Skip to content
2000
image of Exploring the Immune-Related Molecular Mechanisms Underlying the Comorbidity of Temporal Lobe Epilepsy and Major Depressive Disorder through Integrated Data Set Analysis

Abstract

Background:

Temporal lobe epilepsy (TLE) and major depressive disorder (MDD) are prevalent and complex neurological disorders that affect individuals globally. Clinical and epidemiological studies indicate a significant comorbidity between TLE and MDD; however, the shared molecular mechanisms underlying this relationship remain unclear. This study aims to explore the common key genes associated with TLE and MDD through a systematic analysis of gene expression profiles, elucidate their underlying molecular pathological mechanisms, and evaluate the potential applications of these genes in diagnostic and therapeutic contexts.

Methods:

Brain tissue gene expression data for TLE and MDD were obtained from the GEO database. Differentially expressed genes (DEGs), weighted gene co-expression network analysis (WGCNA), functional enrichment, and protein-protein interaction (PPI) network construction were performed to identify shared gene modules. LASSO and random forest (RF) machine learning models were used to select diagnostic candidate genes, validated through ROC curve analysis. Immune infiltration analysis explored the immune involvement of key genes, while single-cell sequencing confirmed gene expression across cell types. Potential therapeutic drugs were identified using a drug database.

Results:

A total of 372 DEGs were identified as either up- or down-regulated between TLE and MDD, with WGCNA revealing nine shared gene modules. Seven hub genes, including HTR7 and CDHR2, demonstrated strong ROC performance. Immune infiltration analysis revealed changes in immune cell populations linked to key genes, confirmed by single-cell sequencing. Upadacitinib was identified as a potential therapeutic drug targeting these genes.

Conclusion:

This study identified shared gene expression profiles between TLE and MDD, emphasizing immune pathway-related molecular mechanisms. Immune infiltration analysis and single-cell sequencing underscored the significance of immune regulation in their comorbidity, while drug prediction highlights candidates for precision medicine, establishing a foundation for future research and therapeutic strategies.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmp/10.2174/0118761429374180250212114144
2025-02-18
2025-05-13
The full text of this item is not currently available.

References

  1. Bosco D.B. Tian D.S. Wu L.J. Neuroimmune interaction in seizures and epilepsy: Focusing on monocyte infiltration. FEBS J. 2020 287 22 4822 4837 10.1111/febs.15428 32473609
    [Google Scholar]
  2. Liu Y. Chen Q. Jeong H-W. Dopamine signaling regulates hematopoietic stem and progenitor cell function. Blood 2022 139 25 3668 10.1182/blood.2022016401 35737403
    [Google Scholar]
  3. Prince M. Patel V. Saxena S. Maj M. Maselko J. Phillips M.R. Rahman A. No health without mental health. Lancet 2007 370 9590 859 877 10.1016/S0140‑6736(07)61238‑0 17804063
    [Google Scholar]
  4. Lancet T. The Lancet Therapeutics in The Lancet. Lancet 2019 394 10196 360 10.1016/S0140‑6736(19)31723‑4 31379322
    [Google Scholar]
  5. Kondziella D. Alvestad S. Vaaler A. Sonnewald U. Which clinical and experimental data link temporal lobe epilepsy with depression? J. Neurochem. 2007 103 6 2136 2152 10.1111/j.1471‑4159.2007.04926.x 17887964
    [Google Scholar]
  6. Valente K.D.R. Filho B.G. Depression and temporal lobe epilepsy represent an epiphenomenon sharing similar neural networks: Clinical and brain structural evidences. Arq. Neuropsiquiatr. 2013 71 3 183 190 10.1590/S0004‑282X2013000300011 23563720
    [Google Scholar]
  7. Devinsky O. Vezzani A. O’Brien T.J. Jette N. Scheffer I.E. Curtis d.M. Perucca P. Epilepsy. Nat. Rev. Dis. Primers 2018 4 1 18024 10.1038/nrdp.2018.24 29722352
    [Google Scholar]
  8. Miller A.H. Raison C.L. The role of inflammation in depression: From evolutionary imperative to modern treatment target. Nat. Rev. Immunol. 2016 16 1 22 34 10.1038/nri.2015.5 26711676
    [Google Scholar]
  9. Guerrini P. Human milk fortifiers. Acta Paediatr. 1994 83 s402 37 39 10.1111/j.1651‑2227.1994.tb13358.x 7841618
    [Google Scholar]
  10. Luo H Zhao Q Wei W Circulating tumor DNA methylation profiles enable early diagnosis, prognosis prediction, and screening for colorectal cancer. Sci. Transl. Med. 2020 12 524 eaax7533 10.1126/scitranslmed.aax7533
    [Google Scholar]
  11. Langfelder P. Horvath S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinformatics 2008 9 1 559 10.1186/1471‑2105‑9‑559 19114008
    [Google Scholar]
  12. Tokunaga R. Naseem M. Lo J.H. Battaglin F. Soni S. Puccini A. Berger M.D. Zhang W. Baba H. Lenz H.J. B cell and B cell-related pathways for novel cancer treatments. Cancer Treat. Rev. 2019 73 10 19 10.1016/j.ctrv.2018.12.001 30551036
    [Google Scholar]
  13. Wurm M.J. Rathouz P.J. Hanlon B.M. Regularized Ordinal Regression and the ordinalNet R Package. J. Stat. Softw. 2021 99 6 10.18637/jss.v099.i06 34512213
    [Google Scholar]
  14. Tang F. Barbacioru C. Wang Y. Nordman E. Lee C. Xu N. Wang X. Bodeau J. Tuch B.B. Siddiqui A. Lao K. Surani M.A. mRNA-Seq whole-transcriptome analysis of a single cell. Nat. Methods 2009 6 5 377 382 10.1038/nmeth.1315 19349980
    [Google Scholar]
  15. Zhang X. Li T. Liu F. Chen Y. Yao J. Li Z. Huang Y. Wang J. Comparative analysis of droplet-based ultra-high-throughput single-cell RNA-seq systems. Mol. Cell 2019 73 1 130 142.e5 10.1016/j.molcel.2018.10.020 30472192
    [Google Scholar]
  16. Barrett T. Wilhite S.E. Ledoux P. Evangelista C. Kim I.F. Tomashevsky M. Marshall K.A. Phillippy K.H. Sherman P.M. Holko M. Yefanov A. Lee H. Zhang N. Robertson C.L. Serova N. Davis S. Soboleva A. NCBI GEO: Archive for functional genomics data sets—update. Nucleic Acids Res. 2012 41 D1 D991 D995 10.1093/nar/gks1193 23193258
    [Google Scholar]
  17. Ritchie M.E. Phipson B. Wu D. Hu Y. Law C.W. Shi W. Smyth G.K. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015 43 7 e47 10.1093/nar/gkv007 25605792
    [Google Scholar]
  18. Kanehisa M. Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000 28 1 27 30 10.1093/nar/28.1.27 10592173
    [Google Scholar]
  19. The Gene Ontology Consortium The Gene Ontology Resource: 20 years and still GOing strong. Nucleic Acids Res. 2019 47 D1 D330 D338 10.1093/nar/gky1055 30395331
    [Google Scholar]
  20. Yu G. Wang L.G. Han Y. He Q.Y. clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS 2012 16 5 284 287 10.1089/omi.2011.0118 22455463
    [Google Scholar]
  21. Szklarczyk D. Gable A.L. Nastou K.C. Lyon D. Kirsch R. Pyysalo S. Doncheva N.T. Legeay M. Fang T. Bork P. Jensen L.J. Mering v.C. The STRING database in 2021: Customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucl. Acids Res. 2021 49 D1 D605 D612 10.1093/nar/gkaa1074 33237311
    [Google Scholar]
  22. Franz M. Rodriguez H. Lopes C. Zuberi K. Montojo J. Bader G.D. Morris Q. GeneMANIA update 2018. Nucleic Acids Res. 2018 46 W1 W60 W64 10.1093/nar/gky311 29912392
    [Google Scholar]
  23. Yang C. Delcher C. Shenkman E. Ranka S. Machine learning approaches for predicting high cost high need patient expenditures in health care. Biomed. Eng. Online 2018 17 Suppl. 1 131 10.1186/s12938‑018‑0568‑3 30458798
    [Google Scholar]
  24. Ellis K. Kerr J. Godbole S. Lanckriet G. Wing D. Marshall S. A random forest classifier for the prediction of energy expenditure and type of physical activity from wrist and hip accelerometers. Physiol. Meas. 2014 35 11 2191 2203 10.1088/0967‑3334/35/11/2191 25340969
    [Google Scholar]
  25. Alderden J. Pepper G.A. Wilson A. Whitney J.D. Richardson S. Butcher R. Jo Y. Cummins M.R. Predicting pressure injury in critical care patients: A machine-learning model. Am. J. Crit. Care 2018 27 6 461 468 10.4037/ajcc2018525 30385537
    [Google Scholar]
  26. Li Y.R. Meng K. Yang G. Liu B.H. Li C.Q. Zhang J.Y. Zhang X.M. Diagnostic genes and immune infiltration analysis of colorectal cancer determined by LASSO and SVM machine learning methods: A bioinformatics analysis. J. Gastrointest. Oncol. 2022 13 3 1188 1203 10.21037/jgo‑22‑536 35837194
    [Google Scholar]
  27. Pan X. Jin X. Wang J. Hu Q. Dai B. Placenta inflammation is closely associated with gestational diabetes mellitus. Am. J. Transl. Res. 2021 13 5 4068 4079 34149999
    [Google Scholar]
  28. Chen B. Khodadoust M.S. Liu C.L. Newman A.M. Alizadeh A.A. Profiling tumor infiltrating immune cells with CIBERSORT. Methods Mol. Biol. 2018 1711 243 259 10.1007/978‑1‑4939‑7493‑1_12 29344893
    [Google Scholar]
  29. Zamani M. Alizadeh-Tabari S. Singh S. Loomba R. Meta‐analysis: Prevalence of, and risk factors for, non‐alcoholic fatty liver disease in patients with inflammatory bowel disease. Aliment. Pharmacol. Ther. 2022 55 8 894 907 10.1111/apt.16879 35274325
    [Google Scholar]
  30. Wishart D.S. Knox C. Guo A.C. Shrivastava S. Hassanali M. Stothard P. Chang Z. Woolsey J. DrugBank: A comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res. 2006 34 90001 D668 D672 10.1093/nar/gkj067 16381955
    [Google Scholar]
  31. Gulyaeva N.V. Stress-associated molecular and cellular hippocampal mechanisms common for epilepsy and comorbid depressive disorders. Biochemistry 2021 86 6 641 656 10.1134/S0006297921060031 34225588
    [Google Scholar]
  32. Tombini M. Assenza G. Ricci L. Lanzone J. Boscarino M. Vico C. Magliozzi A. Lazzaro D.V. Temporal lobe epilepsy and alzheimer’s disease: From preclinical to clinical evidence of a strong association. J. Alzheimers Dis. Rep. 2021 5 1 243 261 10.3233/ADR‑200286 34113782
    [Google Scholar]
  33. Vezzani A. French J. Bartfai T. Baram T.Z. The role of inflammation in epilepsy. Nat. Rev. Neurol. 2011 7 1 31 40 10.1038/nrneurol.2010.178 21135885
    [Google Scholar]
  34. Maguire J. Mechanisms of psychiatric comorbidities in epilepsy. Curr. Top. Behav. Neurosci. 2020 55 107 144 10.1007/7854_2020_192 33723802
    [Google Scholar]
  35. Wang J. Qiu S. Xu Y. Liu Z. Wen X. Hu X. Zhang R. Li M. Wang W. Huang R. Graph theoretical analysis reveals disrupted topological properties of whole brain functional networks in temporal lobe epilepsy. Clin. Neurophysiol. 2014 125 9 1744 1756 10.1016/j.clinph.2013.12.120 24686109
    [Google Scholar]
  36. Löscher W. Klitgaard H. Twyman R.E. Schmidt D. New avenues for anti-epileptic drug discovery and development. Nat. Rev. Drug Discov. 2013 12 10 757 776 10.1038/nrd4126 24052047
    [Google Scholar]
  37. Paolicelli R.C. Bisht K. Tremblay M.Ã. Fractalkine regulation of microglial physiology and consequences on the brain and behavior. Front. Cell. Neurosci. 2014 8 129 10.3389/fncel.2014.00129 24860431
    [Google Scholar]
  38. Friedman A. Kaufer D. Heinemann U. Blood–brain barrier breakdown-inducing astrocytic transformation: Novel targets for the prevention of epilepsy. Epilepsy Res. 2009 85 2-3 142 149 10.1016/j.eplepsyres.2009.03.005 19362806
    [Google Scholar]
  39. Wetherington J. Serrano G. Dingledine R. Astrocytes in the epileptic brain. Neuron 2008 58 2 168 178 10.1016/j.neuron.2008.04.002 18439402
    [Google Scholar]
  40. Avoli M. Curtis d.M. GABAergic synchronization in the limbic system and its role in the generation of epileptiform activity. Prog. Neurobiol. 2011 95 2 104 132 10.1016/j.pneurobio.2011.07.003 21802488
    [Google Scholar]
  41. Engel J. Jr Biomarkers in epilepsy: Introduction. Biomarkers Med. 2011 5 5 537 544 10.2217/bmm.11.62 22003902
    [Google Scholar]
  42. Vezzani A. Aronica E. Mazarati A. Pittman Q.J. Epilepsy and brain inflammation. Exp. Neurol. 2013 244 11 21 10.1016/j.expneurol.2011.09.033 21985866
    [Google Scholar]
  43. Najm I. Lal D. Vanegas A.M. Cendes F. Lopes-Cendes I. Palmini A. Paglioli E. Sarnat H.B. Walsh C.A. Wiebe S. Aronica E. Baulac S. Coras R. Kobow K. Cross J.H. Garbelli R. Holthausen H. Rössler K. Thom M. El-Osta A. Lee J.H. Miyata H. Guerrini R. Piao Y.S. Zhou D. Blümcke I. The ILAE consensus classification of focal cortical dysplasia: An update proposed by an ad hoc task force of the ILAE diagnostic methods commission. Epilepsia 2022 63 8 1899 1919 10.1111/epi.17301 35706131
    [Google Scholar]
  44. Devinsky O. Vezzani A. Najjar S. Lanerolle D.N.C. Rogawski M.A. Glia and epilepsy: Excitability and inflammation. Trends Neurosci. 2013 36 3 174 184 10.1016/j.tins.2012.11.008 23298414
    [Google Scholar]
  45. Miller A.H. Haroon E. Raison C.L. Felger J.C. Cytokine targets in the brain: Impact on neurotransmitters and neurocircuits. Depress. Anxiety 2013 30 4 297 306 10.1002/da.22084 23468190
    [Google Scholar]
  46. Akira S. TLR Signaling. Curr. Top. Microbiol. Immunol. 2006 311 1 16 10.1007/3‑540‑32636‑7_1 17048703
    [Google Scholar]
  47. Koo J.W. Duman R.S. IL-1β is an essential mediator of the antineurogenic and anhedonic effects of stress. Proc. Natl. Acad. Sci. USA 2008 105 2 751 756 10.1073/pnas.0708092105 18178625
    [Google Scholar]
  48. Dantzer R. O’Connor J.C. Freund G.G. Johnson R.W. Kelley K.W. From inflammation to sickness and depression: When the immune system subjugates the brain. Nat. Rev. Neurosci. 2008 9 1 46 56 10.1038/nrn2297 18073775
    [Google Scholar]
  49. Habbas S. Santello M. Becker D. Stubbe H. Zappia G. Liaudet N. Klaus F.R. Kollias G. Fontana A. Pryce C.R. Suter T. Volterra A. Neuroinflammatory TNFα impairs memory via astrocyte signaling. Cell 2015 163 7 1730 1741 10.1016/j.cell.2015.11.023 26686654
    [Google Scholar]
  50. Mullen S.A. Berkovic S.F. Genetic generalized epilepsies. Epilepsia 2018 59 6 1148 1153 10.1111/epi.14042 29741207
    [Google Scholar]
  51. Perucca P. Bahlo M. Berkovic S.F. The genetics of epilepsy. Annu. Rev. Genomics Hum. Genet. 2020 21 1 205 230 10.1146/annurev‑genom‑120219‑074937 32339036
    [Google Scholar]
  52. Thomas D. Hagan J. 5-HT7 Receptors. Curr. Drug Targets CNS Neurol. Disord. 2004 3 1 81 90 10.2174/1568007043482633 14965246
    [Google Scholar]
  53. Hedlund P.B. The 5-HT7 receptor and disorders of the nervous system: An overview. Psychopharmacology 2009 206 3 345 354 10.1007/s00213‑009‑1626‑0 19649616
    [Google Scholar]
  54. Gellynck E. Heyninck K. Andressen K.W. Haegeman G. Levy F.O. Vanhoenacker P. Craenenbroeck V.K. The serotonin 5-HT7 receptors: Two decades of research. Exp. Brain Res. 2013 230 4 555 568 10.1007/s00221‑013‑3694‑y 24042216
    [Google Scholar]
  55. Leopoldo M. Lacivita E. Berardi F. Perrone R. Hedlund P.B. Serotonin 5-HT7 receptor agents: Structure-activity relationships and potential therapeutic applications in central nervous system disorders. Pharmacol. Ther. 2011 129 2 120 148 10.1016/j.pharmthera.2010.08.013 20923682
    [Google Scholar]
  56. Duangkumpha K. Stoll T. Phetcharaburanin J. Yongvanit P. Thanan R. Techasen A. Namwat N. Khuntikeo N. Chamadol N. Roytrakul S. Mulvenna J. Mohamed A. Shah A.K. Hill M.M. Loilome W. Discovery and qualification of serum protein biomarker candidates for cholangiocarcinoma diagnosis. J. Proteome Res. 2019 18 9 3305 3316 10.1021/acs.jproteome.9b00242 31310545
    [Google Scholar]
  57. Duan W. Zhang Y.P. Hou Z. Huang C. Zhu H. Zhang C.Q. Yin Q. Novel insights into neun: From neuronal marker to splicing regulator. Mol. Neurobiol. 2016 53 3 1637 1647 10.1007/s12035‑015‑9122‑5 25680637
    [Google Scholar]
  58. Zhang S. Jiang C. Jiang L. Chen H. Huang J. Gao X. Xia Z. Tran L.J. Zhang J. Chi H. Yang G. Tian G. Construction of a diagnostic model for hepatitis B-related hepatocellular carcinoma using machine learning and artificial neural networks and revealing the correlation by immunoassay. Tum. Vir. Res. 2023 16 200271 10.1016/j.tvr.2023.200271 37774952
    [Google Scholar]
  59. Urbina M. Arroyo R. Lima L. 5-HT7 receptors and tryptophan hydroxylase in lymphocytes of rats: Mitogen activation, physical restraint or treatment with reserpine. Neuroimmunomodulation 2014 21 5 240 249 10.1159/000357148 24603678
    [Google Scholar]
/content/journals/cmp/10.2174/0118761429374180250212114144
Loading
/content/journals/cmp/10.2174/0118761429374180250212114144
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test