Skip to content
2000
image of Upregulation of miR-3130-5p Enhances Hepatocellular Carcinoma Growth by Suppressing Ferredoxin 1: miR-3130-5p Enhances HCC Growth via Inhibiting FDX1

Abstract

Background:

Hepatocellular carcinoma [HCC] is a leading cause of cancer-related mortality worldwide, necessitating the exploration of novel therapeutic targets. Although accumulating studies have identified Ferredoxin 1 [FDX1], a key regulator of cuproptosis, as a candidate tumor suppressor and potential therapeutic target, its role and mechanism remain elusive in HCC.

Methods:

The FDX1 expression was investigated in human HCC tissues and cell lines. Potential microRNAs targeting FDX1 were predicted by bioinformatic analysis and validated using qPCR screening, a dual luciferase reporter assay, MiR-3130-5p and miR-1910-3p mimics and inhibitors, overexpression plasmids, and xenograft nude mouse model. The correlation between miR-3130-5p/FDX1 axis and HCC patient prognosis was analyzed by using Kaplan-Meier survival analysis.

Results:

We demonstrated that the expression of FDX1 was downregulated in human HCC tissues and cell lines compared to non-cancerous counterparts, and the downregulation of FDX1 was associated with poor overall survival in HCC patients. Subsequent bioinformatic analysis and experimental validations showed that FDX1 expression was reduced by microRNA [miR]-3130-5p mimic while induced by miR-3130-5p inhibitor. Further, miR-3130-5p was upregulated in HCC tissues and cells, correlating with a poor prognosis of HCC patients. Besides, lentivirus-mediated overexpression of miR-3130-5p significantly enhanced HCC growth in xenograft nude mouse models. Mechanistically, it was demonstrated that miR-3130-5p inhibited FDX1 expression binding to its 3' untranslated region [3' UTR], while overexpression of FDX1 counteracted the promoting effect of miR-3130-5p on HCC cell proliferation.

Conclusion:

These findings suggest the miR-3130-5p/FDX1 axis as a prognostic biomarker as well as a potential therapeutic target in HCC.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmp/10.2174/0118761429358008250305070518
2025-03-17
2025-05-02
The full text of this item is not currently available.

References

  1. Sung H. Ferlay J. Siegel R.L. Laversanne M. Soerjomataram I. Jemal A. Bray F. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021 71 3 209 249 10.3322/caac.21660 33538338
    [Google Scholar]
  2. Singal A.G. Kanwal F. Llovet J.M. Global trends in hepatocellular carcinoma epidemiology: implications for screening, prevention and therapy. Nat. Rev. Clin. Oncol. 2023 20 12 864 884 10.1038/s41571‑023‑00825‑3 37884736
    [Google Scholar]
  3. Siegel R.L. Miller K.D. Wagle N.S. Jemal A. Cancer statistics, 2023. CA Cancer J. Clin. 2023 73 1 17 48 10.3322/caac.21763 36633525
    [Google Scholar]
  4. Li L. Zhang Y. Zhou Y. Hu H. Hu Y. Georgiades C. Mao H.Q. Selaru F.M. Quaternary nanoparticles enable sustained release of bortezomib for hepatocellular carcinoma. Hepatology 2022 76 6 1660 1672 10.1002/hep.32584 35596926
    [Google Scholar]
  5. Pan M. Luo M. Liu L. EGR1 suppresses HCC growth and aerobic glycolysis by transcriptionally downregulating PFKL. J. Experim. Clini. Canc. Res. CR (East Lansing Mich.) 2024 43 1 35
    [Google Scholar]
  6. Xie M. Cheng B. Yu S. He Y. Cao Y. Zhou T. Han K. Dai R. Wang R. Cuproptosis-related mir-21-5p/fdx1 axis in clear cell renal cell carcinoma and its potential impact on tumor microenvironment. Cells 2022 12 1 173 10.3390/cells12010173 36611966
    [Google Scholar]
  7. Carneiro B.A. El-Deiry W.S. Targeting apoptosis in cancer therapy. Nat. Rev. Clin. Oncol. 2020 17 7 395 417 10.1038/s41571‑020‑0341‑y 32203277
    [Google Scholar]
  8. Yang Y.C. Jiang Q. Yang K.P. Wang L. Sethi G. Ma Z. Extracellular vesicle-mediated ferroptosis, pyroptosis, and necroptosis: potential clinical applications in cancer therapy. Cell Death Discov. 2024 10 1 23 10.1038/s41420‑024‑01799‑6 38216595
    [Google Scholar]
  9. Chen B. Yan Y. Yang Y. Cao G. Wang X. Wang Y. Wan F. Yin Q. Wang Z. Li Y. Wang L. Xu B. You F. Zhang Q. Wang Y. A pyroptosis nanotuner for cancer therapy. Nat. Nanotechnol. 2022 17 7 788 798 10.1038/s41565‑022‑01125‑0 35606443
    [Google Scholar]
  10. Du T. Gao J. Li P. Wang Y. Qi Q. Liu X. Li J. Wang C. Du L. Pyroptosis, metabolism, and tumor immune microenvironment. Clin. Transl. Med. 2021 11 8 e492 10.1002/ctm2.492 34459122
    [Google Scholar]
  11. Jiang X. Stockwell B.R. Conrad M. Ferroptosis: mechanisms, biology and role in disease. Nat. Rev. Mol. Cell Biol. 2021 22 4 266 282 10.1038/s41580‑020‑00324‑8 33495651
    [Google Scholar]
  12. Tong X. Tang R. Xiao M. Xu J. Wang W. Zhang B. Liu J. Yu X. Shi S. Targeting cell death pathways for cancer therapy: recent developments in necroptosis, pyroptosis, ferroptosis, and cuproptosis research. J. Hematol. Oncol. 2022 15 1 174 10.1186/s13045‑022‑01392‑3 36482419
    [Google Scholar]
  13. Tang D. Kroemer G. Kang R. Targeting cuproplasia and cuproptosis in cancer. Nat. Rev. Clin. Oncol. 2024 21 5 370 388 10.1038/s41571‑024‑00876‑0 38486054
    [Google Scholar]
  14. Xu Y. Liu S.Y. Zeng L. Ma H. Zhang Y. Yang H. Liu Y. Fang S. Zhao J. Xu Y. Jr C.R.A. He Y. Dai Z. Pan Y. An enzyme‐engineered nonporous copper(i) coordination polymer nanoplatform for cuproptosis‐based synergistic cancer therapy. Adv. Mater. 2023 35 13 2300773 10.1002/adma.202300773 36987684
    [Google Scholar]
  15. Zheng J. Ge H. Guo M. Zhang T. Hu Q. Yao Q. Long S. Sun W. Fan J. Du J. Peng X. Photoinduced cuproptosis with tumor‐specific for metastasis‐inhibited cancer therapy. Small 2024 20 10 2304407 10.1002/smll.202304407 37880907
    [Google Scholar]
  16. Wang W. Lu K. Jiang X. Ferroptosis inducers enhanced cuproptosis induced by copper ionophores in primary liver cancer. J. Experim. Clini. Canc. Res. CR (East Lansing Mich.) 2023 42 1 142
    [Google Scholar]
  17. Sun L. Zhang Y. Yang B. Sun S. Zhang P. Luo Z. Feng T. Cui Z. Zhu T. Li Y. Qiu Z. Fan G. Huang C. Lactylation of METTL16 promotes cuproptosis via m6A-modification on FDX1 mRNA in gastric cancer. Nat. Commun. 2023 14 1 6523 10.1038/s41467‑023‑42025‑8 37863889
    [Google Scholar]
  18. Xue Q. Kang R. Klionsky D.J. Tang D. Liu J. Chen X. Copper metabolism in cell death and autophagy. Autophagy 2023 19 8 2175 2195 10.1080/15548627.2023.2200554 37055935
    [Google Scholar]
  19. Hussen B.M. Rasul M.F. Abdullah S.R. Hidayat H.J. Faraj G.S.H. Ali F.A. Salihi A. Baniahmad A. Ghafouri-Fard S. Rahman M. Glassy M.C. Branicki W. Taheri M. Targeting miRNA by CRISPR/Cas in cancer: advantages and challenges. Mil. Med. Res. 2023 10 1 32 10.1186/s40779‑023‑00468‑6 37460924
    [Google Scholar]
  20. Diener C. Keller A. Meese E. Emerging concepts of miRNA therapeutics: from cells to clinic. Trends Genet. 2022 38 6 613 626 10.1016/j.tig.2022.02.006 35303998
    [Google Scholar]
  21. Xu W. Huang Y. Lei Z. Zhou J. miR-939-3p induces sarcoma proliferation and poor prognosis via suppressing BATF2. Front. Oncol. 2024 14 1346531 10.3389/fonc.2024.1346531 38420020
    [Google Scholar]
  22. Huang Y. Wang S. Zhou J. Liu Y. Du C. Yang K. Bi X. Liu M. Han W. Wang K. Xiong J. Wang S. Wang Y. Nie L. Liu C. Zhang D. Gu J. Zeng C. Zhao J. IRF1-mediated downregulation of PGC1α contributes to cardiorenal syndrome type 4. Nat. Commun. 2020 11 1 4664 10.1038/s41467‑020‑18519‑0 32938919
    [Google Scholar]
  23. Zhou J. Lei Z. Chen J. Liao S. Chen Y. Liu C. Huang S. Li L. Zhang Y. Wang P. Huang Y. Li J. Liang H. Nuclear export of BATF2 enhances colorectal cancer proliferation through binding to CRM1. Clin. Transl. Med. 2023 13 5 e1260 10.1002/ctm2.1260 37151195
    [Google Scholar]
  24. Győrffy B. Discovery and ranking of the most robust prognostic biomarkers in serous ovarian cancer. Geroscience 2023 45 3 1889 1898 10.1007/s11357‑023‑00742‑4 36856946
    [Google Scholar]
  25. Bartha Á. Győrffy B. TNMplot.com: a web tool for the comparison of gene expression in normal, tumor and metastatic tissues. Int. J. Mol. Sci. 2021 22 5 2622 10.3390/ijms22052622 33807717
    [Google Scholar]
  26. Menyhárt O. Nagy Á. Győrffy B. Determining consistent prognostic biomarkers of overall survival and vascular invasion in hepatocellular carcinoma. R. Soc. Open Sci. 2018 5 12 181006 10.1098/rsos.181006 30662724
    [Google Scholar]
  27. Ally A. Balasundaram M. Carlsen R. Chuah E. Clarke A. Dhalla N. Holt R.A. Jones S.J.M. Lee D. Ma Y. Marra M.A. Mayo M. Moore R.A. Mungall A.J. Schein J.E. Sipahimalani P. Tam A. Thiessen N. Cheung D. Wong T. Brooks D. Robertson A.G. Bowlby R. Mungall K. Sadeghi S. Xi L. Covington K. Shinbrot E. Wheeler D.A. Gibbs R.A. Donehower L.A. Wang L. Bowen J. Gastier-Foster J.M. Gerken M. Helsel C. Leraas K.M. Lichtenberg T.M. Ramirez N.C. Wise L. Zmuda E. Gabriel S.B. Meyerson M. Cibulskis C. Murray B.A. Shih J. Beroukhim R. Cherniack A.D. Schumacher S.E. Saksena G. Pedamallu C.S. Chin L. Getz G. Noble M. Zhang H. Heiman D. Cho J. Gehlenborg N. Saksena G. Voet D. Lin P. Frazer S. Defreitas T. Meier S. Lawrence M. Kim J. Creighton C.J. Muzny D. Doddapaneni H.V. Hu J. Wang M. Morton D. Korchina V. Han Y. Dinh H. Lewis L. Bellair M. Liu X. Santibanez J. Glenn R. Lee S. Hale W. Parker J.S. Wilkerson M.D. Hayes D.N. Reynolds S.M. Shmulevich I. Zhang W. Liu Y. Iype L. Makhlouf H. Torbenson M.S. Kakar S. Yeh M.M. Jain D. Kleiner D.E. Jain D. Dhanasekaran R. El-Serag H.B. Yim S.Y. Weinstein J.N. Mishra L. Zhang J. Akbani R. Ling S. Ju Z. Su X. Hegde A.M. Mills G.B. Lu Y. Chen J. Lee J-S. Sohn B.H. Shim J.J. Tong P. Aburatani H. Yamamoto S. Tatsuno K. Li W. Xia Z. Stransky N. Seiser E. Innocenti F. Gao J. Kundra R. Zhang H. Heins Z. Ochoa A. Sander C. Ladanyi M. Shen R. Arora A. Sanchez-Vega F. Schultz N. Kasaian K. Radenbaugh A. Bissig K-D. Moore D.D. Totoki Y. Nakamura H. Shibata T. Yau C. Graim K. Stuart J. Haussler D. Slagle B.L. Ojesina A.I. Katsonis P. Koire A. Lichtarge O. Hsu T-K. Ferguson M.L. Demchok J.A. Felau I. Sheth M. Tarnuzzer R. Wang Z. Yang L. Zenklusen J.C. Zhang J. Hutter C.M. Sofia H.J. Verhaak R.G.W. Zheng S. Lang F. Chudamani S. Liu J. Lolla L. Wu Y. Naresh R. Pihl T. Sun C. Wan Y. Benz C. Perou A.H. Thorne L.B. Boice L. Huang M. Rathmell W.K. Noushmehr H. Saggioro F.P. Tirapelli D.P.C. Junior C.G.C. Mente E.D. Silva O.C. Jr Trevisan F.A. Kang K.J. Ahn K.S. Giama N.H. Moser C.D. Giordano T.J. Vinco M. Welling T.H. Crain D. Curley E. Gardner J. Mallery D. Morris S. Paulauskis J. Penny R. Shelton C. Shelton T. Kelley R. Park J-W. Chandan V.S. Roberts L.R. Bathe O.F. Hagedorn C.H. Auman J.T. O’Brien D.R. Kocher J-P.A. Jones C.D. Mieczkowski P.A. Perou C.M. Skelly T. Tan D. Veluvolu U. Balu S. Bodenheimer T. Hoyle A.P. Jefferys S.R. Meng S. Mose L.E. Shi Y. Simons J.V. Soloway M.G. Roach J. Hoadley K.A. Baylin S.B. Shen H. Hinoue T. Bootwalla M.S. Van Den Berg D.J. Weisenberger D.J. Lai P.H. Holbrook A. Berrios M. Laird P.W. Comprehensive and integrative genomic characterization of hepatocellular carcinoma. Cell 2017 169 7 1327 1341.e23 10.1016/j.cell.2017.05.046 28622513
    [Google Scholar]
  28. Huang Y. Zhou J. Wang S. Xiong J. Chen Y. Liu Y. Xiao T. Li Y. He T. Li Y. Bi X. Yang K. Han W. Qiao Y. Yu Y. Zhao J. Indoxyl sulfate induces intestinal barrier injury through IRF1-DRP1 axis-mediated mitophagy impairment. Theranostics 2020 10 16 7384 7400 10.7150/thno.45455 32641998
    [Google Scholar]
  29. Brown Z.J. Tsilimigras D.I. Ruff S.M. Mohseni A. Kamel I.R. Cloyd J.M. Pawlik T.M. Management of hepatocellular carcinoma. JAMA Surg. 2023 158 4 410 420 10.1001/jamasurg.2022.7989 36790767
    [Google Scholar]
  30. Singal A.G. Lampertico P. Nahon P. Epidemiology and surveillance for hepatocellular carcinoma: New trends. J. Hepatol. 2020 72 2 250 261 10.1016/j.jhep.2019.08.025 31954490
    [Google Scholar]
  31. Aubert L. Nandagopal N. Steinhart Z. Lavoie G. Nourreddine S. Berman J. Saba-El-Leil M.K. Papadopoli D. Lin S. Hart T. Macleod G. Topisirovic I. Gaboury L. Fahrni C.J. Schramek D. Meloche S. Angers S. Roux P.P. Copper bioavailability is a KRAS-specific vulnerability in colorectal cancer. Nat. Commun. 2020 11 1 3701 10.1038/s41467‑020‑17549‑y 32709883
    [Google Scholar]
  32. Zou S. Chen S. Rao G. Zhang G. Ma M. Peng B. Du X. Huang W. Lin W. Tian Y. Fu X. Extrachromosomal circular MiR-17-92 amplicon promotes HCC. Hepatology 2024 79 1 79 95 10.1097/HEP.0000000000000435 37125628
    [Google Scholar]
  33. Komoll R.M. Hu Q. Olarewaju O. von Döhlen L. Yuan Q. Xie Y. Tsay H.C. Daon J. Qin R. Manns M.P. Sharma A.D. Goga A. Ott M. Balakrishnan A. MicroRNA-342-3p is a potent tumour suppressor in hepatocellular carcinoma. J. Hepatol. 2021 74 1 122 134 10.1016/j.jhep.2020.07.039 32738449
    [Google Scholar]
  34. Chen F. Zhong Z. Tan H.Y. Guo W. Zhang C. Cheng C.S. Wang N. Ren J. Feng Y. Suppression of lncRNA MALAT1 by betulinic acid inhibits hepatocellular carcinoma progression by targeting IAPs via miR‐22‐3p. Clin. Transl. Med. 2020 10 6 e190 10.1002/ctm2.190 33135336
    [Google Scholar]
  35. Zhan J. Sun S. Chen Y. Xu C. Chen Q. Li M. Pei Y. Li Q. MiR‐3130‐5p is an intermediate modulator of 2q33 and influences the invasiveness of lung adenocarcinoma by targeting NDUFS1. Cancer Med. 2021 10 11 3700 3714 10.1002/cam4.3885 33978320
    [Google Scholar]
  36. Tang J. Ma W. Zeng Q. Tan J. Cao K. Luo L. Identification of miRNA-based signature as a novel potential prognostic biomarker in patients with breast cancer. Dis. Markers 2019 2019 1 17 10.1155/2019/3815952 31976020
    [Google Scholar]
/content/journals/cmp/10.2174/0118761429358008250305070518
Loading
/content/journals/cmp/10.2174/0118761429358008250305070518
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keywords: miR-3130-5p ; Prognosis ; Ferredoxin 1 ; Therapeutic target ; Biomarker
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test