellD.A. LiangY. RidzonD. MooreJ.H. ChenC. AmbrosV.R. IsraelM.A. Characterization of microRNA expression levels and their biological correlates in human cancer cell lines.Cancer Res.20076762456246810.1158/0008‑5472.CAN‑06‑269817363563
    [Google Scholar]
  82. HataA. KashimaR. Dysregulation of microRNA biogenesis machinery in cancer.Crit. Rev. Biochem. Mol. Biol.201651312113410.3109/10409238.2015.111705426628006
    [Google Scholar]
  83. LinS. GregoryR.I. MicroRNA biogenesis pathways in cancer.Nat. Rev. Cancer201515632133310.1038/nrc393225998712
    [Google Scholar]
  84. ShahM.Y. FerrajoliA. SoodA.K. Lopez-BeresteinG. CalinG.A. microRNA therapeutics in cancer: An emerging concept.EBioMedicine201612344210.1016/j.ebiom.2016.09.01727720213
    [Google Scholar]
  85. SzczepanekJ. SkorupaM. TretynA. MicroRNA as a potential therapeutic molecule in cancer.Cells2022116100810.3390/cells1106100835326459
    [Google Scholar]
  86. IqbalM.A. AroraS. PrakasamG. CalinG.A. SyedM.A. MicroRNA in lung cancer: Role, mechanisms, pathways and therapeutic relevance.Mol. Aspects Med.20197032010.1016/j.mam.2018.07.00330102929
    [Google Scholar]
  87. Lopez-CamarilloC. MarchatL.A. Arechaga-OcampoE. Perez-PlasenciaC. Moral-HernandezO. Castaneda-OrtizE.J. Rodriguez-CuevasS. MetastamiRs: Non-coding MicroRNAs driving cancer invasion and metastasis.Int. J. Mol. Sci.20121321347137910.3390/ijms1302134722408395
    [Google Scholar]
  88. TiliE. MichailleJ.J. Resveratrol, MicroRNAs, Inflammation, and Cancer.J. Nucleic Acids201120111910.4061/2011/10243121845215
    [Google Scholar]
  89. JiangY. LiuL. SteinleJ.J. miRNA15a regulates insulin signal transduction in the retinal vasculature.Cell. Signal.201844283210.1016/j.cellsig.2018.01.01629339083
    [Google Scholar]
  90. XuX.H. DingD.F. YongH.J. DongC.L. YouN. YeX.L. PanM.L. MaJ.H. YouQ. LuY.B. Resveratrol transcriptionally regulates miRNA-18a-5p expression ameliorating diabetic nephropathy via increasing autophagy.Eur. Rev. Med. Pharmacol. Sci.201721214952496529164562
    [Google Scholar]
  91. TiliE. MichailleJ.J. AdairB. AlderH. LimagneE. TaccioliC. FerracinM. DelmasD. LatruffeN. CroceC.M. Resveratrol decreases the levels of miR-155 by upregulating miR-663, a microRNA targeting JunB and JunD.Carcinogenesis20103191561156610.1093/carcin/bgq14320622002
    [Google Scholar]
  92. TiliE. MichailleJ.J. AlderH. VoliniaS. DelmasD. LatruffeN. CroceC.M. Resveratrol modulates the levels of microRNAs targeting genes encoding tumor-suppressors and effectors of TGFβ signaling pathway in SW480 cells.Biochem. Pharmacol.201080122057206510.1016/j.bcp.2010.07.00320637737
    [Google Scholar]
  93. OzanneB.W. SpenceH.J. McGarryL.C. HenniganR.F. Transcription factors control invasion: AP-1 the first among equals.Oncogene200726111010.1038/sj.onc.120975916799638
    [Google Scholar]
  94. VerdeP. CasalinoL. TalottaF. YanivM. WeitzmanJ.B. Deciphering AP-1 function in tumorigenesis: Fra-ternizing on target promoters.Cell Cycle20076212633263910.4161/cc.6.21.485017957143
    [Google Scholar]
  95. TiliE. MichailleJ.J. CiminoA. CostineanS. DumitruC.D. AdairB. FabbriM. AlderH. LiuC.G. CalinG.A. CroceC.M. Modulation of miR-155 and miR-125b levels following lipopolysaccharide/TNF-alpha stimulation and their possible roles in regulating the response to endotoxin shock.J. Immunol.200717985082508910.4049/jimmunol.179.8.508217911593
    [Google Scholar]
  96. TiliE. MichailleJ.J. GandhiV. PlunkettW. SampathD. CalinG.A. miRNAs and their potential for use against cancer and other diseases.Future Oncol.20073552153710.2217/14796694.3.5.52117927518
    [Google Scholar]
  97. YooY.A. KangM.H. KimJ.S. OhS.C. Sonic hedgehog signaling promotes motility and invasiveness of gastric cancer cells through TGF- -mediated activation of the ALK5-Smad 3 pathway.Carcinogenesis200729348049010.1093/carcin/bgm28118174246
    [Google Scholar]
  98. SongF. ZhangY. PanZ. ZhangQ. LuX. HuangP. Resveratrol inhibits the migration, invasion and epithelial-mesenchymal transition in liver cancer cells through up- miR-186-5p expression.Zhejiang Da Xue Xue Bao Yi Xue Ban202150558259010.3724/zdxbyxb‑2021‑019734986537
    [Google Scholar]
  99. DavalosV. MoutinhoC. VillanuevaA. BoqueR. SilvaP. CarneiroF. EstellerM. Dynamic epigenetic regulation of the microRNA-200 family mediates epithelial and mesenchymal transitions in human tumorigenesis.Oncogene201231162062207410.1038/onc.2011.38321874049
    [Google Scholar]
  100. GregoryP.A. BertA.G. PatersonE.L. BarryS.C. TsykinA. FarshidG. VadasM.A. Khew-GoodallY. GoodallG.J. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1.Nat. Cell Biol.200810559360110.1038/ncb172218376396
    [Google Scholar]
  101. HurteauG.J. CarlsonJ.A. SpivackS.D. BrockG.J. Overexpression of the microRNA hsa-miR-200c leads to reduced expression of transcription factor 8 and increased expression of E-cadherin.Cancer Res.200767177972797610.1158/0008‑5472.CAN‑07‑105817804704
    [Google Scholar]
  102. FuJ. ShrivastavaA. ShrivastavaS. SrivastavaR. ShankarS. Triacetyl resveratrol upregulates miRNA‑200 and suppresses the Shh pathway in pancreatic cancer: A potential therapeutic agent.Int. J. Oncol.20195441306131610.3892/ijo.2019.470030720134
    [Google Scholar]
  103. ShiL. ChenJ. YangJ. PanT. ZhangS. WangZ. MiR-21 protected human glioblastoma U87MG cells from chemotherapeutic drug temozolomide induced apoptosis by decreasing Bax/Bcl-2 ratio and caspase-3 activity.Brain Res.2010135225526410.1016/j.brainres.2010.07.00920633539
    [Google Scholar]
  104. PanT.H. WuX.Y. Regarding article ‘Bcl-2 upregulation induced by miR-21 via a direct interaction is associated with apoptosis and chemoresistance in MIA PaCa-2 pancreatic cancer cells’.Arch. Med. Res.201243325210.1016/j.arcmed.2012.04.00122560983
    [Google Scholar]
  105. RückertF. SammN. LehnerA.K. SaegerH.D. GrützmannR. PilarskyC. Simultaneous gene silencing of Bcl-2, XIAP and Survivin re-sensitizes pancreatic cancer cells towards apoptosis.BMC Cancer201010137910.1186/1471‑2407‑10‑37920646298
    [Google Scholar]
  106. LiuP. LiangH. XiaQ. LiP. KongH. LeiP. WangS. TuZ. Resveratrol induces apoptosis of pancreatic cancers cells by inhibiting miR-21 regulation of BCL-2 expression.Clin. Transl. Oncol.201315974174610.1007/s12094‑012‑0999‑423359184
    [Google Scholar]
  107. HeL. HeX. LimL.P. de StanchinaE. XuanZ. LiangY. XueW. ZenderL. MagnusJ. RidzonD. JacksonA.L. LinsleyP.S. ChenC. LoweS.W. ClearyM.A. HannonG.J. A microRNA component of the p53 tumour suppressor network.Nature200744771481130113410.1038/nature0593917554337
    [Google Scholar]
  108. ZhaoK. ChengJ. ChenB. LiuQ. XuD. ZhangY. Circulating microRNA-34 family low expression correlates with poor prognosis in patients with non-small cell lung cancer.J. Thorac. Dis.20179103735374610.21037/jtd.2017.09.0129268381
    [Google Scholar]
  109. DingN. WuH. TaoT. PengE. NEAT1 regulates cell proliferation and apoptosis of ovarian cancer by miR-34a-5p/BCL2.OncoTargets Ther.2017104905491510.2147/OTT.S14244629062236
    [Google Scholar]
  110. LvT. SongK. ZhangL. LiW. ChenY. DiaoY. YaoQ. LiuP. miRNA-34a decreases ovarian cancer cell proliferation and chemoresistance by targeting HDAC1.Biochem. Cell Biol.201896566367110.1139/bcb‑2018‑003129561664
    [Google Scholar]
  111. YaoS. GaoM. WangZ. WangW. ZhanL. WeiB. Upregulation of MicroRNA-34a sensitizes ovarian cancer cells to resveratrol by targeting Bcl-2.Yonsei Med. J.202162869170110.3349/ymj.2021.62.8.69134296546
    [Google Scholar]
  112. MirandolaL. YuY. CannonM.J. JenkinsM.R. RahmanR.L. NguyenD.D. GrizziF. CobosE. FigueroaJ.A. Chiriva-InternatiM. Galectin-3 inhibition suppresses drug resistance, motility, invasion and angiogenic potential in ovarian cancer.Gynecol. Oncol.2014135357357910.1016/j.ygyno.2014.09.02125284038
    [Google Scholar]
  113. El-kottA.F. ShatiA.A. Ali Al-kahtaniM. AlharbiS.A. The apoptotic effect of resveratrol in ovarian cancer cells is associated with downregulation of galectin-3 and stimulating miR-424-3p transcription.J. Food Biochem.20194312e1307210.1111/jfbc.1307231603261
    [Google Scholar]
  114. BiegD. SypniewskiD. NowakE. BednarekI. MiR-424-3p suppresses galectin-3 expression and sensitizes ovarian cancer cells to cisplatin.Arch. Gynecol. Obstet.201929941077108710.1007/s00404‑018‑4999‑730585294
    [Google Scholar]
  115. CaiY. HaoY. RenH. DangZ. XuH. XueX. GaoY. miR-1305 inhibits the progression of non-small cell lung cancer by regulating MDM2.Cancer Manag. Res.2019119529954010.2147/CMAR.S22056831807077
    [Google Scholar]
  116. EspositoA. FerraresiA. SalwaA. VidoniC. DhanasekaranD.N. IsidoroC. Resveratrol contrasts il-6 pro-growth effects and promotes autophagy-mediated cancer cell dormancy in 3d ovarian cancer: Role of mir-1305 and of its target ARH-I.Cancers2022149214210.3390/cancers1409214235565270
    [Google Scholar]
  117. LuZ. BastR.C.Jr The tumor suppressor gene ARHI ( DIRAS3 ) inhibits ovarian cancer cell migration through multiple mechanisms.Cell Adhes. Migr.20137223223610.4161/cam.2364823357870
    [Google Scholar]
  118. FerraresiA. PhadngamS. MoraniF. GalettoA. AlabisoO. ChiorinoG. IsidoroC. Resveratrol inhibits IL-6-induced ovarian cancer cell migration through epigenetic up-regulation of autophagy.Mol. Carcinog.20175631164118110.1002/mc.2258227787915
    [Google Scholar]
  119. CaiJ. WuJ. ZhangH. FangL. HuangY. YangY. ZhuX. LiR. LiM. miR-186 downregulation correlates with poor survival in lung adenocarcinoma, where it interferes with cell-cycle regulation.Cancer Res.201373275676610.1158/0008‑5472.CAN‑12‑265123204228
    [Google Scholar]
  120. MyattS.S. WangJ. MonteiroL.J. ChristianM. HoK.K. FusiL. DinaR.E. BrosensJ.J. Ghaem-MaghamiS. LamE.W.F. Definition of microRNAs that repress expression of the tumor suppressor gene FOXO1 in endometrial cancer.Cancer Res.201070136737710.1158/0008‑5472.CAN‑09‑189120028871
    [Google Scholar]
  121. FelicettiF. ErricoM.C. BotteroL. SegnaliniP. StoppacciaroA. BiffoniM. FelliN. MattiaG. PetriniM. ColomboM.P. PeschleC. CarèA. The promyelocytic leukemia zinc finger-microRNA-221/-222 pathway controls melanoma progression through multiple oncogenic mechanisms.Cancer Res.20086882745275410.1158/0008‑5472.CAN‑07‑253818417445
    [Google Scholar]
  122. BabapoorS. WuR. KozubekJ. AuidiD. Grant-KelsJ.M. DadrasS.S. Identification of microRNAs associated with invasive and aggressive phenotype in cutaneous melanoma by next-generation sequencing.Lab. Invest.201797663664810.1038/labinvest.2017.528218741
    [Google Scholar]
  123. GarofaloM. QuintavalleC. RomanoG. CroceC.M. CondorelliG. miR221/222 in cancer: Their role in tumor progression and response to therapy.Curr. Mol. Med.2012121273310.2174/15665241279837617022082479
    [Google Scholar]
  124. MobleyA.K. BraeuerR.R. KamiyaT. ShoshanE. Bar-EliM. Driving transcriptional regulators in melanoma metastasis.Cancer Metastasis Rev.2012313-462163210.1007/s10555‑012‑9358‑822684365
    [Google Scholar]
  125. WuF. CuiL. Resveratrol suppresses melanoma by inhibiting NF-κB/miR-221 and inducing TFG expression.Arch. Dermatol. Res.20173091082383110.1007/s00403‑017‑1784‑628936555
    [Google Scholar]
  126. LiL. XuQ.H. DongY.H. LiG.X. YangL. WangL.W. LiH.Y. MiR-181a upregulation is associated with epithelial-to-mesenchymal transition (EMT) and multidrug resistance (MDR) of ovarian cancer cells.Eur. Rev. Med. Pharmacol. Sci.201620102004201027249598
    [Google Scholar]
  127. LiuX. LiaoW. PengH. LuoX. LuoZ. JiangH. XuL. miR-181a promotes G1/S transition and cell proliferation in pediatric acute myeloid leukemia by targeting ATM.J. Cancer Res. Clin. Oncol.20161421778710.1007/s00432‑015‑1995‑126113450
    [Google Scholar]
  128. DuM. ZhangZ. GaoT. Piceatannol induced apoptosis through up-regulation of microRNA-181a in melanoma cells.Biol. Res.20175013610.1186/s40659‑017‑0141‑829041990
    [Google Scholar]
  129. PiotrowskaH. KucinskaM. MuriasM. Biological activity of piceatannol: Leaving the shadow of resveratrol.Mutat. Res. Rev. Mutat. Res.20127501608210.1016/j.mrrev.2011.11.00122108298
    [Google Scholar]
  130. JancinovaV. PereckoT. NosalR. SvitekovaK. DrabikovaK. The natural stilbenoid piceatannol decreases activity and accelerates apoptosis of human neutrophils: Involvement of protein kinase C.Oxid. Med. Cell. Longev.201320131810.1155/2013/13653924288583
    [Google Scholar]
  131. AlhasanL. MiR-126 modulates angiogenesis in breast cancer by targeting VEGF-A -mRNA.Asian Pac. J. Cancer Prev.201920119319710.31557/APJCP.2019.20.1.19330678431
    [Google Scholar]
  132. Gong JinZ.Y. TuYating Expression and role of micro RNA -126 and vascular endothelial growth factor mRNA in cutaneous squamous cell carcinoma.2016
    [Google Scholar]
  133. HanJ. WangL. WangX. LiK. Downregulation of microrna-126 contributes to tumorigenesis of squamous tongue cell carcinoma via targeting KRAS.Med. Sci. Monit.20162252252910.12659/MSM.89530626883054
    [Google Scholar]
  134. ZhangB. Lari NajafiM. Resveratrol inhibits skin squamous cell carcinoma proliferation, migration and invasion through up-regulating miR-126.Cell. Mol. Biol.202066514214710.14715/cmb/2020.66.5.2533040828
    [Google Scholar]
  135. VenkatadriR. MuniT. IyerA.K.V. YakisichJ.S. AzadN. Role of apoptosis-related miRNAs in resveratrol-induced breast cancer cell death.Cell Death Dis.201672e210410.1038/cddis.2016.626890143
    [Google Scholar]
  136. ErgünS. UlasliM. IgciY.Z. IgciM. KırkbesS. BorazanE. BalikA. YumrutaşÖ. CamciC. CakmakE.A. ArslanA. OztuzcuS. The association of the expression of miR-122-5p and its target ADAM10 with human breast cancer.Mol. Biol. Rep.201542249750510.1007/s11033‑014‑3793‑225318895
    [Google Scholar]
  137. ZhangW. JiangH. ChenY. RenF. Resveratrol chemosensitizes adriamycin-resistant breast cancer cells by modulating miR-122-5p.J. Cell. Biochem.20191209162831629210.1002/jcb.2891031155753
    [Google Scholar]
  138. IzzottiA. CartigliaC. SteeleV.E. De FloraS. MicroRNAs as targets for dietary and pharmacological inhibitors of mutagenesis and carcinogenesis.Mutat. Res. Rev. Mutat. Res.2012751228730310.1016/j.mrrev.2012.05.00422683846
    [Google Scholar]
  139. DharS. HicksC. LevensonA.S. Resveratrol and prostate cancer: Promising role for microRNAs.Mol. Nutr. Food Res.20115581219122910.1002/mnfr.20110014121714127
    [Google Scholar]
  140. Lopez-SerraP. EstellerM. DNA methylation-associated silencing of tumor-suppressor microRNAs in cancer.Oncogene201231131609162210.1038/onc.2011.35421860412
    [Google Scholar]
  141. KloseR.J. BirdA.P. Genomic DNA methylation: The mark and its mediators.Trends Biochem. Sci.2006312899710.1016/j.tibs.2005.12.00816403636
    [Google Scholar]
  142. AlimohammadiM. MakaremiS. RahimiA. AsghariazarV. TaghadosiM. SafarzadehE. DNA methylation changes and inflammaging in aging-associated diseases.Epigenomics2022141696598610.2217/epi‑2022‑014336043685
    [Google Scholar]
  143. QinW. ZhuW. SauterE. Resveratrol induced DNA methylation in ER+ breast cancer.Cancer Res.2005659Suppl.647647
    [Google Scholar]
  144. QinW. ZhangK. ClarkeK. WeilandT. SauterE.R. Methylation and miRNA effects of resveratrol on mammary tumors vs. normal tissue.Nutr. Cancer201466227027710.1080/01635581.2014.86891024447120
    [Google Scholar]
  145. DelgadoI. FresnedoO. IglesiasA. RuedaY. SynW.K. ZubiagaA.M. OchoaB. A role for transcription factor E2F2 in hepatocyte proliferation and timely liver regeneration.Am. J. Physiol. Gastrointest. Liver Physiol.20113011G20G3110.1152/ajpgi.00481.201021527726
    [Google Scholar]
  146. HongS.H. EunJ.W. ChoiS.K. ShenQ. ChoiW.S. HanJ.W. NamS.W. YouJ.S. Epigenetic reader BRD4 inhibition as a therapeutic strategy to suppress E2F2-cell cycle regulation circuit in liver cancer.Oncotarget2016722326283264010.18632/oncotarget.870127081696
    [Google Scholar]
  147. ZhouY. ZhangJ. LiW. ZhangD. WangZ. ZhaiY. YuH. LiZ. Integrative investigation of the TF–miRNA coregulatory network involved in the inhibition of breast cancer cell proliferation by resveratrol.FEBS Open Bio202212237939310.1002/2211‑5463.1334434856073
    [Google Scholar]
  148. WangM. GuH. QianH. ZhuW. ZhaoC. ZhangX. TaoY. ZhangL. XuW. miR-17-5p/20a are important markers for gastric cancer and murine double minute 2 participates in their functional regulation.Eur. J. Cancer20134982010202110.1016/j.ejca.2012.12.01723333058
    [Google Scholar]
  149. GuJ. WangD. ZhangJ. ZhuY. LiY. ChenH. ShiM. WangX. ShenB. DengX. ZhanQ. WeiG. PengC. GFRα2 prompts cell growth and chemoresistance through down-regulating tumor suppressor gene PTEN via Mir-17-5p in pancreatic cancer.Cancer Lett.2016380243444110.1016/j.canlet.2016.06.01627400681
    [Google Scholar]
  150. MaY. ZhangP. WangF. ZhangH. YangY. ShiC. XiaY. PengJ. LiuW. YangZ. QinH. Elevated oncofoetal miR-17-5p expression regulates colorectal cancer progression by repressing its target gene P130.Nat. Commun.201231129110.1038/ncomms227623250421
    [Google Scholar]
  151. O’DonnellK.A. WentzelE.A. ZellerK.I. DangC.V. MendellJ.T. c-Myc-regulated microRNAs modulate E2F1 expression.Nature2005435704383984310.1038/nature0367715944709
    [Google Scholar]
  152. PanJ. ShenJ. SiW. DuC. ChenD. XuL. YaoM. FuP. FanW. Resveratrol promotes MICA/B expression and natural killer cell lysis of breast cancer cells by suppressing c-Myc/miR-17 pathway.Oncotarget2017839657436575810.18632/oncotarget.1944529029468
    [Google Scholar]
  153. Raver-ShapiraN. MarcianoE. MeiriE. SpectorY. RosenfeldN. MoskovitsN. BentwichZ. OrenM. Transcriptional activation of miR-34a contributes to p53-mediated apoptosis.Mol. Cell200726573174310.1016/j.molcel.2007.05.01717540598
    [Google Scholar]
  154. OtsukaK. OchiyaT. Genetic networks lead and follow tumor development: microRNA regulation of cell cycle and apoptosis in the p53 pathways.BioMed Res. Int.2014201411010.1155/2014/74972425302307
    [Google Scholar]
  155. CaporaliA. EmanueliC. MicroRNA-503 and the extended microRNA-16 family in angiogenesis.Trends Cardiovasc. Med.201121616216610.1016/j.tcm.2012.05.00322814423
    [Google Scholar]
  156. DavidC.J. ChenM. AssanahM. CanollP. ManleyJ.L. HnRNP proteins controlled by c-Myc deregulate pyruvate kinase mRNA splicing in cancer.Nature2010463727936436810.1038/nature0869720010808
    [Google Scholar]
  157. LiS. XuH. DingH. HuangY. CaoX. YangG. LiJ. XieZ. MengY. LiX. ZhaoQ. ShenB. ShaoN. Identification of an aptamer targeting hnRNP A1 by tissue slide-based SELEX.J. Pathol.2009218332733610.1002/path.254319291713
    [Google Scholar]
  158. OtsukaK. YamamotoY. OchiyaT. Regulatory role of resveratrol, a microRNA-controlling compound, in HNRNPA1 expression, which is associated with poor prognosis in breast cancer.Oncotarget2018937247182473010.18632/oncotarget.2533929872500
    [Google Scholar]
  159. HermekingH. The miR-34 family in cancer and apoptosis.Cell Death Differ.201017219319910.1038/cdd.2009.5619461653
    [Google Scholar]
  160. YangS. LiW. DongF. SunH. WuB. TanJ. ZouW. ZhouD. KITLG is a novel target of miR-34c that is associated with the inhibition of growth and invasion in colorectal cancer cells.J. Cell. Mol. Med.201418102092210210.1111/jcmm.1236825213795
    [Google Scholar]
  161. KumazakiM. NoguchiS. YasuiY. IwasakiJ. ShinoharaH. YamadaN. AkaoY. Anti-cancer effects of naturally occurring compounds through modulation of signal transduction and miRNA expression in human colon cancer cells.J. Nutr. Biochem.201324111849185810.1016/j.jnutbio.2013.04.00623954321
    [Google Scholar]
  162. YangS. LiW. SunH. WuB. JiF. SunT. ChangH. ShenP. WangY. ZhouD. Resveratrol elicits anti-colorectal cancer effect by activating miR-34c-KITLG in vitro and in vivo.BMC Cancer201515196910.1186/s12885‑015‑1958‑626674205
    [Google Scholar]
  163. HurK. ToiyamaY. TakahashiM. BalaguerF. NagasakaT. KoikeJ. HemmiH. KoiM. BolandC.R. GoelA. MicroRNA-200c modulates epithelial-to-mesenchymal transition (EMT) in human colorectal cancer metastasis.Gut20136291315132610.1136/gutjnl‑2011‑30184622735571
    [Google Scholar]
  164. Karimi DermaniF. SaidijamM. AminiR. MahdavinezhadA. HeydariK. NajafiR. Resveratrol inhibits proliferation, invasion, and epithelial–mesenchymal transition by increasing mir-200c expression in hct-116 colorectal cancer cells.J. Cell. Biochem.201711861547155510.1002/jcb.2581627918105
    [Google Scholar]
  165. WangD. LuoL. GuoJ. miR-129-1-3p inhibits cell migration by targeting BDKRB2 in gastric cancer.Med. Oncol.20143189810.1007/s12032‑014‑0098‑125008064
    [Google Scholar]
  166. HuangY.W. LiuJ.C. DeatherageD.E. LuoJ. MutchD.G. GoodfellowP.J. MillerD.S. HuangT.H.M. Epigenetic repression of microRNA-129-2 leads to overexpression of SOX4 oncogene in endometrial cancer.Cancer Res.200969239038904610.1158/0008‑5472.CAN‑09‑149919887623
    [Google Scholar]
  167. KaraayvazM. ZhaiH. JuJ. miR-129 promotes apoptosis and enhances chemosensitivity to 5-fluorouracil in colorectal cancer.Cell Death Dis.201346e659e65910.1038/cddis.2013.19323744359
    [Google Scholar]
  168. ZhangH. JiaR. WangC. HuT. WangF. Piceatannol promotes apoptosis via up-regulation of microRNA-129 expression in colorectal cancer cell lines.Biochem. Biophys. Res. Commun.2014452377578110.1016/j.bbrc.2014.08.15025218158
    [Google Scholar]
  169. CeppiP. MudduluruG. KumarswamyR. RapaI. ScagliottiG.V. PapottiM. AllgayerH. Loss of miR-200c expression induces an aggressive, invasive, and chemoresistant phenotype in non-small cell lung cancer.Mol. Cancer Res.2010891207121610.1158/1541‑7786.MCR‑10‑005220696752
    [Google Scholar]
  170. BaiT. DongD.S. PeiL. Synergistic antitumor activity of resveratrol and miR-200c in human lung cancer.Oncol. Rep.20143152293229710.3892/or.2014.309024647918
    [Google Scholar]
  171. LiQ-Q. ChenZ-Q. CaoX-X. XuJ-D. XuJ-W. ChenY-Y. WangW-J. ChenQ. TangF. LiuX-P. XuZ-D. Involvement of NF-κB/miR-448 regulatory feedback loop in chemotherapy-induced epithelial–mesenchymal transition of breast cancer cells.Cell Death Differ.2011181162510.1038/cdd.2010.10320798686
    [Google Scholar]
  172. LiB. GeL. LiM. WangL. LiZ. miR-448 suppresses proliferation and invasion by regulating IGF1R in colorectal cancer cells.Am. J. Transl. Res.2016873013302227508021
    [Google Scholar]
  173. ShanC. FeiF. LiF. ZhuangB. ZhengY. WanY. ChenJ. miR-448 is a novel prognostic factor of lung squamous cell carcinoma and regulates cells growth and metastasis by targeting DCLK1.Biomed. Pharmacother.2017891227123410.1016/j.biopha.2017.02.01728320089
    [Google Scholar]
  174. QiH. WangH. PangD. miR‑448 promotes progression of non‑small‑cell lung cancer via targeting SIRT1.Exp. Ther. Med.20191831907191310.3892/etm.2019.773831410153
    [Google Scholar]
  175. OngA.L.C. RamasamyT.S. Role of Sirtuin1-p53 regulatory axis in aging, cancer and cellular reprogramming.Ageing Res. Rev.201843648010.1016/j.arr.2018.02.00429476819
    [Google Scholar]
  176. LiuT. LiuP.Y. MarshallG.M. LiuT. LiuP.Y. MarshallG.M. The critical role of the class III histone deacetylase SIRT1 in cancer.Cancer Res.20096951702170510.1158/0008‑5472.CAN‑08‑336519244112
    [Google Scholar]
  177. KumeT. JiangH. TopczewskaJ.M. HoganB.L.M. The murine winged helix transcription factors, Foxc1 and Foxc2, are both required for cardiovascular development and somitogenesis.Genes Dev.200115182470248210.1101/gad.90730111562355
    [Google Scholar]
  178. SanoH. LeBoeufJ.P. NovitskiyS.V. SeoS. Zaja-MilatovicS. DikovM.M. KumeT. The Foxc2 transcription factor regulates tumor angiogenesis.Biochem. Biophys. Res. Commun.2010392220120610.1016/j.bbrc.2010.01.01520060810
    [Google Scholar]
  179. ManiS.A. YangJ. BrooksM. SchwaningerG. ZhouA. MiuraN. KutokJ.L. HartwellK. RichardsonA.L. WeinbergR.A. Mesenchyme Forkhead 1 ( FOXC2 ) plays a key role in metastasis and is associated with aggressive basal-like breast cancers.Proc. Natl. Acad. Sci.200710424100691007410.1073/pnas.070390010417537911
    [Google Scholar]
  180. YuY-H. ChenH-A. ChenP-S. ChengY-J. HsuW-H. ChangY-W. ChenY-H. JanY. HsiaoM. ChangT-Y. LiuY-H. JengY-M. WuC-H. HuangM-T. SuY-H. HungM-C. ChienM-H. ChenC-Y. KuoM-L. SuJ-L. MiR-520h-mediated FOXC2 regulation is critical for inhibition of lung cancer progression by resveratrol.Oncogene201332443144310.1038/onc.2012.7422410781
    [Google Scholar]
  181. BaeS. LeeE.M. ChaH.J. KimK. YoonY. LeeH. KimJ. KimY.J. LeeH.G. JeungH.K. MinY.H. AnS. Resveratrol alters microRNA expression profiles in A549 human non-small cell lung cancer cells.Mol. Cells201132324324910.1007/s10059‑011‑1037‑z21887509
    [Google Scholar]
  182. ChenL. LiX. ChenX. Prognostic significance of tissue miR-345 downregulation in non-small cell lung cancer.Int. J. Clin. Exp. Med.2015811209712097626885027
    [Google Scholar]
  183. LuM. LiuB. XiongH. WuF. HuC. LiuP. Trans -3,5,4´-trimethoxystilbene reduced gefitinib resistance in NSCLC s via suppressing MAPK /Akt/Bcl-2 pathway by upregulation of miR-345 and miR-498.J. Cell. Mol. Med.20192342431244110.1111/jcmm.1408630701693
    [Google Scholar]
  184. SarkarS. MazumdarA. DashR. SarkarD. FisherP.B. MandalM. ZD6474, a dual tyrosine kinase inhibitor of EGFR and VEGFR-2, inhibits MAPK/ERK and AKT/PI3-K and induces apoptosis in breast cancer cells.Cancer Biol. Ther.20109859260310.4161/cbt.9.8.1110320139705
    [Google Scholar]
  185. LiT. LiD. ShaJ. SunP. HuangY. MicroRNA-21 directly targets MARCKS and promotes apoptosis resistance and invasion in prostate cancer cells.Biochem. Biophys. Res. Commun.2009383328028510.1016/j.bbrc.2009.03.07719302977
    [Google Scholar]
  186. SelcukluS.D. DonoghueM.T.A. SpillaneC. miR-21 as a key regulator of oncogenic processes.Biochem. Soc. Trans.200937491892510.1042/BST037091819614619
    [Google Scholar]
  187. PangY. YoungC.Y.F. YuanH. MicroRNAs and prostate cancer.Acta Biochim. Biophys. Sin.201042636336910.1093/abbs/gmq03820539944
    [Google Scholar]
  188. ShethS. JajooS. KaurT. MukherjeaD. SheehanK. RybakL.P. RamkumarV. Resveratrol reduces prostate cancer growth and metastasis by inhibiting the Akt/MicroRNA-21 pathway.PLoS One2012712e5165510.1371/journal.pone.005165523272133
    [Google Scholar]
  189. OliveV. JiangI. HeL. mir-17-92, a cluster of miRNAs in the midst of the cancer network.Int. J. Biochem. Cell Biol.20104281348135410.1016/j.biocel.2010.03.00420227518
    [Google Scholar]
  190. PolisenoL. SalmenaL. RiccardiL. FornariA. SongM.S. HobbsR.M. SportolettiP. VarmehS. EgiaA. FedeleG. RamehL. LodaM. PandolfiP.P. Identification of the miR-106b~25 microRNA cluster as a proto-oncogenic PTEN-targeting intron that cooperates with its host gene MCM7 in transformation.Sci. Signal.20103117ra2910.1126/scisignal.200059420388916
    [Google Scholar]
  191. LiJ. YenC. LiawD. PodsypaninaK. BoseS. WangS.I. PucJ. MiliaresisC. RodgersL. McCombieR. BignerS.H. GiovanellaB.C. IttmannM. TyckoB. HibshooshH. WiglerM.H. ParsonsR. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer.Science199727553081943194710.1126/science.275.5308.19439072974
    [Google Scholar]
  192. TrotmanL.C. NikiM. DotanZ.A. KoutcherJ.A. Di CristofanoA. XiaoA. KhooA.S. Roy-BurmanP. GreenbergN.M. DykeT.V. Cordon-CardoC. PandolfiP.P. Pten dose dictates cancer progression in the prostate.PLoS Biol.200313e5910.1371/journal.pbio.000005914691534
    [Google Scholar]
  193. DharS. KumarA. RimandoA.M. ZhangX. LevensonA.S. Resveratrol and pterostilbene epigenetically restore PTEN expression by targeting oncomiRs of the miR-17 family in prostate cancer.Oncotarget2015629272142722610.18632/oncotarget.487726318586
    [Google Scholar]
  194. LinT.A. LinW.S. ChouY.C. NagabhushanamK. HoC.T. PanM.H. Oxyresveratrol inhibits human colon cancer cell migration through regulating epithelial–mesenchymal transition and microRNA.Food Funct.202112209658966810.1039/D1FO01920A34664597
    [Google Scholar]
  195. Mertens-TalcottS.U. ChintharlapalliS. LiX. SafeS. The oncogenic microRNA-27a targets genes that regulate specificity protein transcription factors and the G2-M checkpoint in MDA-MB-231 breast cancer cells.Cancer Res.20076722110011101110.1158/0008‑5472.CAN‑07‑241618006846
    [Google Scholar]
  196. ChintharlapalliS. PapineniS. AbdelrahimM. AbudayyehA. JutooruI. ChadalapakaG. WuF. Mertens-TalcottS. VanderlaagK. ChoS.D. SmithR.III SafeS. Oncogenic microRNA-27a is a target for anticancer agent methyl 2-cyano-3,11-dioxo-18β-olean-1,12-dien-30-oate in colon cancer cells.Int. J. Cancer200912581965197410.1002/ijc.2453019582879
    [Google Scholar]
  197. YaoJ.C. WangL. WeiD. GongW. HassanM. WuT.T. MansfieldP. AjaniJ. XieK. Association between expression of transcription factor Sp1 and increased vascular endothelial growth factor expression, advanced stage, and poor survival in patients with resected gastric cancer.Clin. Cancer Res.200410124109411710.1158/1078‑0432.CCR‑03‑062815217947
    [Google Scholar]
  198. JiangN.Y. WodaB.A. BannerB.F. WhalenG.F. DresserK.A. LuD. Sp1, a new biomarker that identifies a subset of aggressive pancreatic ductal adenocarcinoma.Cancer Epidemiol. Biomarkers Prev.20081771648165210.1158/1055‑9965.EPI‑07‑279118628415
    [Google Scholar]
  199. JutooruI. ChadalapakaG. LeiP. SafeS. Inhibition of NFkappaB and pancreatic cancer cell and tumor growth by curcumin is dependent on specificity protein down-regulation.J. Biol. Chem.201028533253322534410.1074/jbc.M109.09524020538607
    [Google Scholar]
  200. JutooruI. ChadalapakaG. AbdelrahimM. BashaM.R. SamudioI. KonoplevaM. AndreeffM. SafeS. Methyl 2-cyano-3,12-dioxooleana-1,9-dien-28-oate decreases specificity protein transcription factors and inhibits pancreatic tumor growth: role of microRNA-27a.Mol. Pharmacol.201078222623610.1124/mol.110.06445120488920
    [Google Scholar]
  201. Del Follo-MartinezA. BanerjeeN. LiX. SafeS. Mertens-TalcottS. Resveratrol and quercetin in combination have anticancer activity in colon cancer cells and repress oncogenic microRNA-27a.Nutr. Cancer201365349450410.1080/01635581.2012.72519423530649
    [Google Scholar]
  202. BrombergJ. Stat proteins and oncogenesis.J. Clin. Invest.200210991139114210.1172/JCI021561711994401
    [Google Scholar]
  203. KamranM.Z. PatilP. GudeR.P. Role of STAT3 in cancer metastasis and translational advances.BioMed Res. Int.2013201311510.1155/2013/42182124199193
    [Google Scholar]
  204. DangC.V. c-Myc target genes involved in cell growth, apoptosis, and metabolism.Mol. Cell. Biol.199919111110.1128/MCB.19.1.19858526
    [Google Scholar]
  205. BhattacharyaS. RayR.M. JohnsonL.R. STAT3-mediated transcription of Bcl-2, Mcl-1 and c-IAP2 prevents apoptosis in polyamine-depleted cells.Biochem. J.2005392233534410.1042/BJ2005046516048438
    [Google Scholar]
  206. WangH. FengH. ZhangY. Resveratrol inhibits hypoxia-induced glioma cell migration and invasion by the p-STAT3/miR-34a axis.Neoplasma201663453253910.4149/neo_2016_40627268916
    [Google Scholar]
  207. KrichevskyA.M. GabrielyG. miR-21: A small multi-faceted RNA.J. Cell. Mol. Med.2009131395310.1111/j.1582‑4934.2008.00556.x19175699
    [Google Scholar]
  208. JiaZ. WangK. ZhangA. WangG. KangC. HanL. PuP. miR-19a and miR-19b Overexpression in Gliomas.Pathol. Oncol. Res.201319484785310.1007/s12253‑013‑9653‑x23824915
    [Google Scholar]
  209. WangF. LiT. ZhangB. LiH. WuQ. YangL. NieY. WuK. ShiY. FanD. MicroRNA-19a/b regulates multidrug resistance in human gastric cancer cells by targeting PTEN.Biochem. Biophys. Res. Commun.2013434368869410.1016/j.bbrc.2013.04.01023603256
    [Google Scholar]
  210. WangG. DaiF. YuK. JiaZ. ZhangA. HuangQ. KangC. JiangH. PuP. Resveratrol inhibits glioma cell growth via targeting oncogenic microRNAs and multiple signaling pathways.Int. J. Oncol.20154641739174710.3892/ijo.2015.286325646654
    [Google Scholar]
  211. TaoJ. LuQ. WuD. LiP. XuB. QingW. WangM. ZhangZ. ZhangW. microRNA-21 modulates cell proliferation and sensitivity to doxorubicin in bladder cancer cells.Oncol. Rep.20112561721172921468550
    [Google Scholar]
  212. OkaN. TanimotoS. TaueR. NakatsujiH. KishimotoT. IzakiH. FukumoriT. TakahashiM. NishitaniM. KanayamaH. Role of phosphatidylinositol-3 kinase/Akt pathway in bladder cancer cell apoptosis induced by tumor necrosis factor-related apoptosis-inducing ligand.Cancer Sci.200697101093109810.1111/j.1349‑7006.2006.00294.x16984382
    [Google Scholar]
  213. ZhouC. DingJ. WuY. Resveratrol induces apoptosis of bladder cancer cells via miR-21 regulation of the Akt/Bcl-2 signaling pathway.Mol. Med. Rep.2014941467147310.3892/mmr.2014.195024535223
    [Google Scholar]
  214. GhisiM. CorradinA. BassoK. FrassonC. SerafinV. MukherjeeS. MussolinL. RuggeroK. BonannoL. GuffantiA. De BellisG. GerosaG. StellinG. D’AgostinoD.M. BassoG. BronteV. IndraccoloS. AmadoriA. ZanovelloP. Modulation of microRNA expression in human T-cell development: targeting of NOTCH3 by miR-150.Blood2011117267053706210.1182/blood‑2010‑12‑32662921551231
    [Google Scholar]
  215. AvigadS. VerlyI.R.N. LebelA. KordiO. ShichrurK. OhaliA. Hameiri-GrossmanM. KaspersG.J.L. CloosJ. FronkovaE. TrkaJ. LuriaD. KodmanY. MirskyH. GaashD. JeisonM. AvrahamiG. ElitzurS. GiladG. StarkB. YanivI. miR expression profiling at diagnosis predicts relapse in pediatric precursor B-cell acute lymphoblastic leukemia.Genes Chromosomes Cancer201655432833910.1002/gcc.2233426684414
    [Google Scholar]
  216. LiZ. HuangH. ChenP. HeM. LiY. ArnovitzS. JiangX. HeC. HyjekE. ZhangJ. ZhangZ. ElkahlounA. CaoD. ShenC. WunderlichM. WangY. NeillyM.B. JinJ. WeiM. LuJ. ValkP.J.M. DelwelR. LowenbergB. Le BeauM.M. VardimanJ. MulloyJ.C. Zeleznik-LeN.J. LiuP.P. ZhangJ. ChenJ. miR-196b directly targets both HOXA9/MEIS1 oncogenes and FAS tumour suppressor in MLL-rearranged leukaemia.Nat. Commun.20123168810.1038/ncomms168122353710
    [Google Scholar]
  217. PopovicR. RiesbeckL.E. VeluC.S. ChaubeyA. ZhangJ. AchilleN.J. ErfurthF.E. EatonK. LuJ. GrimesH.L. ChenJ. RowleyJ.D. Zeleznik-LeN.J. Regulation of mir-196b by MLL and its overexpression by MLL fusions contributes to immortalization.Blood2009113143314332210.1182/blood‑2008‑04‑15431019188669
    [Google Scholar]
  218. EndoY. ToyamaT. TakahashiS. YoshimotoN. IwasaM. AsanoT. FujiiY. YamashitaH. miR-1290 and its potential targets are associated with characteristics of estrogen receptor α-positive breast cancer.Endocr. Relat. Cancer20132019110210.1530/ERC‑12‑020723183268
    [Google Scholar]
  219. PetridouE. DessyprisN. SpanosE. MantzorosC. SkalkidouA. KalmantiM. KoliouskasD. KosmidisH. PanagiotouJ.P. PiperopoulouF. TzortzatouF. TrichopoulosD. Insulin-like growth factor-I and binding protein-3 in relation to childhood leukaemia.Int. J. Cancer199980449449610.1002/(SICI)1097‑0215(19990209)80:4<494::AID‑IJC2>3.0.CO;2‑K9935146
    [Google Scholar]
  220. ZhouW. WangS. YingY. ZhouR. MaoP. miR-196b/miR-1290 participate in the antitumor effect of resveratrol via regulation of IGFBP3 expression in acute lymphoblastic leukemia.Oncol. Rep.20173721075108310.3892/or.2016.532128000876
    [Google Scholar]
  221. OfirM. HacohenD. GinsbergD. MiR-15 and miR-16 are direct transcriptional targets of E2F1 that limit E2F-induced proliferation by targeting cyclin E.Mol. Cancer Res.20119444044710.1158/1541‑7786.MCR‑10‑034421454377
    [Google Scholar]
  222. AzimiA. HaghM.F. TalebiM. YousefiB. feiziA.A.H. BaradaranB. MovassaghpourA.A. ShamsasenjanK. KhanzedehT. GhaderiA.H. HeydarabadM.Z. Time - and Concentration - dependent effects of resveratrol on mir 15a and miR16-1 expression and apoptosis in the CCRF-CEM acute lymphoblastic leukemia cell line.Asian Pac. J. Cancer Prev.201516156463646810.7314/APJCP.2015.16.15.646326434860
    [Google Scholar]
  223. MihelichB.L. KhramtsovaE.A. ArvaN. VaishnavA. JohnsonD.N. GiangrecoA.A. Martens-UzunovaE. BagasraO. Kajdacsy-BallaA. NonnL. miR-183-96-182 cluster is overexpressed in prostate tissue and regulates zinc homeostasis in prostate cells.J. Biol. Chem.201128652445034451110.1074/jbc.M111.26291522045813
    [Google Scholar]
  224. KunduS.T. ByersL.A. PengD.H. RoybalJ.D. DiaoL. WangJ. TongP. CreightonC.J. GibbonsD.L. The miR-200 family and the miR-183~96~182 cluster target Foxf2 to inhibit invasion and metastasis in lung cancers.Oncogene201635217318610.1038/onc.2015.7125798833
    [Google Scholar]
  225. SealsD.F. CourtneidgeS.A. The ADAMs family of metalloproteases: Multidomain proteins with multiple functions.Genes Dev.20031773010.1101/gad.103970312514095
    [Google Scholar]
  226. LiuW.H. ChangL.S. Suppression of Akt/Foxp3-mediated miR-183 expression blocks Sp1-mediated ADAM17 expression and TNFα-mediated NFκB activation in piceatannol-treated human leukemia U937 cells.Biochem. Pharmacol.201284567068010.1016/j.bcp.2012.06.00722705645
    [Google Scholar]
  227. ZhongC. LiuJ. ZhangY. LuoJ. ZhengJ. MicroRNA-139 inhibits the proliferation and migration of osteosarcoma cells via targeting forkhead-box P2.Life Sci.2017191687310.1016/j.lfs.2017.10.01028993144
    [Google Scholar]
  228. ShiY.K. GuoY.H. MiR-139-5p suppresses osteosarcoma cell growth and invasion through regulating DNMT1.Biochem. Biophys. Res. Commun.2018503245946610.1016/j.bbrc.2018.04.12429673587
    [Google Scholar]
  229. LiY. ZhangJ. ZhangL. SiM. YinH. LiJ. Diallyl trisulfide inhibits proliferation, invasion and angiogenesis of osteosarcoma cells by switching on suppressor microRNAs and inactivating of Notch-1 signaling.Carcinogenesis20133471601161010.1093/carcin/bgt06523430952
    [Google Scholar]
  230. XiaoX. ZhangY. PanW. ChenF. miR-139-mediated NOTCH1 regulation is crucial for the inhibition of osteosarcoma progression caused by resveratrol.Life Sci.202024211721510.1016/j.lfs.2019.11721531881225
    [Google Scholar]
  231. AroraS. RanadeA.R. TranN.L. NasserS. SridharS. KornR.L. RossJ.T.D. DhruvH. FossK.M. SibenallerZ. RykenT. GotwayM.B. KimS. WeissG.J. MicroRNA-328 is associated with (non-small) cell lung cancer (NSCLC) brain metastasis and mediates NSCLC migration.Int. J. Cancer2011129112621263110.1002/ijc.2593921448905
    [Google Scholar]
  232. YangJ. ZhangW. New molecular insights into osteosarcoma targeted therapy.Curr. Opin. Oncol.201325439840610.1097/CCO.0b013e3283622c1b23666471
    [Google Scholar]
  233. BjörklundM. KoivunenE. Gelatinase-mediated migration and invasion of cancer cells.Biochim. Biophys. Acta200517551376915907591
    [Google Scholar]
  234. YangS.F. LeeW.J. TanP. TangC.H. HsiaoM. HsiehF.K. ChienM.H. Upregulation of miR-328 and inhibition of CREB-DNA-binding activity are critical for resveratrol-mediated suppression of matrix metalloproteinase-2 and subsequent metastatic ability in human osteosarcomas.Oncotarget2015652736275310.18632/oncotarget.308825605016
    [Google Scholar]
  235. LvC. HaoY. TuG. MicroRNA-21 promotes proliferation, invasion and suppresses apoptosis in human osteosarcoma line MG63 through PTEN/Akt pathway.Tumour Biol.20163779333934210.1007/s13277‑016‑4807‑626779632
    [Google Scholar]
  236. ZhuangL.K. YangY.T. MaX. HanB. WangZ.S. ZhaoQ.Y. WuL.Q. QuZ.Q. MicroRNA-92b promotes hepatocellular carcinoma progression by targeting Smad7 and is mediated by long non-coding RNA XIST.Cell Death Dis.201674e220310.1038/cddis.2016.10027100897
    [Google Scholar]
  237. SongM.S. SalmenaL. PandolfiP.P. The functions and regulation of the PTEN tumour suppressor.Nat. Rev. Mol. Cell Biol.201213528329610.1038/nrm333022473468
    [Google Scholar]
  238. AlthoffK. BeckersA. OderskyA. MestdaghP. KösterJ. BrayI.M. BryanK. VandesompeleJ. SpelemanF. StallingsR.L. SchrammA. EggertA. SprüsselA. SchulteJ.H. MiR-137 functions as a tumor suppressor in neuroblastoma by downregulating KDM1A.Int. J. Cancer201313351064107310.1002/ijc.2809123400681
    [Google Scholar]
  239. SzulwachK.E. LiX. SmrtR.D. LiY. LuoY. LinL. SantistevanN.J. LiW. ZhaoX. JinP. Cross talk between microRNA and epigenetic regulation in adult neurogenesis.J. Cell Biol.2010189112714110.1083/jcb.20090815120368621
    [Google Scholar]
  240. RenX. BaiX. ZhangX. LiZ. TangL. ZhaoX. LiZ. RenY. WeiS. WangQ. LiuC. JiJ. Quantitative nuclear proteomics identifies that miR-137-mediated EZH2 reduction regulates resveratrol-induced apoptosis of neuroblastoma cells.Mol. Cell. Proteomics201514231632810.1074/mcp.M114.04190525505154
    [Google Scholar]
  241. AlimovaI. VenkataramanS. HarrisP. MarquezV.E. NorthcottP.A. DubucA. TaylorM.D. ForemanN.K. VibhakarR. Targeting the enhancer of zeste homologue 2 in medulloblastoma.Int. J. Cancer201213181800180910.1002/ijc.2745522287205
    [Google Scholar]
  242. WangC. LiuZ. WooC.W. LiZ. WangL. WeiJ.S. MarquezV.E. BatesS.E. JinQ. KhanJ. GeK. ThieleC.J. EZH2 Mediates epigenetic silencing of neuroblastoma suppressor genes CASZ1, CLU, RUNX3, and NGFR.Cancer Res.201272131532410.1158/0008‑5472.CAN‑11‑096122068036
    [Google Scholar]
  243. YaoS. GaoM. Upregulation of MicroRNA-34a sensitizes ovarian cancer cells to resveratrol by targeting Bcl-2.2021328691701
    [Google Scholar]
  244. VislovukhA. KratassioukG. PortoE. GralievskaN. BeldimanC. PinnaG. El’skayaA. Harel-BellanA. NegrutskiiB. GroismanI. Proto-oncogenic isoform A2 of eukaryotic translation elongation factor eEF1 is a target of miR-663 and miR-744.Br. J. Cancer2013108112304231110.1038/bjc.2013.24323695020
    [Google Scholar]
  245. HanZ. YangQ. LiuB. WuJ. LiY. YangC. JiangY. MicroRNA-622 functions as a tumor suppressor by targeting K-Ras and enhancing the anticarcinogenic effect of resveratrol.Carcinogenesis201233113113910.1093/carcin/bgr22622016468
    [Google Scholar]
  246. WuH. WangY. WuC. YangP. LiH. LiZ. Resveratrol induces cancer cell apoptosis through MiR-326/PKM2-Mediated er stress and mitochondrial fission.J. Agric. Food Chem.201664499356936710.1021/acs.jafc.6b0454927960279
    [Google Scholar]
  247. SachdevaM. LiuQ. CaoJ. LuZ. MoY.Y. Negative regulation of miR-145 by C/EBP-β through the Akt pathway in cancer cells.Nucleic Acids Res.201240146683669210.1093/nar/gks32422495929
    [Google Scholar]
  248. Hedayati N., Yaghoobi A., Salami M., Gholinezhad Y., Aghadavood F., Eshraghi R., Aarabi M.H., Homayoonfal M., Asemi Z., Mirzaei H., Hajijafari M., Mafi A., Rezaee MImpact of polyphenols on heart failure and cardiac hypertrophy: clinical effects and molecular mechanisms.Front Med.202310117481610.3389/fcvm.2023.11748163729328310244790
    [Google Scholar]
/content/journals/cmp/10.2174/0118761429249717230920113227
Loading
/content/journals/cmp/10.2174/0118761429249717230920113227
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Cancer; MiRNA; MMP; Resveratrol; Signaling pathway; Therapy
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test