Skip to content
2000
Volume 17, Issue 1
  • ISSN: 1874-4672
  • E-ISSN: 1874-4702

Abstract

Osteosarcoma is the most common primary bone malignancy and has a high tendency of local invasion. Although a lot of studies have focused on chemotherapy and combination chemotherapy regimens in recent years, still, there is no particularly perfect regimen for the treatment of relapsed or metastatic OS, and the prognosis is still relatively poor. As a new therapeutic method, targeted therapy provides a new scheme for patients with osteosarcoma and has a wide application prospect. This article reviews the latest progress of targeted therapy for osteosarcoma, and summarizes the research on the corresponding targets of osteosarcoma through six major pathways. These studies can pave the way for new treatments for osteosarcoma patients who need them.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmp/10.2174/1874467217666230821142839
2023-10-11
2025-01-23
Loading full text...

Full text loading...

/deliver/fulltext/cmp/17/1/CMP-17-E210823220109.html?itemId=/content/journals/cmp/10.2174/1874467217666230821142839&mimeType=html&fmt=ahah

References

  1. SiegelR.L. MillerK.D. JemalA. Cancer statistics, 2018.CA Cancer J. Clin.201868173010.3322/caac.2144229313949
    [Google Scholar]
  2. SakamotoA. IwamotoY. Current status and perspectives regarding the treatment of osteo-sarcoma: Chemotherapy.Rev. Recent Clin. Trials20083322823110.2174/15748870878570026718782081
    [Google Scholar]
  3. RitterJ. BielackS.S. Osteosarcoma.Ann. Oncol.201021Suppl. 7vii320vii32510.1093/annonc/mdq27620943636
    [Google Scholar]
  4. HaubenE.I. WeedenS. PringleJ. Van MarckE.A. HogendoornP.C.W. Does the histological subtype of high-grade central osteosarcoma influence the response to treatment with chemotherapy and does it affect overall survival? A study on 570 patients of two consecutive trials of the European Osteosarcoma Intergroup.Eur. J. Cancer20023891218122510.1016/S0959‑8049(02)00037‑012044509
    [Google Scholar]
  5. WHO Classification of TumoursAvailable from:https://apps.who.int/bookorders/
    [Google Scholar]
  6. BerheS. DanzerE. MeyersP.A. BehrG. LaQuagliaM.P. PriceA.P. Unusual abdominal metastases in osteosarcoma.J. Pediatr. Surg. Case Rep.201828131610.1016/j.epsc.2017.09.02229085778
    [Google Scholar]
  7. WedekindM.F. WagnerL.M. CripeT.P. Immunotherapy for osteosarcoma: Where do we go from here?Pediatr. Blood Cancer2018659e2722710.1002/pbc.2722729923370
    [Google Scholar]
  8. ChenC. XieL. RenT. HuangY. XuJ. GuoW. Immunotherapy for osteosarcoma: Fundamental mechanism, rationale, and recent breakthroughs.Cancer Lett.202150011010.1016/j.canlet.2020.12.02433359211
    [Google Scholar]
  9. BriccoliA. RoccaM. SaloneM. BacciG. FerrariS. BalladelliA. MercuriM. Resection of recurrent pulmonary metastases in patients with osteosarcoma.Cancer200510481721172510.1002/cncr.2136916155943
    [Google Scholar]
  10. AssiT. WatsonS. SamraB. RassyE. Le CesneA. ItalianoA. MirO. Targeting the VEGF pathway in osteosarcoma.Cells2021105124010.3390/cells1005124034069999
    [Google Scholar]
  11. ESMO/European Sarcoma Network Working GroupBone sarcomas: ESMO clinical practice guidelines for diagnosis, treatment and follow-up.Ann. Oncol.201425Suppl. 3iii113iii12310.1093/annonc/mdu25625210081
    [Google Scholar]
  12. WhelanJ.S. BielackS.S. MarinaN. SmelandS. JovicG. HookJ.M. KrailoM. AnningaJ. Butterfass-BahloulT. BöhlingT. CalaminusG. CapraM. DeffenbaughC. DhoogeC. ErikssonM. FlanaganA.M. GelderblomH. GoorinA. GorlickR. GoshegerG. GrimerR.J. HallK.S. HelmkeK. HogendoornP.C.W. JundtG. KagerL. KuehneT. LauC.C. LetsonG.D. MeyerJ. MeyersP.A. MorrisC. MottlH. NadelH. NagarajanR. RandallR.L. SchombergP. SchwarzR. TeotL.A. SydesM.R. BernsteinM. PickeringJ. JoffeN. KevricM. SorgB. VillalunaD. WangC. PerisoglouM. TraniL. PotratzJ. CarrleD. WilhelmM. ZilsK. TeskeC. EURAMOS-1, an international randomised study for osteosarcoma: Results from pre-randomisation treatment.Ann. Oncol.201526240741410.1093/annonc/mdu52625421877
    [Google Scholar]
  13. LevS. Targeted therapy and drug resistance in triple-negative breast cancer: The EGFR axis.Biochem. Soc. Trans.202048265766510.1042/BST2019105532311020
    [Google Scholar]
  14. GuanL.Y. LuY. New developments in molecular targeted therapy of ovarian cancer.Discov. Med.20182614421922930695681
    [Google Scholar]
  15. TakeokaH. YamadaK. NaitoY. MatsuoN. IshiiH. TokitoT. AzumaK. IchikiM. HoshinoT. PhaseI.I. Phase II trial of carboplatin and pemetrexed plus bevacizumab with maintenance bevacizumab as a first-line treatment for advanced non-squamous non-small cell lung cancer in elderly patients.Anticancer Res.20183863779378410.21873/anticanres.1266129848743
    [Google Scholar]
  16. LiuY. HuangN. LiaoS. RothzergE. YaoF. LiY. WoodD. XuJ. Current research progress in targeted anti‐angiogenesis therapy for osteosarcoma.Cell Prolif.2021549e1310210.1111/cpr.1310234309110
    [Google Scholar]
  17. ChenY. LiuR. WangW. WangC. ZhangN. ShaoX. HeQ. YingM. Advances in targeted therapy for osteosarcoma based on molecular classification.Pharmacol. Res.202116910568410.1016/j.phrs.2021.10568434022396
    [Google Scholar]
  18. GillJ. GorlickR. Advancing therapy for osteosarcoma.Nat. Rev. Clin. Oncol.2021181060962410.1038/s41571‑021‑00519‑834131316
    [Google Scholar]
  19. WeiR. ThanindratarnP. DeanD.C. HornicekF.J. GuoW. DuanZ. Cyclin E1 is a prognostic biomarker and potential therapeutic target in osteosarcoma.J. Orthop. Res.20203891952196410.1002/jor.2465932162720
    [Google Scholar]
  20. LockwoodW.W. StackD. MorrisT. GrehanD. O’KeaneC. StewartG.L. CumiskeyJ. LamW.L. SquireJ.A. ThomasD.M. O’SullivanM.J. Cyclin E1 is amplified and overexpressed in osteosarcoma.J. Mol. Diagn.201113328929610.1016/j.jmoldx.2010.11.02021458381
    [Google Scholar]
  21. KohlmeyerJ.L. GordonD.J. TanasM.R. MongaV. DoddR.D. QuelleD.E. CDKs in sarcoma: Mediators of disease and emerging therapeutic targets.Int. J. Mol. Sci.2020218301810.3390/ijms2108301832344731
    [Google Scholar]
  22. JonesR.M. MortusewiczO. AfzalI. LorvellecM. GarcíaP. HelledayT. PetermannE. Increased replication initiation and conflicts with transcription underlie Cyclin E-induced replication stress.Oncogene201332323744375310.1038/onc.2012.38722945645
    [Google Scholar]
  23. TakadaM. ZhangW. SuzukiA. KurodaT.S. YuZ. InuzukaH. GaoD. WanL. ZhuangM. HuL. ZhaiB. FryC.J. BloomK. LiG. KarpenG.H. WeiW. ZhangQ. FBW7 loss promotes chromosomal instability and tumorigenesis via cyclin E1/CDK2–mediated phosphorylation of CENP-A.Cancer Res.201777184881489310.1158/0008‑5472.CAN‑17‑124028760857
    [Google Scholar]
  24. ChenY.N.P. SharmaS.K. RamseyT.M. JiangL. MartinM.S. BakerK. AdamsP.D. BairK.W. KaelinW.G.Jr Selective killing of transformed cells by cyclin/cyclin-dependent kinase 2 antagonists.Proc. Natl. Acad. Sci.19999684325432910.1073/pnas.96.8.432510200261
    [Google Scholar]
  25. HydbringP. LarssonL.G. Cdk2: A key regulator of the senescence control function of Myc.Aging20102424425010.18632/aging.10014020445224
    [Google Scholar]
  26. CampanerS. DoniM. HydbringP. VerrecchiaA. BianchiL. SardellaD. SchlekerT. PernaD. TronnersjöS. MurgaM. Fernandez-CapetilloO. BarbacidM. LarssonL. G. AmatiB. Cdk2 suppresses cellular senescence induced by the c-myc oncogene.Nat Cell Biol.201012154910.1038/ncb2004
    [Google Scholar]
  27. ChoudharyG.S. TatT.T. MisraS. HillB.T. SmithM.R. AlmasanA. MazumderS. Cyclin E/Cdk2-dependent phosphorylation of Mcl-1 determines its stability and cellular sensitivity to BH3 mimetics.Oncotarget2015619169121692510.18632/oncotarget.485726219338
    [Google Scholar]
  28. ChenB. ChenH. LuS. ZhuX. QueY. ZhangY. HuangJ. ZhangL. ZhangY. SunF. WangJ. ZhuJ. ZhenZ. ZhangY. KDM5B promotes tumorigenesis of Ewing sarcoma via FBXW7/CCNE1 axis.Cell Death Dis.202213435410.1038/s41419‑022‑04800‑135428764
    [Google Scholar]
  29. KumarA. KaurS. PanditK. KaurV. ThakurS. KaurS. Onosma bracteata Wall. induces G0/G1 arrest and apoptosis in MG-63 human osteosarcoma cells via ROS generation and AKT/GSK3β/cyclin E pathway.Environ. Sci. Pollut. Res. Int.20212812149831500410.1007/s11356‑020‑11466‑933222070
    [Google Scholar]
  30. KleinsimonS. LongmussE. RolffJ. JägerS. EggertA. DelebinskiC. SeifertG. GADD45A and CDKN1A are involved in apoptosis and cell cycle modulatory effects of viscumTT with further inactivation of the STAT3 pathway.Sci. Rep.201881575010.1038/s41598‑018‑24075‑x29636527
    [Google Scholar]
  31. GalimbertiF. ThompsonS.L. LiuX. LiH. MemoliV. GreenS.R. DiRenzoJ. GreningerP. SharmaS.V. SettlemanJ. ComptonD.A. DmitrovskyE. Targeting the cyclin E-Cdk-2 complex represses lung cancer growth by triggering anaphase catastrophe.Clin. Cancer Res.201016110912010.1158/1078‑0432.CCR‑09‑215120028770
    [Google Scholar]
  32. TiradoO.M. Mateo-LozanoS. NotarioV. Roscovitine is an effective inducer of apoptosis of Ewing’s sarcoma family tumor cells in vitro and in vivo.Cancer Res.200565209320932710.1158/0008‑5472.CAN‑05‑127616230394
    [Google Scholar]
  33. VellaS. TavantiE. HattingerC.M. FanelliM. VersteegR. KosterJ. PicciP. SerraM. Targeting CDKs with roscovitine increases sensitivity to DNA damaging drugs of human osteosarcoma cells.PLoS One20161111e016623310.1371/journal.pone.016623327898692
    [Google Scholar]
  34. FuW. MaL. ChuB. WangX. BuiM.M. GemmerJ. AltiokS. PledgerW.J. The cyclin-dependent kinase inhibitor SCH 727965 (dinacliclib) induces the apoptosis of osteosarcoma cells.Mol. Cancer Ther.20111061018102710.1158/1535‑7163.MCT‑11‑016721490307
    [Google Scholar]
  35. SaylesL.C. BreeseM.R. KoehneA.L. LeungS.G. LeeA.G. LiuH.Y. SpillingerA. ShahA.T. TanasaB. StraesslerK. HazardF.K. SpuntS.L. MarinaN. KimG.E. ChoS.J. AvedianR.S. MohlerD.G. KimM.O. DuBoisS.G. HawkinsD.S. Sweet-CorderoE.A. Genome-informed targeted therapy for osteosarcoma.Cancer Discov.201991466310.1158/2159‑8290.CD‑17‑115230266815
    [Google Scholar]
  36. LiY. TanakaK. LiX. OkadaT. NakamuraT. TakasakiM. YamamotoS. OdaY. TsuneyoshiM. IwamotoY. Cyclin-dependent kinase inhibitor, flavopiridol, induces apoptosis and inhibits tumor growth in drug-resistant osteosarcoma and Ewing’s family tumor cells.Int. J. Cancer200712161212121810.1002/ijc.2282017520676
    [Google Scholar]
  37. DuffyM.J. O’GradyS. TangM. CrownJ. MYC as a target for cancer treatment.Cancer Treat. Rev.20219410215410.1016/j.ctrv.2021.10215433524794
    [Google Scholar]
  38. ChenB.J. WuY.L. TanakaY. ZhangW. Small molecules targeting c-Myc oncogene: Promising anti-cancer therapeutics.Int. J. Biol. Sci.201410101084109610.7150/ijbs.1019025332683
    [Google Scholar]
  39. AmatiB. BrooksM.W. LevyN. LittlewoodT.D. EvanG.I. LandH. Oncogenic activity of the c-Myc protein requires dimerization with Max.Cell199372223324510.1016/0092‑8674(93)90663‑B8425220
    [Google Scholar]
  40. AmatiB. LittlewoodT.D. EvanG.I. LandH. The c-Myc protein induces cell cycle progression and apoptosis through dimerization with Max.EMBO J.199312135083508710.1002/j.1460‑2075.1993.tb06202.x8262051
    [Google Scholar]
  41. FengW. DeanD.C. HornicekF.J. SpentzosD. HoffmanR.M. ShiH. DuanZ. RETRACTED: Myc is a prognostic biomarker and potential therapeutic target in osteosarcoma.Ther. Adv. Med. Oncol.20201210.1177/175883592092205532426053
    [Google Scholar]
  42. HanG. WangY. BiW. C-Myc overexpression promotes osteosarcoma cell invasion via activation of MEK-ERK pathway.Oncol. Res.201220414915610.3727/096504012X1352222723223723461061
    [Google Scholar]
  43. AdelmanK. LisJ.T. Promoter-proximal pausing of RNA polymerase II: Emerging roles in metazoans.Nat. Rev. Genet.2012131072073110.1038/nrg329322986266
    [Google Scholar]
  44. RahlP.B. LinC.Y. SeilaA.C. FlynnR.A. McCuineS. BurgeC.B. SharpP.A. YoungR.A. c-Myc regulates transcriptional pause release.Cell2010141343244510.1016/j.cell.2010.03.03020434984
    [Google Scholar]
  45. FowlerT. GhatakP. PriceD.H. ConawayR. ConawayJ. ChiangC.M. BradnerJ.E. ShilatifardA. RoyA.L. Regulation of MYC expression and differential JQ1 sensitivity in cancer cells.PLoS One201491e8700310.1371/journal.pone.008700324466310
    [Google Scholar]
  46. ShiC. ZhangH. WangP. WangK. XuD. WangH. YinL. ZhangS. ZhangY. PROTAC induced-BET protein degradation exhibits potent anti-osteosarcoma activity by triggering apoptosis.Cell Death Dis.2019101181510.1038/s41419‑019‑2022‑231653826
    [Google Scholar]
  47. ChenD. ZhaoZ. HuangZ. ChenD.C. ZhuX.X. WangY.Z. YanY.W. TangS. MadhavanS. NiW. HuangZ. LiW. JiW. ShenH. LinS. JiangY.Z. Super enhancer inhibitors suppress MYC driven transcriptional amplification and tumor progression in osteosarcoma.Bone Res.2018611110.1038/s41413‑018‑0009‑829644114
    [Google Scholar]
  48. SayyadiM. Safaroghli-AzarA. SafaM. AbolghasemiH. MomenyM. BashashD. NF-κB-dependent mechanism of action of c-Myc inhibitor 10058-F4: Highlighting a promising effect of c-Myc inhibition in leukemia cells, irrespective of p53 status.Iran. J. Pharm. Res.202019115316532922477
    [Google Scholar]
  49. XiongX. ZhangJ. LiA. DaiL. QinS. WangP. LiuW. ZhangZ. LiX. LiuZ. GSK343 induces programmed cell death through the inhibition of EZH2 and FBP1 in osteosarcoma cells.Cancer Biol. Ther.202021321322210.1080/15384047.2019.168006131651209
    [Google Scholar]
  50. ZhaoA. ZhangZ. ZhouY. LiX. LiX. MaB. ZhangQ. β-Elemonic acid inhibits the growth of human Osteosarcoma through endoplasmic reticulum (ER) stress-mediated PERK/eIF2α/ATF4/CHOP activation and Wnt/β-catenin signal suppression.Phytomedicine20206915318310.1016/j.phymed.2020.15318332113150
    [Google Scholar]
  51. QiY.B. YangW. SiM. NieL. Wnt/β‑catenin signaling modulates piperine‑mediated antitumor effects on human osteosarcoma cells.Mol. Med. Rep.20202152202220810.3892/mmr.2020.1100032323765
    [Google Scholar]
  52. DaiG. ZhengD. WangQ. YangJ. LiuG. SongQ. SunX. TaoC. HuQ. GaoT. YuL. GuoW. Baicalein inhibits progression of osteosarcoma cells through inactivation of the Wnt/β-catenin signaling pathway.Oncotarget2017849860988611610.18632/oncotarget.2098729156780
    [Google Scholar]
  53. ZhangQ.H. HuQ.X. XieD. ChangB. MiaoH.G. WangY.G. LiuD.Z. LiX.D. Ganoderma lucidum exerts an anticancer effect on human osteosarcoma cells via suppressing the Wnt/β-catenin signaling pathway.Integr. Cancer Ther.201918153473541989091710.1177/153473541989091731855073
    [Google Scholar]
  54. LiuQ. WangZ. ZhouX. TangM. TanW. SunT. DengY. miR-342-5p inhibits osteosarcoma cell growth, migration, invasion, and sensitivity to Doxorubicin through targeting Wnt7b.Cell Cycle201918233325333610.1080/15384101.2019.167608731601147
    [Google Scholar]
  55. HanJ. ZhangY. XuJ. ZhangT. WangH. WangZ. JiangY. ZhouL. YangM. HuaY. CaiZ. Her4 promotes cancer metabolic reprogramming via the c-Myc-dependent signaling axis.Cancer Lett.2021496577110.1016/j.canlet.2020.10.00833038488
    [Google Scholar]
  56. ShenS. YaoT. XuY. ZhangD. FanS. MaJ. CircECE1 activates energy metabolism in osteosarcoma by stabilizing c-Myc.Mol. Cancer202019115110.1186/s12943‑020‑01269‑433106166
    [Google Scholar]
  57. TahbazlahafiB. PaknejadM. KhaghaniS. Sadegh-NejadiS. KhaliliE. VitaminD. Vitamin D Represses the Aggressive Potential of Osteosarcoma.Endocr. Metab. Immune Disord. Drug Targets20212171312131810.2174/187153032066620082115575632955002
    [Google Scholar]
  58. SpringL.M. WanderS.A. AndreF. MoyB. TurnerN.C. BardiaA. Cyclin-dependent kinase 4 and 6 inhibitors for hormone receptor-positive breast cancer: Past, present, and future.Lancet20203951022681782710.1016/S0140‑6736(20)30165‑332145796
    [Google Scholar]
  59. ZhouY. ShenJ.K. YuZ. HornicekF.J. KanQ. DuanZ. Expression and therapeutic implications of cyclin-dependent kinase 4 (CDK4) in osteosarcoma.Biochim. Biophys. Acta Mol. Basis Dis.2018186451573158210.1016/j.bbadis.2018.02.00429452249
    [Google Scholar]
  60. HiguchiT. IgarashiK. YamamotoN. HayashiK. KimuraH. MiwaS. BouvetM. TsuchiyaH. HoffmanR.M. Osteosarcoma Patient-derived Orthotopic Xenograft (PDOX) models used to identify novel and effective therapeutics: A review.Anticancer Res.202141125865587110.21873/anticanres.1540634848441
    [Google Scholar]
  61. HiguchiT. SugisawaN. MiyakeK. OshiroH. YamamotoN. HayashiK. KimuraH. MiwaS. IgarashiK. ChawlaS.P. BouvetM. SinghS.R. TsuchiyaH. HoffmanR.M. Sorafenib and palbociclib combination regresses a cisplatinum-resistant osteosarcoma in a PDOX mouse model.Anticancer Res.20193984079408410.21873/anticanres.1356531366491
    [Google Scholar]
  62. WangD. BaoH. Abemaciclib is synergistic with doxorubicin in osteosarcoma pre-clinical models via inhibition of CDK4/6–Cyclin D–Rb pathway.Cancer Chemother. Pharmacol.2022891314010.1007/s00280‑021‑04363‑634655298
    [Google Scholar]
  63. DowlessM. LoweryC.D. ShacklefordT. RenschlerM. StephensJ. FlackR. BlosserW. GuptaS. StewartJ. WebsterY. DempseyJ. VanWyeA.B. EbertP. IversenP. OlsenJ.B. GongX. BuchananS. HoughtonP. StancatoL. Abemaciclib is active in preclinical models of ewing sarcoma via multipronged regulation of cell cycle, DNA methylation, and interferon pathway signaling.Clin. Cancer Res.201824236028603910.1158/1078‑0432.CCR‑18‑125630131386
    [Google Scholar]
  64. GuentherL.M. DhariaN.V. RossL. ConwayA. RobichaudA.L. CatlettJ.L.II WechslerC.S. FrankE.S. GoodaleA. ChurchA.J. TsengY.Y. GuhaR. McKnightC.G. JanewayK.A. BoehmJ.S. MoraJ. DavisM.I. AlexeG. PiccioniF. StegmaierK. A combination CDK4/6 and IGF1R inhibitor strategy for ewing sarcoma.Clin. Cancer Res.20192541343135710.1158/1078‑0432.CCR‑18‑037230397176
    [Google Scholar]
  65. HarbeckN. RastogiP. MartinM. TolaneyS.M. ShaoZ.M. FaschingP.A. HuangC.S. JaliffeG.G. TryakinA. GoetzM.P. RugoH.S. SenkusE. TestaL. AnderssonM. TamuraK. Del MastroL. StegerG.G. KreipeH. HeggR. SohnJ. GuarneriV. CortésJ. HamiltonE. AndréV. WeiR. BarrigaS. SherwoodS. ForresterT. MunozM. ShahirA. San AntonioB. NabingerS.C. ToiM. JohnstonS.R.D. O’ShaughnessyJ. JimenezM.M. JohnstonS. BoyleF. StegerG.G. NevenP. JiangZ. CamponeM. HuoberJ. ShimizuC. CicinI. WardleyA. TolaneyS.M. AbuinG.G. ZarbaJ. LimE. SantP. LiaoN. ChristiansenB. EigelieneN. Martin-BabauJ. EttlJ. MavroudisD. ChiuJ. BoerK. NagarkarR. Paluch-ShimonS. MoscettiL. SagaraY. KimS-B. MacielM.M. Tjan-HeijnenV. BroomR. LackoA. SchenkerM. VolkovN. Sim YapY. Coccia-PortugalM. Ángel García SáenzJ. AnderssonA. ChaoT-Y. GokmenE. HarputluogluH. BerzoyO. PattD. McArthurH. ChewH. ChalasaniP. KaufmanP. TedescoK. GraffS.L. Adjuvant abemaciclib combined with endocrine therapy for high-risk early breast cancer: Updated efficacy and Ki-67 analysis from the monarchE study.Ann. Oncol.202132121571158110.1016/j.annonc.2021.09.01534656740
    [Google Scholar]
  66. RugoH.S. LereboursF. CiruelosE. DrullinskyP. Ruiz-BorregoM. NevenP. ParkY.H. PratA. BachelotT. JuricD. TurnerN. SophosN. ZarateJ.P. ArceC. ShenY.M. TurnerS. KanakamedalaH. HsuW.C. ChiaS. Alpelisib plus fulvestrant in PIK3CA-mutated, hormone receptor-positive advanced breast cancer after a CDK4/6 inhibitor (BYLieve): One cohort of a phase 2, multicentre, open-label, non-comparative study.Lancet Oncol.202122448949810.1016/S1470‑2045(21)00034‑633794206
    [Google Scholar]
  67. AndersL. KeN. HydbringP. ChoiY.J. WidlundH.R. ChickJ.M. ZhaiH. VidalM. GygiS.P. BraunP. SicinskiP. A systematic screen for CDK4/6 substrates links FOXM1 phosphorylation to senescence suppression in cancer cells.Cancer Cell201120562063410.1016/j.ccr.2011.10.00122094256
    [Google Scholar]
  68. LiY. ZhangT. ZhangY. ZhaoX. WangW. Targeting the FOXM1-regulated long noncoding RNA TUG1 in osteosarcoma.Cancer Sci.2018109103093310410.1111/cas.1376530099814
    [Google Scholar]
  69. ShenB. ZhouN. HuT. ZhaoW. WuD. WangS. LncRNA MEG3 negatively modified osteosarcoma development through regulation of miR-361-5p and FoxM1.J. Cell. Physiol.20192348134641348010.1002/jcp.2802630624782
    [Google Scholar]
  70. SunC. DaiJ. MaS. PanY. LiuF. WangY. MicroRNA-197 inhibits the progression of osteosarcoma through targeting FOXM1.Minerva Endocrinol.202045215315610.23736/S0391‑1977.19.03108‑031797655
    [Google Scholar]
  71. HuK. XieW. NiS. YanS. TianG. QiW. DuanY. Cadmium chloride enhances cisplatin sensitivity in osteosarcoma cells by reducing FOXM1 expression.Oncol. Rep.202044265066010.3892/or.2020.763232627005
    [Google Scholar]
  72. WangL. LiuY. YuG. Avasimibe inhibits tumor growth by targeting FoxM1-AKR1C1 in osteosarcoma.OncoTargets Ther.20191281582310.2147/OTT.S16564730774369
    [Google Scholar]
  73. RadhakrishnanS.K. BhatU.G. HughesD.E. WangI.C. CostaR.H. GartelA.L. Identification of a chemical inhibitor of the oncogenic transcription factor forkhead box M1.Cancer Res.200666199731973510.1158/0008‑5472.CAN‑06‑157617018632
    [Google Scholar]
  74. SaxtonR.A. SabatiniD.M. mTOR signaling in growth, metabolism, and disease.Cell2017169236137110.1016/j.cell.2017.03.03528388417
    [Google Scholar]
  75. Pons-TostivintE. ThibaultB. Guillermet-GuibertJ. Targeting PI3K signaling in combination cancer therapy.Trends Cancer20173645446910.1016/j.trecan.2017.04.00228718419
    [Google Scholar]
  76. MendozaM.C. ErE.E. BlenisJ. The Ras-ERK and PI3K-mTOR pathways: C ross-talk and compensation.Trends Biochem. Sci.201136632032810.1016/j.tibs.2011.03.00621531565
    [Google Scholar]
  77. YuL. WeiJ. LiuP. Attacking the PI3K/Akt/mTOR signaling pathway for targeted therapeutic treatment in human cancer.Semin. Cancer Biol.202285699410.1016/j.semcancer.2021.06.01934175443
    [Google Scholar]
  78. ZhangJ. YuX.H. YanY.G. WangC. WangW.J. PI3K/Akt signaling in osteosarcoma.Clin. Chim. Acta201544418219210.1016/j.cca.2014.12.04125704303
    [Google Scholar]
  79. WuP. HuY.Z. PI3K/Akt/mTOR pathway inhibitors in cancer: A perspective on clinical progress.Curr. Med. Chem.201017354326434110.2174/09298671079336123420939811
    [Google Scholar]
  80. BurrisH.A.III Overcoming acquired resistance to anticancer therapy: Focus on the PI3K/AKT/mTOR pathway.Cancer Chemother. Pharmacol.201371482984210.1007/s00280‑012‑2043‑323377372
    [Google Scholar]
  81. SongR. TianK. WangW. WangL. P53 suppresses cell proliferation, metastasis, and angiogenesis of osteosarcoma through inhibition of the PI3K/AKT/mTOR pathway.Int. J. Surg.201520808710.1016/j.ijsu.2015.04.05025936826
    [Google Scholar]
  82. LiuY. BiT. DaiW. WangG. QianL. ShenG. GaoQ. RETRACTED: Lupeol Induces Apoptosis and Cell Cycle Arrest of Human Osteosarcoma Cells Through PI3K/AKT/mTOR Pathway.Technol. Cancer Res. Treat.2016156NP16NP2410.1177/153303461560901426443801
    [Google Scholar]
  83. MickymarayS. AlfaizF.A. ParamasivamA. VeeraraghavanV.P. PeriaduraiN.D. SurapaneniK.M. NiuG. Rhaponticin suppresses osteosarcoma through the inhibition of PI3K-Akt-mTOR pathway.Saudi J. Biol. Sci.20212873641364910.1016/j.sjbs.2021.05.00634220214
    [Google Scholar]
  84. JinR. JinY.Y. TangY.L. YangH.J. ZhouX.Q. LeiZ. GPNMB silencing suppresses the proliferation and metastasis of osteosarcoma cells by blocking the PI3K/Akt/mTOR signaling pathway.Oncol. Rep.20183963034304010.3892/or.2018.634629620278
    [Google Scholar]
  85. ZhengJ. LiuC. ShiJ. WenK. WangX. AIM2 inhibits the proliferation, invasion and migration, and promotes the apoptosis of osteosarcoma cells by inactivating the PI3K/AKT/mTOR signaling pathway.Mol. Med. Rep.20212525310.3892/mmr.2021.1256934913077
    [Google Scholar]
  86. LiuB. XuL. DaiE.N. TianJ.X. LiJ.M. Anti-tumoral potential of MDA19 in human osteosarcoma via suppressing PI3K/Akt/mTOR signaling pathway.Biosci. Rep.2018386BSR2018150110.1042/BSR2018150130442873
    [Google Scholar]
  87. NiuN.K. WangZ.L. PanS.T. DingH.Q. AuG.H. HeZ.X. ZhouZ.W. XiaoG. YangY.X. ZhangX. YangT. ChenX.W. QiuJ.X. ZhouS.F. Pro-apoptotic and pro-autophagic effects of the Aurora kinase A inhibitor alisertib (MLN8237) on human osteosarcoma U-2 OS and MG-63 cells through the activation of mitochondria-mediated pathway and inhibition of p38 MAPK/PI3K/Akt/mTOR signaling pathway.Drug Des. Devel. Ther.201591555158425792811
    [Google Scholar]
  88. ZhuY.R. MinH. FangJ.F. ZhouF. DengX.W. ZhangY.Q. Activity of the novel dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor NVP-BEZ235 against osteosarcoma.Cancer Biol. Ther.201516460260910.1080/15384047.2015.101715525869769
    [Google Scholar]
  89. SlotkinE.K. PatwardhanP.P. VasudevaS.D. de StanchinaE. TapW.D. SchwartzG.K. MLN0128, an ATP-competitive mTOR kinase inhibitor with potent in vitro and in vivo antitumor activity, as potential therapy for bone and soft-tissue sarcoma.Mol. Cancer Ther.201514239540610.1158/1535‑7163.MCT‑14‑071125519700
    [Google Scholar]
  90. GrignaniG. PalmeriniE. FerraresiV. D’AmbrosioL. BertulliR. AsafteiS.D. TamburiniA. PignochinoY. SangioloD. MarchesiE. CapozziF. BiaginiR. GambarottiM. FagioliF. CasaliP.G. PicciP. FerrariS. AgliettaM. Sorafenib and everolimus for patients with unresectable high-grade osteosarcoma progressing after standard treatment: A non-randomised phase 2 clinical trial.Lancet Oncol.20151619810710.1016/S1470‑2045(14)71136‑225498219
    [Google Scholar]
  91. WagnerL.M. FouladiM. AhmedA. KrailoM.D. WeigelB. DuBoisS.G. DoyleL.A. ChenH. BlaneyS.M. Phase II study of cixutumumab in combination with temsirolimus in pediatric patients and young adults with recurrent or refractory sarcoma: A report from the children’s oncology group.Pediatr. Blood Cancer201562344044410.1002/pbc.2533425446280
    [Google Scholar]
  92. WangB. LiJ. Piceatannol suppresses the proliferation and induced apoptosis of osteosarcoma cells through PI3K/AKT/mTOR pathway.Cancer Manag. Res.2020122631264010.2147/CMAR.S23817332368141
    [Google Scholar]
  93. SunH. YinM. QianW. YinH. Calycosin, a phytoestrogen isoflavone, induces apoptosis of estrogen receptor-positive MG-63 osteosarcoma cells via the phosphatidylinositol 3-kinase (PI3K)/AKT/Mammalian Target of Rapamycin (mTOR) pathway.Med. Sci. Monit.2018246178618610.12659/MSM.91020130182951
    [Google Scholar]
  94. KimS.H. SonK.M. KimK.Y. YuS.N. ParkS.G. KimY.W. NamH.W. SuhJ.T. JiJ.H. AhnS.C. Deoxypodophyllotoxin induces cytoprotective autophagy against apoptosis via inhibition of PI3K/AKT/mTOR pathway in osteosarcoma U2OS cells.Pharmacol. Rep.201769587888410.1016/j.pharep.2017.04.00728623712
    [Google Scholar]
  95. PangH. WuT. PengZ. TanQ. PengX. ZhanZ. SongL. WeiB. Baicalin induces apoptosis and autophagy in human osteosarcoma cells by increasing ROS to inhibit PI3K/Akt/mTOR, ERK1/2 and β-catenin signaling pathways.J. Bone Oncol.20223310041510.1016/j.jbo.2022.10041535573641
    [Google Scholar]
  96. WangY. XuS. WuY. ZhangJ. Cucurbitacin E inhibits osteosarcoma cells proliferation and invasion through attenuation of PI3K/AKT/mTOR signalling pathway.Biosci. Rep.2016366e0040510.1042/BSR2016016527653525
    [Google Scholar]
  97. ZhangH. JiangH. ZhangH. LiuJ. HuX. ChenL. Anti-tumor efficacy of phellamurin in osteosarcoma cells: Involvement of the PI3K/AKT/mTOR pathway.Eur. J. Pharmacol.201985817247710.1016/j.ejphar.2019.17247731228450
    [Google Scholar]
  98. ZhangS. RenH. SunH. CaoS. Dieckol exerts anticancer activity in human osteosarcoma (MG-63) cells through the inhibition of PI3K/AKT/mTOR signaling pathway.Saudi J. Biol. Sci.20212894908491510.1016/j.sjbs.2021.07.01934466065
    [Google Scholar]
  99. YueZ. GuanX. ChaoR. HuangC. LiD. YangP. LiuS. HasegawaT. GuoJ. LiM. Diallyl disulfide induces apoptosis and autophagy in human osteosarcoma MG-63 Cells through the PI3K/Akt/mTOR pathway.Molecules20192414266510.3390/molecules2414266531340526
    [Google Scholar]
  100. HuangZ. JinG. LicochalconeB. Licochalcone B induced apoptosis and autophagy in osteosarcoma tumor cells <i>via</i> the inactivation of PI3K/AKT/mTOR pathway.Biol. Pharm. Bull.202245673073710.1248/bpb.b21‑0099135431285
    [Google Scholar]
  101. LiY. LuJ. BaiF. XiaoY. GuoY. DongZ. Ginsenoside Rg3 suppresses proliferation and induces apoptosis in human osteosarcoma.BioMed Res. Int.201820181910.1155/2018/430657929750154
    [Google Scholar]
  102. HeJ. ZhangW. ZhouX. YanW. WangZ. Aloin induced apoptosis by enhancing autophagic flux through the PI3K/AKT axis in osteosarcoma.Chin. Med.202116112310.1186/s13020‑021‑00520‑434819120
    [Google Scholar]
  103. LiC. GaoH. FengX. BiC. ZhangJ. YinJ. Ginsenoside Rh2 impedes proliferation and migration and induces apoptosis by regulating NF‐κB, MAPK, and PI3K/Akt/mTOR signaling pathways in osteosarcoma cells.J. Biochem. Mol. Toxicol.20203412e2259710.1002/jbt.2259732762018
    [Google Scholar]
  104. LiuD. WangH. ZhouZ. MaoX. YeZ. ZhangZ. TuS. ZhangY. CaiX. LanX. ZhangZ. HanB. ZuoG. Integrated bioinformatic analysis and experiment confirmation of the antagonistic effect and molecular mechanism of ginsenoside Rh2 in metastatic osteosarcoma.J. Pharm. Biomed. Anal.202120111408810.1016/j.jpba.2021.11408833957363
    [Google Scholar]
  105. ShiY. LianK. JiaJ. Apigenin suppresses the warburg effect and stem-like properties in SOSP-9607 cells by inactivating the PI3K/Akt/mTOR signaling pathway.Evid. Based Complement. Alternat. Med.2022202211010.1155/2022/398363735310040
    [Google Scholar]
  106. LiuY. ZhangY. ZouJ. YanL. YuX. LuP. WuX. LiQ. GuR. ZhuD. Andrographolide induces autophagic cell death and inhibits invasion and metastasis of human osteosarcoma cells in an autophagy-dependent manner.Cell. Physiol. Biochem.20174441396141010.1159/00048553629197865
    [Google Scholar]
  107. LiJ. YouT. JingJ. MiR-125b inhibits cell biological progression of Ewing’s sarcoma by suppressing the PI3K/Akt signalling pathway.Cell Prolif.201447215216010.1111/cpr.1209324517182
    [Google Scholar]
  108. JiangB. KangX. ZhaoG. LuJ. WangZ. miR-138 reduces the dysfunction of t follicular helper cells in osteosarcoma via the PI3K/Akt/mTOR pathway by targeting PDK1.Comput. Math. Methods Med.2021202111210.1155/2021/289589334950224
    [Google Scholar]
  109. JinB. JinD. ZhuoZ. ZhangB. ChenK. MiR-1224-5p activates autophagy, cell invasion and inhibits epithelial-to-mesenchymal transition in osteosarcoma cells by directly targeting PLK1 through PI3K/AKT/mTOR signaling pathway.OncoTargets Ther.202013118071181810.2147/OTT.S27445133235467
    [Google Scholar]
  110. FleurenE.D.G. Versleijen-JonkersY.M.H. RoeffenM.H.S. FranssenG.M. FluckeU.E. HoughtonP.J. OyenW.J.G. BoermanO.C. van der GraafW.T.A. Temsirolimus combined with cisplatin or bevacizumab is active in osteosarcoma models.Int. J. Cancer2014135122770278210.1002/ijc.2893324771207
    [Google Scholar]
  111. HuK. DaiH.B. QiuZ.L. mTOR signaling in osteosarcoma: Oncogenesis and therapeutic aspects (Review).Oncol. Rep.20163631219122510.3892/or.2016.492227430283
    [Google Scholar]
  112. LiaoY.X. LvJ.Y. ZhouZ.F. XuT.Y. YangD. GaoQ.M. FanL. LiG.D. YuH.Y. LiuK.Y. CXCR4 blockade sensitizes osteosarcoma to doxorubicin by inducing autophagic cell death via PI3K‑Akt‑mTOR pathway inhibition.Int. J. Oncol.20215914910.3892/ijo.2021.522934080667
    [Google Scholar]
  113. ChenC. GuoY. HuangQ. wangB. WangW. NiuJ. LouJ. XuJ. RenT. HuangY. GuoW. PI3K inhibitor impairs tumor progression and enhances sensitivity to anlotinib in anlotinib-resistant osteosarcoma.Cancer Lett.202253621566010.1016/j.canlet.2022.21566035318116
    [Google Scholar]
  114. AdamsR.R. MaiatoH. EarnshawW.C. CarmenaM. Essential roles of Drosophila inner centromere protein (INCENP) and aurora B in histone H3 phosphorylation, metaphase chromosome alignment, kinetochore disjunction, and chromosome segregation.J. Cell Biol.2001153486588010.1083/jcb.153.4.86511352945
    [Google Scholar]
  115. OtaT. SutoS. KatayamaH. HanZ.B. SuzukiF. MaedaM. TaninoM. TeradaY. TatsukaM. Increased mitotic phosphorylation of histone H3 attributable to AIM-1/Aurora-B overexpression contributes to chromosome number instability.Cancer Res.200262185168517712234980
    [Google Scholar]
  116. ZhaoZ. JinG. YaoK. LiuK. LiuF. ChenH. WangK. GorjaD.R. ReddyK. BodeA.M. GuoZ. DongZ. Aurora B kinase as a novel molecular target for inhibition the growth of osteosarcoma.Mol. Carcinog.20195861056106710.1002/mc.2299330790360
    [Google Scholar]
  117. PiW.S. CaoZ.Y. LiuJ.M. PengA.F. ChenW.Z. ChenJ.W. HuangS.H. LiuZ.L. Potential molecular mechanisms of AURKB in the oncogenesis and progression of osteosarcoma cells: A label-free quantitative proteomics analysis.Technol. Cancer Res. Treat.201818153303381985326231122179
    [Google Scholar]
  118. LakkanigaN.R. ZhangL. BelachewB. GunagantiN. FrettB. LiH. Discovery of SP-96, the first non-ATP-competitive Aurora Kinase B inhibitor, for reduced myelosuppression.Eur. J. Med. Chem.202020311258910.1016/j.ejmech.2020.11258932717530
    [Google Scholar]
  119. TavantiE. SeroV. VellaS. FanelliM. MichelacciF. LanduzziL. MagagnoliG. VersteegR. PicciP. HattingerC.M. SerraM. Preclinical validation of Aurora kinases-targeting drugs in osteosarcoma.Br. J. Cancer2013109102607261810.1038/bjc.2013.64324129234
    [Google Scholar]
  120. MaitlandM.L. Piha-PaulS. FalchookG. KurzrockR. NguyenL. JanischL. KarovicS. McKeeM. HoeningE. WongS. MunasingheW. PalmaJ. DonawhoC. LianG.K. AnsellP. RatainM.J. HongD. Clinical pharmacodynamic/exposure characterisation of the multikinase inhibitor ilorasertib (ABT-348) in a phase 1 dose-escalation trial.Br. J. Cancer201811881042105010.1038/s41416‑018‑0020‑229551775
    [Google Scholar]
  121. KovacsA.H. ZhaoD. HouJ. AuroraB. Aurora B inhibitors as cancer therapeutics.Molecules2023288338510.3390/molecules2808338537110619
    [Google Scholar]
  122. JingX.L. ChenS.W. Aurora kinase inhibitors: A patent review (2014-2020).Expert Opin. Ther. Pat.202131762564310.1080/13543776.2021.189002733573401
    [Google Scholar]
  123. TsaiH.C. ChengS.P. HanC.K. HuangY.L. WangS.W. LeeJ.J. LaiC.T. FongY.C. TangC.H. Resistin enhances angiogenesis in osteosarcoma via the MAPK signaling pathway.Aging201911219767977710.18632/aging.10242331719210
    [Google Scholar]
  124. HadjimichaelA.C. FoukasA.F. PapadimitriouE. KaspirisA. PeristianiC. ChaniotakisI. KotsariM. PergarisA. TheocharisS. SarantisP. ChristopoulouM. PsyrriA. MavrogenisA.F. SavvidouO.D. PapagelopoulosP.J. ArmakolasA. Doxycycline inhibits the progression of metastases in early-stage osteosarcoma by downregulating the expression of MMPs, VEGF and ezrin at primary sites.Cancer Treat. Res. Commun.20223210061710.1016/j.ctarc.2022.10061736027697
    [Google Scholar]
  125. LiuY. ZhengQ. WuH. GuoX. LiJ. HaoS. Rapamycin increases pCREB, Bcl-2, and VEGF-A through ERK under normoxia.Acta Biochim. Biophys. Sin.201345425926710.1093/abbs/gmt00223403511
    [Google Scholar]
  126. OkamotoK. Ikemori-KawadaM. JestelA. von KönigK. FunahashiY. MatsushimaT. TsuruokaA. InoueA. MatsuiJ. Distinct binding mode of multikinase inhibitor lenvatinib revealed by biochemical characterization.ACS Med. Chem. Lett.201561899410.1021/ml500394m25589937
    [Google Scholar]
  127. GasparN. VenkatramaniR. Hecker-NoltingS. MelconS.G. LocatelliF. BautistaF. LonghiA. LervatC. Entz-WerleN. CasanovaM. AertsI. StraussS.J. ThebaudE. MorlandB. NietoA.C. Marec-BerardP. GambartM. RossigC. OkparaC.E. HeC. DuttaL. Campbell-HewsonQ. Lenvatinib with etoposide plus ifosfamide in patients with refractory or relapsed osteosarcoma (ITCC-050): A multicentre, open-label, multicohort, phase 1/2 study.Lancet Oncol.20212291312132110.1016/S1470‑2045(21)00387‑934416158
    [Google Scholar]
  128. VimalrajS. SaravananS. RaghunandhakumarS. AnuradhaD. Melatonin regulates tumor angiogenesis via miR-424-5p/VEGFA signaling pathway in osteosarcoma.Life Sci.202025611801110.1016/j.lfs.2020.11801132592723
    [Google Scholar]
  129. TsaiH.C. TzengH.E. HuangC.Y. HuangY.L. TsaiC.H. WangS.W. WangP.C. ChangA.C. FongY.C. TangC.H. WISP-1 positively regulates angiogenesis by controlling VEGF-A expression in human osteosarcoma.Cell Death Dis.201784e275010.1038/cddis.2016.42128406476
    [Google Scholar]
  130. LinC.Y. TzengH.E. LiT.M. ChenH.T. LeeY. YangY.C. WangS.W. YangW.H. TangC.H. WISP-3 inhibition of miR-452 promotes VEGF-A expression in chondrosarcoma cells and induces endothelial progenitor cells angiogenesis.Oncotarget2017824395713958110.18632/oncotarget.1714228465477
    [Google Scholar]
  131. LiaoY.Y. TsaiH.C. ChouP.Y. WangS.W. ChenH.T. LinY.M. ChiangI.P. ChangT.M. HsuS.K. ChouM.C. TangC.H. FongY.C. CCL3 promotes angiogenesis by dysregulation of miR-374b/ VEGF-A axis in human osteosarcoma cells.Oncotarget2016744310432510.18632/oncotarget.670826713602
    [Google Scholar]
  132. ZhangL. LvZ. XuJ. ChenC. GeQ. LiP. WeiD. WuZ. SunX. Micro RNA -134 inhibits osteosarcoma angiogenesis and proliferation by targeting the VEGFA / VEGFR 1 pathway.FEBS J.201828571359137110.1111/febs.1441629474747
    [Google Scholar]
  133. MaZ. LiK. ChenP. PanQ. LiX. ZhaoG. MiR-134, Mediated by IRF1, Suppresses Tumorigenesis and Progression by Targeting VEGFA and MYCN in Osteosarcoma.Anticancer. Agents Med. Chem.202020101197120810.2174/187152062066620040207475232238141
    [Google Scholar]
  134. QinY. ZhangB. GeB.J. MicroRNA-150-5p inhibits proliferation and invasion of osteosarcoma cells by down-regulating VEGFA.Eur. Rev. Med. Pharmacol. Sci.202024189265927333015767
    [Google Scholar]
  135. LvT. LiuY. LiZ. HuangR. ZhangZ. LiJ. miR-503 is down-regulated in osteosarcoma and suppressed MG63 proliferation and invasion by targeting VEGFA/Rictor.Cancer Biomark.201823331532210.3233/CBM‑17090630223385
    [Google Scholar]
  136. NiuJ. SunY. GuoQ. NiuD. LiuB. miR-1 inhibits cell growth, migration, and invasion by targeting VEGFA in osteosarcoma cells.Dis. Markers201620161810.1155/2016/706898627777493
    [Google Scholar]
  137. ShaoX. MiaoM. XueJ. XueJ. JiX. ZhuH. The down-regulation of MicroRNA-497 contributes to cell growth and cisplatin resistance through PI3K/Akt pathway in osteosarcoma.Cell. Physiol. Biochem.20153652051206210.1159/00043017226202364
    [Google Scholar]
  138. ZhangL. CaoH. GuG. HouD. YouY. LiX. ChenY. JiaoG. Exosomal MiR-199a-5p inhibits tumorigenesis and angiogenesis by targeting VEGFA in osteosarcoma.Front. Oncol.20221288455910.3389/fonc.2022.88455935651811
    [Google Scholar]
  139. WangL. ShanM. LiuY. YangF. QiH. ZhouL. QiuL. LiY. miR-205 suppresses the proliferative and migratory capacity of human osteosarcoma Mg-63 cells by targeting VEGFA.OncoTargets Ther.201582635264226396534
    [Google Scholar]
  140. LopezC.M. YuP.Y. ZhangX. YilmazA.S. LondonC.A. FengerJ.M. MiR-34a regulates the invasive capacity of canine osteosarcoma cell lines.PLoS One2018131e019008610.1371/journal.pone.019008629293555
    [Google Scholar]
  141. RaimondiL. GalloA. CuscinoN. De LucaA. CostaV. CarinaV. BellaviaD. BulatiM. AlessandroR. FiniM. ConaldiP.G. GiavaresiG. Potential Anti-Metastatic Role of the Novel miR-CT3 in Tumor Angiogenesis and Osteosarcoma Invasion.Int. J. Mol. Sci.202223270510.3390/ijms2302070535054891
    [Google Scholar]
  142. LiangJ. ZhaoH. HuJ. LiuY. LiZ. SPOCD1 promotes cell proliferation and inhibits cell apoptosis in human osteosarcoma.Mol. Med. Rep.20181723218322529257309
    [Google Scholar]
  143. BoroA. ArltM.J. LengnickH. RoblB. HusmannM. BertzJ. BornW. FuchsB. Prognostic value and in vitro biological relevance of Neuropilin 1 and Neuropilin 2 in osteosarcoma.Am. J. Transl. Res.20157364065326045903
    [Google Scholar]
  144. Al-KhalafH.H. AboussekhraA. AUF1 positively controls angiogenesis through mRNA stabilization-dependent up-regulation of HIF-1α and VEGF-A in human osteosarcoma.Oncotarget201910474868487910.18632/oncotarget.2711531448053
    [Google Scholar]
  145. ZhaoH. WuY. ChenY. LiuH. Clinical significance of hypoxia-inducible factor 1 and VEGF-A in osteosarcoma.Int. J. Clin. Oncol.20152061233124310.1007/s10147‑015‑0848‑x26077139
    [Google Scholar]
  146. KolbE.A. KamaraD. ZhangW. LinJ. HingoraniP. BakerL. HoughtonP. GorlickR. R1507, a fully human monoclonal antibody targeting IGF-1R, is effective alone and in combination with rapamycin in inhibiting growth of osteosarcoma xenografts.Pediatr. Blood Cancer2010551n/a10.1002/pbc.2247920486173
    [Google Scholar]
  147. KurmashevaR.T. DudkinL. BillupsC. DebelenkoL.V. MortonC.L. HoughtonP.J. The insulin-like growth factor-1 receptor-targeting antibody, CP-751,871, suppresses tumor-derived VEGF and synergizes with rapamycin in models of childhood sarcoma.Cancer Res.200969197662767110.1158/0008‑5472.CAN‑09‑169319789339
    [Google Scholar]
  148. KolbE.A. GorlickR. MarisJ.M. KeirS.T. MortonC.L. WuJ. WozniakA.W. SmithM.A. HoughtonP.J. Combination testing (Stage 2) of the Anti-IGF-1 receptor antibody IMC-A12 with rapamycin by the pediatric preclinical testing program.Pediatr. Blood Cancer201258572973510.1002/pbc.2315721630428
    [Google Scholar]
  149. PignochinoY. Dell’AglioC. BasiricòM. CapozziF. SosterM. MarchiòS. BrunoS. GammaitoniL. SangioloD. TorchiaroE. D’AmbrosioL. FagioliF. FerrariS. AlberghiniM. PicciP. AgliettaM. GrignaniG. The Combination of Sorafenib and Everolimus Abrogates mTORC1 and mTORC2 upregulation in osteosarcoma preclinical models.Clin. Cancer Res.20131982117213110.1158/1078‑0432.CCR‑12‑229323434734
    [Google Scholar]
  150. TianZ.C. WangJ.Q. GeH. Apatinib ameliorates doxorubicin-induced migration and cancer stemness of osteosarcoma cells by inhibiting Sox2 via STAT3 signalling.J. Orthop. Translat.20202213214110.1016/j.jot.2019.07.00332440509
    [Google Scholar]
  151. LeeD.H. QiJ. BradnerJ.E. SaidJ.W. DoanN.B. ForscherC. YangH. KoefflerH.P. Synergistic effect of JQ1 and rapamycin for treatment of human osteosarcoma.Int. J. Cancer201513692055206410.1002/ijc.2926925307878
    [Google Scholar]
  152. YamaguchiS.I. UekiA. SugiharaE. OnishiN. YaguchiT. KawakamiY. HoriuchiK. MoriokaH. MatsumotoM. NakamuraM. MutoA. ToyamaY. SayaH. ShimizuT. Synergistic antiproliferative effect of imatinib and adriamycin in platelet‐derived growth factor receptor‐expressing osteosarcoma cells.Cancer Sci.2015106787588210.1111/cas.1268625940371
    [Google Scholar]
  153. WuJ. LiuC. TsuiS.T. LiuD. Second-generation inhibitors of Bruton tyrosine kinase.J. Hematol. Oncol.2016918010.1186/s13045‑016‑0313‑y27590878
    [Google Scholar]
  154. WangG. SunM. JiangY. ZhangT. SunW. WangH. YinF. WangZ. SangW. XuJ. MaoM. ZuoD. ZhouZ. WangC. FuZ. WangZ. DuanZ. HuaY. CaiZ. Anlotinib, a novel small molecular tyrosine kinase inhibitor, suppresses growth and metastasis via dual blockade of VEGFR2 and MET in osteosarcoma.Int. J. Cancer2019145497999310.1002/ijc.3218030719715
    [Google Scholar]
  155. KumarR.M. ArltM.J. KuzmanovA. BornW. FuchsB. Sunitinib malate (SU-11248) reduces tumour burden and lung metastasis in an intratibial human xenograft osteosarcoma mouse model.Am. J. Cancer Res.2015572156216826328246
    [Google Scholar]
  156. ItalianoA. MirO. Mathoulin-PelissierS. PenelN. Piperno-NeumannS. BompasE. ChevreauC. DuffaudF. Entz-WerléN. SaadaE. Ray-CoquardI. LervatC. GasparN. Marec-BerardP. PacquementH. WrightJ. ToulmondeM. BessedeA. CrombeA. KindM. BelleraC. BlayJ.Y. Cabozantinib in patients with advanced Ewing sarcoma or osteosarcoma (CABONE): A multicentre, single-arm, phase 2 trial.Lancet Oncol.202021344645510.1016/S1470‑2045(19)30825‑332078813
    [Google Scholar]
  157. FioramontiM. FaustiV. PantanoF. IulianiM. RibelliG. LottiF. PignochinoY. GrignaniG. SantiniD. ToniniG. VincenziB. Cabozantinib affects osteosarcoma growth through a direct effect on tumor cells and modifications in bone microenvironment.Sci. Rep.201881417710.1038/s41598‑018‑22469‑529520051
    [Google Scholar]
  158. BaranskiZ. BooijT.H. KuijjerM.L. de JongY. Cleton-JansenA.M. PriceL.S. van de WaterB. BovéeJ.V.M.G. HogendoornP.C.W. DanenE.H.J. MEK inhibition induces apoptosis in osteosarcoma cells with constitutive ERK1/2 phosphorylation.Genes Cancer2015611-1250351210.18632/genesandcancer.9126807203
    [Google Scholar]
  159. DicklerM.N. TolaneyS.M. RugoH.S. CortésJ. DiérasV. PattD. WildiersH. HudisC.A. O’ShaughnessyJ. ZamoraE. YardleyD.A. FrenzelM. KoustenisA. BaselgaJ. MONARCH 1, a phase II study of abemaciclib, a CDK4 and CDK6 inhibitor, as a single agent, in patients with refractory HR+/HER2− metastatic breast cancer.Clin. Cancer Res.201723175218522410.1158/1078‑0432.CCR‑17‑075428533223
    [Google Scholar]
  160. SunD. LiZ. RewY. GribbleM. BartbergerM.D. BeckH.P. CanonJ. ChenA. ChenX. ChowD. DeignanJ. DuquetteJ. EksterowiczJ. FisherB. FoxB.M. FuJ. GonzalezA.Z. Gonzalez-Lopez De TurisoF. HouzeJ.B. HuangX. JiangM. JinL. KayserF. LiuJ.J. LoM.C. LongA.M. LucasB. McGeeL.R. McIntoshJ. MihalicJ. OlinerJ.D. OsgoodT. PetersonM.L. RovetoP. SaikiA.Y. ShafferP. TotevaM. WangY. WangY.C. WortmanS. YakowecP. YanX. YeQ. YuD. YuM. ZhaoX. ZhouJ. ZhuJ. OlsonS.H. MedinaJ.C. Discovery of AMG 232, a potent, selective, and orally bioavailable MDM2-p53 inhibitor in clinical development.J. Med. Chem.20145741454147210.1021/jm401753e24456472
    [Google Scholar]
  161. WischhusenJ. NaumannU. OhgakiH. RastinejadF. WellerM. CP-31398, a novel p53-stabilizing agent, induces p53-dependent and p53-independent glioma cell death.Oncogene200322518233824510.1038/sj.onc.120719814614447
    [Google Scholar]
  162. ZacheN. LambertJ.M.R. RökaeusN. ShenJ. HainautP. BergmanJ. WimanK.G. BykovV.J.N. Mutant p53 targeting by the low molecular weight compound STIMA-1.Mol. Oncol.200821708010.1016/j.molonc.2008.02.00419383329
    [Google Scholar]
  163. BykovV.J.N. ZacheN. StridhH. WestmanJ. BergmanJ. SelivanovaG. WimanK.G. PRIMA-1MET synergizes with cisplatin to induce tumor cell apoptosis.Oncogene200524213484349110.1038/sj.onc.120841915735745
    [Google Scholar]
  164. WangB. FangL. ZhaoH. XiangT. WangD. MDM2 inhibitor Nutlin-3a suppresses proliferation and promotes apoptosis in osteosarcoma cells.Acta Biochim. Biophys. Sin.201244868569110.1093/abbs/gms05322843172
    [Google Scholar]
  165. TovarC. GravesB. PackmanK. FilipovicZ. XiaB.H.M. TardellC. GarridoR. LeeE. KolinskyK. ToK-H. LinnM. PodlaskiF. WovkulichP. VuB. VassilevL.T. VassilevL.T. MDM2 small-molecule antagonist RG7112 activates p53 signaling and regresses human tumors in preclinical cancer models.Cancer Res.20137382587259710.1158/0008‑5472.CAN‑12‑280723400593
    [Google Scholar]
  166. YangR. PiperdiS. GorlickR. Activation of the RAF/mitogen-activated protein/extracellular signal-regulated kinase kinase/extracellular signal-regulated kinase pathway mediates apoptosis induced by chelerythrine in osteosarcoma.Clin. Cancer Res.200814206396640410.1158/1078‑0432.CCR‑07‑511318927278
    [Google Scholar]
  167. HomayoonfalM. AsemiZ. YousefiB. Potential anticancer properties and mechanisms of thymoquinone in osteosarcoma and bone metastasis.Cell. Mol. Biol. Lett.20222712110.1186/s11658‑022‑00320‑035236304
    [Google Scholar]
  168. PanP.J. LiuY.C. HsuF.T. Protein kinase B and extracellular signal-regulated kinase inactivation is associated with regorafenib-induced inhibition of osteosarcoma progression in vitro and in vivo.J. Clin. Med.20198690010.3390/jcm806090031238539
    [Google Scholar]
  169. PignochinoY. GrignaniG. CavalloniG. MottaM. TapparoM. BrunoS. BottosA. GammaitoniL. MigliardiG. CamussiG. AlberghiniM. TorchioB. FerrariS. BussolinoF. FagioliF. PicciP. AgliettaM. Sorafenib blocks tumour growth, angiogenesis and metastatic potential in preclinical models of osteosarcoma through a mechanism potentially involving the inhibition of ERK1/2, MCL-1 and ezrin pathways.Mol. Cancer20098111810.1186/1476‑4598‑8‑11820003259
    [Google Scholar]
/content/journals/cmp/10.2174/1874467217666230821142839
Loading
/content/journals/cmp/10.2174/1874467217666230821142839
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test