Skip to content
2000
Volume 17, Issue 1
  • ISSN: 1874-4672
  • E-ISSN: 1874-4702

Abstract

Cancer is one of the most deadly diseases involving dysregulated cell proliferation. Chemotherapeutic drugs have serious drawbacks of nonspecific toxicity and drug resistance. Tyrosine kinases are a significant class of enzymes of protein kinases. The four members of the trans-membrane family of tyrosine kinase receptors known as the human epidermal growth factor receptors (EGFR), ErbB1/HER1, ErbB2/HER2/neu, ErbB3/HER3, and ErbB4/HER4, are overexpressed in many forms of cancer. These receptors are crucial for cell division, invasion, metastasis, angiogenesis, and uncontrolled activation of cancer cells. In this context, an attractive combination of anticancer drug targets is ErbB1 and ErbB2. Numerous cancer types exhibit overexpression of ErbB1 and ErbB2, which is linked to poor prognosis and causes resistance to ErbB1-targeted therapy. Further, it has been reported in recent years that the use of peptides as anticancer agents have the potential to circumvent the drawbacks of the currently used chemotherapeutic drugs. Among them, short peptides have several advantages when compared to small molecules. The present report reviews the importance of tyrosine kinases as targets for cancer, the role of peptides as therapeutic agents, and the investigations that have been carried out by earlier workers for targeting both ErbB1 and ErbB2 using therapeutic peptides.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmp/10.2174/1874467216666230224104950
2023-04-11
2024-11-23
Loading full text...

Full text loading...

/deliver/fulltext/cmp/17/1/CMP-17-E240223214012.html?itemId=/content/journals/cmp/10.2174/1874467216666230224104950&mimeType=html&fmt=ahah

References

  1. WHO/Newsroom/Fact sheets/Cancer.2020
    [Google Scholar]
  2. KurreckJ SteinCA Molecular medicine: An introduction.John Wiley & Sons2015
    [Google Scholar]
  3. TorreL.A. BrayF. SiegelR.L. FerlayJ. Lortet-TieulentJ. JemalA. Global cancer statistics, 2012.CA Cancer J. Clin.20156528710810.3322/caac.2126225651787
    [Google Scholar]
  4. BrayF. MøllerB. Predicting the future burden of cancer.Nat. Rev. Cancer200661637410.1038/nrc178116372017
    [Google Scholar]
  5. FitzmauriceC. DickerD. PainA. HamavidH. Moradi-LakehM. MacIntyreM.F. AllenC. HansenG. WoodbrookR. WolfeC. HamadehR.R. MooreA. WerdeckerA. GessnerB.D. Te AoB. McMahonB. KarimkhaniC. YuC. CookeG.S. SchwebelD.C. CarpenterD.O. PereiraD.M. NashD. KaziD.S. De LeoD. PlassD. UkwajaK.N. ThurstonG.D. Yun JinK. SimardE.P. MillsE. ParkE.K. Catalá-LópezF. deVeberG. GotayC. KhanG. HosgoodH.D.III SantosI.S. LeasherJ.L. SinghJ. LeighJ. JonasJ.B. SanabriaJ. BeardsleyJ. JacobsenK.H. TakahashiK. FranklinR.C. RonfaniL. MonticoM. NaldiL. TonelliM. GeleijnseJ. PetzoldM. ShrimeM.G. YounisM. YonemotoN. BreitbordeN. YipP. PourmalekF. LotufoP.A. EsteghamatiA. HankeyG.J. AliR. LuneviciusR. MalekzadehR. DellavalleR. WeintraubR. LucasR. HayR. Rojas-RuedaD. WestermanR. SepanlouS.G. NolteS. PattenS. WeichenthalS. AberaS.F. FereshtehnejadS.M. ShiueI. DriscollT. VasankariT. AlsharifU. Rahimi-MovagharV. VlassovV.V. MarcenesW.S. MekonnenW. MelakuY.A. YanoY. ArtamanA. CamposI. MacLachlanJ. MuellerU. KimD. TrilliniM. EshratiB. WilliamsH.C. ShibuyaK. DandonaR. MurthyK. CowieB. AmareA.T. AntonioC.A. Castañeda-OrjuelaC. van GoolC.H. ViolanteF. OhI.H. DeribeK. SoreideK. KnibbsL. KereselidzeM. GreenM. CardenasR. RoyN. TillmannT. LiY. KruegerH. MonastaL. DeyS. SheikhbahaeiS. Hafezi-NejadN. KumarG.A. SreeramareddyC.T. DandonaL. WangH. VollsetS.E. MokdadA. SalomonJ.A. LozanoR. VosT. ForouzanfarM. LopezA. MurrayC. NaghaviM. The global burden of cancer 2013.JAMA Oncol.20151450552710.1001/jamaoncol.2015.073526181261
    [Google Scholar]
  6. BurrellR.A. McGranahanN. BartekJ. SwantonC. The causes and consequences of genetic heterogeneity in cancer evolution.Nature2013501746733834510.1038/nature1262524048066
    [Google Scholar]
  7. LangleyR.R. FidlerI.J. Tumor cell-organ microenvironment interactions in the pathogenesis of cancer metastasis.Endocr. Rev.200728329732110.1210/er.2006‑002717409287
    [Google Scholar]
  8. KakdeD. JainD. ShrivastavaV. KakdeR. PatilA.T. Cancer therapeutics-opportunities, challenges and advances in drug delivery.J. Appl. Pharm. Sci.20111910
    [Google Scholar]
  9. SrivastavaJ.K. PillaiG.G. BhatH.R. VermaA. SinghU.P. Design and discovery of novel monastrol-1,3,5-triazines as potent anti-breast cancer agent via attenuating Epidermal Growth Factor Receptor tyrosine kinase.Sci. Rep.201771585110.1038/s41598‑017‑05934‑528724908
    [Google Scholar]
  10. ManningG. WhyteD.B. MartinezR. HunterT. SudarsanamS. The protein kinase complement of the human genome.Science200229856001912193410.1126/science.107576212471243
    [Google Scholar]
  11. AlonsoA. SasinJ. BottiniN. FriedbergI. FriedbergI. OstermanA. GodzikA. HunterT. DixonJ. MustelinT. Protein tyrosine phosphatases in the human genome.Cell2004117669971110.1016/j.cell.2004.05.01815186772
    [Google Scholar]
  12. AhsanAarif RamanandS.G. BerginI.L. ZhaoL. WhiteheadC.E. RehemtullaA. RayD. PrattW.B. LawrenceT.S NiyatiM.K. Efficacy of an EGFR-specific peptide against EGFR-dependent cancer cell lines and tumor xenografts.Neoplasia2014162105114
    [Google Scholar]
  13. LemmonM.A. SchlessingerJ. Cell signaling by receptor tyrosine kinases.Cell201014171117113410.1016/j.cell.2010.06.01120602996
    [Google Scholar]
  14. KennedyS.P. HastingsJ.F. HanJ.Z.R. CroucherD.R. The under-appreciated promiscuity of the epidermal growth factor receptor family.Front. Cell Dev. Biol.201648810.3389/fcell.2016.0008827597943
    [Google Scholar]
  15. SchechterA.L. SternD.F. VaidyanathanL. DeckerS.J. DrebinJ.A. GreeneM.I. WeinbergR.A. The neu oncogene: An erb-B-related gene encoding a 185,000-Mr tumour antigen.Nature1984312599451351610.1038/312513a06095109
    [Google Scholar]
  16. RoskoskiR.Jr Small molecule inhibitors targeting the EGFR/ErbB family of protein-tyrosine kinases in human cancers.Pharmacol. Res.201913939541110.1016/j.phrs.2018.11.01430500458
    [Google Scholar]
  17. KnightonD.R. ZhengJ. Ten EyckL.F. AshfordV.A. XuongN.H. TaylorS.S. SowadskiJ.M. Crystal structure of the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase.Science1991253501840741410.1126/science.18623421862342
    [Google Scholar]
  18. WangXiaoyu XuLinfeng LaoYuanzhi ZhangHongmei XuHongxi Natural products targeting EGFR signaling pathways as potential anticancer drugs.Curr. Protein Pept. Sci.2018194380388
    [Google Scholar]
  19. WeeP. WangZ. Epidermal growth factor receptor cell proliferation signaling pathways.Cancers2017145
    [Google Scholar]
  20. ElmetwallyS.A. SaiedK.F. EissaI.H. ElkaeedE.B. Design, synthesis and anticancer evaluation of thieno[2,3-d]pyrimidine derivatives as dual EGFR/HER2 inhibitors and apoptosis inducers.Bioorg. Chem.20198810294410.1016/j.bioorg.2019.10294431051400
    [Google Scholar]
  21. AhammadI. Rafiul IslamMd. MahmudA. IslamS. HossainM. Virtual screening to identify novel inhibitors of pan ERBB family of proteins from natural products with known anti-tumorigenic properties.Int. J. Pept. Res. Ther.2019251923930
    [Google Scholar]
  22. WangY. Breast cancer metastasis driven by ErbB2 and 14-3-3zeta: A division of labor.Cell Adhes. Migr.2010417910.4161/cam.4.1.1049720009581
    [Google Scholar]
  23. YangL. LiY. BhattacharyaA. ZhangY. Dual inhibition of ErbB1 and ErbB2 in cancer by recombinant human prolidase mutant hPEPD-G278D.Oncotarget2106727423404235210.18632/oncotarget.985127286447
    [Google Scholar]
  24. HuJ.B. DongM.J. ZhangJ. HolisticA. A holistic in silico approach to develop novel inhibitors targeting ErbB1 and ErbB2 kinases.Trop. J. Pharm. Res.201615223123910.4314/tjpr.v15i2.3
    [Google Scholar]
  25. ChiuC.G. MasoudiH. LeungS. VoducD.K. GilksB. HuntsmanD.G. WisemanS.M. HER-3 overexpression is prognostic of reduced breast cancer survival: A study of 4046 patients.Ann. Surg.201025161107111610.1097/SLA.0b013e3181dbb77e20485140
    [Google Scholar]
  26. YardenY. SliwkowskiM.X. Untangling the ErbB signalling network.Nat. Rev. Mol. Cell Biol.20012212713710.1038/3505207311252954
    [Google Scholar]
  27. TebbuttN. PedersenM.W. JohnsT.G. Targeting the ERBB family in cancer: Couples therapy.Nat. Rev. Cancer201313966367310.1038/nrc355923949426
    [Google Scholar]
  28. ChandrasekarM.J.N. PatnaikS.K. NagarjunaP. RamamurthiD. SwaroopA.K. Targeting of ErbB1, ErbB2, and their Dual Targeting Using Small Molecules and Natural Peptides: Blocking EGFR Cell Signaling Pathways in Cancer: A Mini-Review.Mini Rev. Med. Chem.202222222831284610.2174/138955752266622051215244835549881
    [Google Scholar]
  29. RaghavendraN.M. PingiliD. KadasiS. MettuA. PrasadS.V.U.M. Dual or multi-targeting inhibitors: The next generation anticancer agents.Eur. J. Med. Chem.20181431277130010.1016/j.ejmech.2017.10.02129126724
    [Google Scholar]
  30. Martinez-GarciaM. BanerjiU. AlbanellJ. BahledaR. DollyS. Kraeber-BodéréF. RojoF. RoutierE. GuarinE. XuZ.X. RuegerR. TessierJ.J.L. ShochatE. BlotnerS. NaegelenV.M. SoriaJ.C. First-in-human, phase I dose-escalation study of the safety, pharmacokinetics, and pharmacodynamics of RO5126766, a first-in-class dual MEK/RAF inhibitor in patients with solid tumors.Clin. Cancer Res.201218174806481910.1158/1078‑0432.CCR‑12‑074222761467
    [Google Scholar]
  31. ZhangQ. ZhaiS. LiL. LiX. ZhouH. LiuA. SuG. MuQ. DuY. YanB. Anti-tumor selectivity of a novel Tubulin and HSP90 dual-targeting inhibitor in non-small cell lung cancer models.Biochem. Pharmacol.201386335136010.1016/j.bcp.2013.05.01923743233
    [Google Scholar]
  32. LiQ. WuJ. ZhengH. LiuK. GuoT.L. LiuY. EblenS.T. GrantS. ZhangS. Discovery of 3-(2-aminoethyl)-5-(3-phenyl-propylidene)-thiazolidine-2,4-dione as a dual inhibitor of the Raf/MEK/ERK and the PI3K/Akt signaling pathways.Bioorg. Med. Chem. Lett.201020154526453010.1016/j.bmcl.2010.06.03020580230
    [Google Scholar]
  33. KnightS.D. AdamsN.D. BurgessJ.L. ChaudhariA.M. DarcyM.G. DonatelliC.A. LuengoJ.I. NewlanderK.A. ParrishC.A. RidgersL.H. SarpongM.A. SchmidtS.J. Van AllerG.S. CarsonJ.D. DiamondM.A. ElkinsP.A. GardinerC.M. GarverE. GilbertS.A. GontarekR.R. JacksonJ.R. KershnerK.L. LuoL. RahaK. SherkC.S. SungC.M. SuttonD. TumminoP.J. WegrzynR.J. AugerK.R. DhanakD. Discovery of GSK2126458, a highly potent inhibitor of PI3K and the mammalian target of rapamycin.ACS Med. Chem. Lett.201011394310.1021/ml900028r24900173
    [Google Scholar]
  34. DingX. SalphatiL. KimA. MorinelloE. WongL. PangJ. PerceyS. MengM. ReuschelS. DeanB. Determination of GDC-0980 (apitolisib), a small molecule dual phosphatidylinositide 3-kinase/mammalian target of rapamycin inhibitor in dog plasma by LC-MS/MS to support a GLP toxicology study.Biomed. Chromatogr.20152981274127910.1002/bmc.341725677784
    [Google Scholar]
  35. NishimuraN. SiegmundA. LiuL. YangK. BryanM.C. AndrewsK.L. BoY. BookerS.K. CaenepeelS. FreemanD. LiaoH. McCarterJ. MulladyE.L. San MiguelT. SubramanianR. TamayoN. WangL. WhittingtonD.A. ZalamedaL. ZhangN. HughesP.E. NormanM.H. Phospshoinositide 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) dual inhibitors: Discovery and structure-activity relationships of a series of quinoline and quinoxaline derivatives.J. Med. Chem.201154134735475110.1021/jm200386s21612232
    [Google Scholar]
  36. SchrauwenS. DepreeuwJ. CoenegrachtsL. HermansE. LambrechtsD. AmantF. Dual blockade of PI3K/AKT/mTOR (NVP-BEZ235) and Ras/Raf/MEK (AZD6244) pathways synergistically inhibit growth of primary endometrioid endometrial carcinoma cultures, whereas NVP-BEZ235 reduces tumor growth in the corresponding xenograft models.Gynecol. Oncol.2015138116517310.1016/j.ygyno.2015.04.02825933683
    [Google Scholar]
  37. IqbalS. GoldmanB. Fenoglio-PreiserC.M. LenzH.J. ZhangW. DanenbergK.D. ShibataS.I. BlankeC.D. Southwest Oncology Group study S0413: A phase II trial of lapatinib (GW572016) as first-line therapy in patients with advanced or metastatic gastric cancer.Ann. Oncol.201122122610261510.1093/annonc/mdr02121415234
    [Google Scholar]
  38. IshikawaT. SetoM. BannoH. KawakitaY. OoruiM. TaniguchiT. OhtaY. TamuraT. NakayamaA. MikiH. KamiguchiH. TanakaT. HabukaN. SogabeS. YanoJ. AertgeertsK. KamiyamaK. Design and synthesis of novel human epidermal growth factor receptor 2 (HER2)/epidermal growth factor receptor (EGFR) dual inhibitors bearing a pyrrolo[3,2-d]pyrimidine scaffold.J. Med. Chem.201154238030805010.1021/jm200863422003817
    [Google Scholar]
  39. ChaM.Y. LeeK.O. KangS.J. JungY.H. SongJ.Y. ChoiK.J. ByunJ.Y. LeeH.J. LeeG.S. ParkS.B. KimM.S. Synthesis and biological evaluation of pyrimidine-based dual inhibitors of human epidermal growth factor receptor 1 (HER-1) and HER-2 tyrosine kinases.J. Med. Chem.20125562846285710.1021/jm201758g22372864
    [Google Scholar]
  40. PengC. BrainJ. HuY. GoodrichA. KongL. GrayzelD. PakR. ReadM. LiS. Inhibition of heat shock protein 90 prolongs survival of mice with BCR-ABL-T315I–induced leukemia and suppresses leukemic stem cells.Blood2007110267868510.1182/blood‑2006‑10‑05409817395781
    [Google Scholar]
  41. WuL. YuJ. ChenR. LiuY. LouL. WuY. HuangL. FanY. GaoP. HuangM. WuY. ChenY. XuJ. Dual inhibition of Bcr-Abl and Hsp90 by C086 potently inhibits the proliferation of imatinib-resistant CML cells.Clin. Cancer Res.201521483384310.1158/1078‑0432.CCR‑13‑331725501124
    [Google Scholar]
  42. WeisbergE. ManleyP.W. Cowan-JacobS.W. HochhausA. GriffinJ.D. Second generation inhibitors of BCR-ABL for the treatment of imatinib-resistant chronic myeloid leukaemia.Nat. Rev. Cancer20077534535610.1038/nrc212617457302
    [Google Scholar]
  43. HuangW.S. ZhuX. WangY. AzamM. WenD. SundaramoorthiR. ThomasR.M. LiuS. BandaG. LentiniS.P. DasS. XuQ. KeatsJ. WangF. WardwellS. NingY. SnodgrassJ.T. BroudyM.I. RussianK. DaleyG.Q. IuliucciJ. DalgarnoD.C. ClacksonT. SawyerT.K. ShakespeareW.C. 9-(Arenethenyl)purines as dual Src/Abl kinase inhibitors targeting the inactive conformation: Design, synthesis, and biological evaluation.J. Med. Chem.200952154743475610.1021/jm900166t19572547
    [Google Scholar]
  44. YakesF.M. ChenJ. TanJ. YamaguchiK. ShiY. YuP. QianF. ChuF. BentzienF. CancillaB. OrfJ. YouA. LairdA.D. EngstS. LeeL. LeschJ. ChouY.C. JolyA.H. Cabozantinib (XL184), a novel MET and VEGFR2 inhibitor, simultaneously suppresses metastasis, angiogenesis, and tumor growth.Mol. Cancer Ther.201110122298230810.1158/1535‑7163.MCT‑11‑026421926191
    [Google Scholar]
  45. ZhanZ. AiJ. LiuQ. JiY. ChenT. XuY. GengM. DuanW. Discovery of anilinopyrimidines as dual inhibitors of c-Met and VEGFR-2: synthesis, SAR, and cellular activity.ACS Med. Chem. Lett.20145667367810.1021/ml500066m24944742
    [Google Scholar]
  46. CheklerE.L.P. KiselyovA.S. OuyangX. ChenX. PattaropongV. WangY. TumaM.C. DoodyJ.F. Discovery of dual VEGFR-2 and tubulin inhibitors with in vivo efficacy.ACS Med. Chem. Lett.20101948849210.1021/ml100156824900236
    [Google Scholar]
  47. GuerrantW. PatilV. CanzoneriJ.C. OyelereA.K. Dual targeting of histone deacetylase and topoisomerase II with novel bifunctional inhibitors.J. Med. Chem.20125541465147710.1021/jm200799p22260166
    [Google Scholar]
  48. SeoY.H. Dual inhibitors against topoisomerases and histone deacetylases.J. Cancer Prev.2015202859110.15430/JCP.2015.20.2.8526151040
    [Google Scholar]
  49. ChenL. WilsonD. JayaramH.N. PankiewiczK.W. Dual inhibitors of inosine monophosphate dehydrogenase and histone deacetylases for cancer treatment.J. Med. Chem.200750266685669110.1021/jm070864w18038969
    [Google Scholar]
  50. ChenL. PetrelliR. GaoG. WilsonD.J. McLeanG.T. JayaramH.N. ShamY.Y. PankiewiczK.W. Dual inhibitors of inosine monophosphate dehydrogenase and histone deacetylase based on a cinnamic hydroxamic acid core structure.Bioorg. Med. Chem.201018165950596410.1016/j.bmc.2010.06.08120650640
    [Google Scholar]
  51. TanL. NomanbhoyT. GurbaniD. PatricelliM. HunterJ. GengJ. HerhausL. ZhangJ. PaulsE. HamY. ChoiH.G. XieT. DengX. BuhrlageS.J. SimT. CohenP. SapkotaG. WestoverK.D. GrayN.S. Discovery of type II inhibitors of TGFβ-activated kinase 1 (TAK1) and mitogen-activated protein kinase kinase kinase kinase 2 (MAP4K2).J. Med. Chem.201558118319610.1021/jm500480k25075558
    [Google Scholar]
  52. GangjeeA. YuJ. KisliukR.L. HaileW.H. SobreroG. McGuireJ.J. Design, synthesis, and biological activities of classical N-{4-[2-(2-amino-4-ethylpyrrolo [2, 3-d] pyrimidin-5-yl) ethyl] benzoyl}-L-glutamic acid and its 6-methyl derivative as potential dual inhibitors of thymidylate synthase and dihydrofolate reductase and as potential antitumor agents.J. Med. Chem.200346459160010.1021/jm020353412570380
    [Google Scholar]
  53. TanakaY. AikawaK. NishidaG. HommaM. SogabeS. IgakiS. HayanoY. SameshimaT. MiyahisaI. KawamotoT. TawadaM. ImaiY. InazukaM. ChoN. ImaedaY. IshikawaT. Discovery of potent Mcl-1/Bcl-xL dual inhibitors by using a hybridization strategy based on structural analysis of target proteins.J. Med. Chem.201356239635964510.1021/jm401170c24215352
    [Google Scholar]
  54. JacobsC. FrotscherM. DannhardtG. HartmannR.W. 1-imidazolyl(alkyl)-substituted di- and tetrahydroquinolines and analogues: Syntheses and evaluation of dual inhibitors of thromboxane A(2) synthase and aromatase.J. Med. Chem.20004391841185110.1021/jm991180u10794700
    [Google Scholar]
  55. NormannoN. De LucaA. BiancoC. StrizziL. MancinoM. MaielloM.R. CarotenutoA. De FeoG. CaponigroF. SalomonD.S. Epidermal growth factor receptor (EGFR) signaling in cancer.Gene2006366121610.1016/j.gene.2005.10.01816377102
    [Google Scholar]
  56. LiuL. GregerJ. ShiH. LiuY. GreshockJ. AnnanR. HalseyW. SatheG.M. MartinA.M. GilmerT.M. Novel mechanism of lapatinib resistance in HER2-positive breast tumor cells: Activation of AXL.Cancer Res.200969176871687810.1158/0008‑5472.CAN‑08‑449019671800
    [Google Scholar]
  57. AminD.N. SerginaN. LimL. GogaA. MoasserM.M. HER3 signalling is regulated through a multitude of redundant mechanisms in HER2-driven tumour cells.Biochem. J.2012447341742510.1042/BJ2012072422853430
    [Google Scholar]
  58. DengY. LiJ. Rational optimization of tumor suppressor-derived peptide inhibitor selectivity between oncogene tyrosine kinases ErbB1 and ErbB2.Arch. Pharm.201735012170018110.1002/ardp.20170018129131383
    [Google Scholar]
  59. RyanQ. IbrahimA. CohenM.H. JohnsonJ. KoC. SridharaR. JusticeR. PazdurR. FDA drug approval summary: Lapatinib in combination with capecitabine for previously treated metastatic breast cancer that overexpresses HER-2.Oncologist200813101114111910.1634/theoncologist.2008‑081618849320
    [Google Scholar]
  60. ConibearA.C. SchmidA. KamalovM. BeckerC.F.W. BelloC. Recent advances in peptide-based approaches for cancer treatment.Curr. Med. Chem.20202781174120510.2174/092986732566617112320485129173146
    [Google Scholar]
  61. HayashiM.A.F. DucancelF. KonnoK. Natural peptides with potential applications in drug development, diagnosis, and/or biotechnology.Int. J. Pept.201220121210.1155/2012/75783822927866
    [Google Scholar]
  62. BidwellG.L.III RaucherD. Therapeutic peptides for cancer therapy. Part I – peptide inhibitors of signal transduction cascades.Expert Opin. Drug Deliv.20096101033104710.1517/1742524090314374519637980
    [Google Scholar]
  63. LauJ.L. DunnM.K. Therapeutic peptides: Historical perspectives, current development trends, and future directions.Bioorg. Med. Chem.201826102700270710.1016/j.bmc.2017.06.05228720325
    [Google Scholar]
  64. BantingF.G. BestC.H. CollipJ.B. CampbellW.R. FletcherA.A. Pancreatic extracts in the treatment of diabetes mellitus.Can. Med. Assoc. J.192212314114620314060
    [Google Scholar]
  65. ElkintonJ.R. HuntA.D.Jr GodfreyL. McCroryW.W. RogersonA.G. StokesJ. Effects of pituitary adrenocorticotropic hormone therapy.J. Am. Med. Assoc.1949141181273127910.1001/jama.1949.0291018000100115396915
    [Google Scholar]
  66. RoyA. BharadvajaN. Venom-derived bioactive compounds as potential anticancer agents: A review.Int. J. Pept. Res. Ther.202127112914710.1007/s10989‑020‑10073‑z
    [Google Scholar]
  67. ZhangQ.T. LiuZ.D. WangZ. WangT. WangN. WangN. ZhangB. ZhaoY.F. Recent Advances in Small Peptides of Marine Origin in Cancer Therapy.Mar. Drugs202119211510.3390/md1902011533669851
    [Google Scholar]
  68. KarpińskiT.M. SzkaradkiewiczA.K. Anticancer peptides from bacteria.Bangladesh J. Pharmacol.20138334334810.3329/bjp.v8i3.15704
    [Google Scholar]
  69. StuppR. HegiM.E. GorliaT. ErridgeS.C. PerryJ. HongY.K. AldapeK.D. LhermitteB. PietschT. GrujicicD. SteinbachJ.P. WickW. TarnawskiR. NamD.H. HauP. WeyerbrockA. TaphoornM.J.B. ShenC.C. RaoN. ThurzoL. HerrlingerU. GuptaT. KortmannR.D. AdamskaK. McBainC. BrandesA.A. TonnJ.C. SchnellO. WiegelT. KimC.Y. NaborsL.B. ReardonD.A. van den BentM.J. HickingC. MarkivskyyA. PicardM. WellerM. Cilengitide combined with standard treatment for patients with newly diagnosed glioblastoma with methylated MGMT promoter (CENTRIC EORTC 26071-22072 study): A multicentre, randomised, open-label, phase 3 trial.Lancet Oncol.201415101100110810.1016/S1470‑2045(14)70379‑125163906
    [Google Scholar]
  70. MeerovitchK. TorkildsenG. LonsdaleJ. GoldfarbH. LamaT. CumberlidgeG. OuslerG.W.III Safety and efficacy of MIM D3 ophthalmic solutions in a randomized placebo controlled Phase 2 clinical trial in patients with dry eye.Clin. Ophthalmol.201371275128510.2147/OPTH.S4468823836957
    [Google Scholar]
  71. BirkA.V. LiuS. SoongY. MillsW. SinghP. WarrenJ.D. SeshanS.V. PardeeJ.D. SzetoH.H. The mitochondrial-targeted compound SS-31 re-energizes ischemic mitochondria by interacting with cardiolipin.J. Am. Soc. Nephrol.20132481250126110.1681/ASN.201212121623813215
    [Google Scholar]
  72. FelícioM.R. SilvaO.N. GonçalvesS. SantosN.C. FrancoO.L. Peptides with dual antimicrobial and anticancer activities.Front Chem.20175510.3389/fchem.2017.0000528271058
    [Google Scholar]
  73. ChiangjongW. ChutipongtanateS. HongengS. Anticancer peptide: Physicochemical property, functional aspect and trend in clinical application (Review).Int. J. Oncol.202057367869610.3892/ijo.2020.509932705178
    [Google Scholar]
  74. HewittW.M. LeungS.S.F. PyeC.R. PonkeyA.R. BednarekM. JacobsonM.P. LokeyR.S. Cell-permeable cyclic peptides from synthetic libraries inspired by natural products.J. Am. Chem. Soc.2015137271572110.1021/ja508766b25517352
    [Google Scholar]
  75. LeeS. XieJ. ChenX. Peptides and peptide hormones for molecular imaging and disease diagnosis.Chem. Rev.201011053087311110.1021/cr900361p20225899
    [Google Scholar]
  76. ChenK. SunX. NiuG. MaY. YapL.P. HuiX. WuK. FanD. ContiP.S. ChenX. Evaluation of 64Cu labeled GX1: A phage display peptide probe for PET imaging of tumor vasculature.Mol. Imaging Biol.20121419610510.1007/s11307‑011‑0479‑121360213
    [Google Scholar]
  77. ChenK. ContiP.S. Target-specific delivery of peptide-based probes for PET imaging.Adv. Drug Deliv. Rev.201062111005102210.1016/j.addr.2010.09.00420851156
    [Google Scholar]
  78. BuonfiglioR. RecanatiniM. MasettiM. Protein flexibility in drug discovery: From theory to computation.ChemMedChem20151071141114810.1002/cmdc.20150008625891095
    [Google Scholar]
  79. CiceroA.F.G. FogacciF. CollettiA. Potential role of bioactive peptides in prevention and treatment of chronic diseases: A narrative review.Br. J. Pharmacol.2017174111378139410.1111/bph.1360827572703
    [Google Scholar]
  80. WuD. GaoY. QiY. ChenL. MaY. LiY. Peptide-based cancer therapy: Opportunity and challenge.Cancer Lett.20143511132210.1016/j.canlet.2014.05.00224836189
    [Google Scholar]
  81. LeeA.C.L. HarrisJ.L. KhannaK.K. HongJ.H. A comprehensive review on current advances in peptide drug development and design.Int. J. Mol. Sci.20192010238310.3390/ijms2010238331091705
    [Google Scholar]
  82. O’Brien-SimpsonN.M. HoffmannR. ChiaC.S.B. WadeJ.D. Antimicrobial and anticancer peptides.Front Chem.201861310.3389/fchem.2018.0001329468150
    [Google Scholar]
  83. MarqusS. PirogovaE. PivaT.J. Evaluation of the use of therapeutic peptides for cancer treatment.J. Biomed. Sci.20172412110.1186/s12929‑017‑0328‑x28320393
    [Google Scholar]
  84. McGregorD. Discovering and improving novel peptide therapeutics.Curr. Opin. Pharmacol.20088561661910.1016/j.coph.2008.06.00218602024
    [Google Scholar]
  85. ThundimadathilJ. Cancer treatment using peptides: Current therapies and future prospects.J Amino Acids2012201296734710.1155/2012/967347
    [Google Scholar]
  86. AccardoA. TesauroD. MorelliG. Peptide-based targeting strategies for simultaneous imaging and therapy with nanovectors.Polym. J.201345548149310.1038/pj.2012.215
    [Google Scholar]
  87. FosgerauK. HoffmannT. Peptide therapeutics: Current status and future directions.Drug Discov. Today201520112212810.1016/j.drudis.2014.10.00325450771
    [Google Scholar]
  88. VliegheP. LisowskiV. MartinezJ. KhrestchatiskyM. Synthetic therapeutic peptides: Science and market.Drug Discov. Today2010151-2405610.1016/j.drudis.2009.10.00919879957
    [Google Scholar]
  89. AronsonM.R. SimonsonA.W. OrchardL.M. LlinásM. MedinaS.H. Lipopeptisomes: Anticancer peptide-assembled particles for fusolytic oncotherapy.Acta Biomater.20188026927710.1016/j.actbio.2018.09.02530240951
    [Google Scholar]
  90. CraikD.J. FairlieD.P. LirasS. PriceD. The future of peptide-based drugs.Chem. Biol. Drug Des.201381113614710.1111/cbdd.1205523253135
    [Google Scholar]
  91. BrayB.L. Large-scale manufacture of peptide therapeutics by chemical synthesis.Nat. Rev. Drug Discov.20032758759310.1038/nrd113312815383
    [Google Scholar]
  92. ThayerA.M. Making peptides at large scale.Chem. Eng. News20118922212510.1021/cen‑v089n022.p021
    [Google Scholar]
  93. BusselJ.B. KuterD.J. GeorgeJ.N. McMillanR. AledortL.M. ConklinG.T. LichtinA.E. LyonsR.M. NievaJ. WasserJ.S. WiznitzerI. KellyR. ChenC.F. NicholJ.L. AMG 531, a thrombopoiesis-stimulating protein, for chronic ITP.N. Engl. J. Med.2006355161672168110.1056/NEJMoa05462617050891
    [Google Scholar]
  94. PengS.B. ZhangX. PaulD. KaysL.M. GoughW. StewartJ. UhlikM.T. ChenQ. HuiY.H. Zamek-GliszczynskiM.J. WijsmanJ.A. CredilleK.M. YanL.Z. Identification of LY2510924, a novel cyclic peptide CXCR4 antagonist that exhibits antitumor activities in solid tumor and breast cancer metastatic models.Mol. Cancer Ther.201514248049010.1158/1535‑7163.MCT‑14‑085025504752
    [Google Scholar]
  95. HanksS.K. QuinnA.M. HunterT. The protein kinase family: Conserved features and deduced phylogeny of the catalytic domains.Science19882414861425210.1126/science.32911153291115
    [Google Scholar]
  96. EckM.J. ManleyP.W. The interplay of structural information and functional studies in kinase drug design: Insights from BCR-Abl.Curr. Opin. Cell Biol.200921228829510.1016/j.ceb.2009.01.01419217274
    [Google Scholar]
  97. DengjelJ. KratchmarovaI. BlagoevB. Receptor tyrosine kinase signaling: A view from quantitative proteomics.Mol. Biosyst.20095101112112110.1039/b909534a19756300
    [Google Scholar]
  98. Licht-MuravaA. Eldar-FinkelmanH. Exploiting substrate recognition for selective inhibition of protein kinases.Curr. Pharm. Des.201218202914292010.2174/13816121280067274122571660
    [Google Scholar]
  99. WangY. HoT.G. BertinettiD. NeddermannM. FranzE. MoG.C.H. SchendowichL.P. SukhuA. SpeltsR.C. ZhangJ. HerbergF.W. KennedyE.J. Isoform-selective disruption of AKAP-localized PKA using hydrocarbon stapled peptides.ACS Chem. Biol.20149363564210.1021/cb400900r24422448
    [Google Scholar]
  100. KeskinO. YalcinS. A review of the use of somatostatin analogs in oncology.OncoTargets Ther.2013647148323667314
    [Google Scholar]
  101. WolinE. JarzabB. ErikssonB. WalterT. ToumpanakisC. MorseM.A. TomassettiP. WeberM.M. FogelmanD. RamageJ. PoonD. GadbawB. LiJ. PasiekaJ.L. MahamatA. SwahnF. Newell-PriceJ. MansoorW. ÖbergK. Phase III study of pasireotide long-acting release in patients with metastatic neuroendocrine tumors and carcinoid symptoms refractory to available somatostatin analogues.Drug Des. Devel. Ther.201595075508610.2147/DDDT.S8417726366058
    [Google Scholar]
  102. ValdehitaA. BajoA.M. SchallyA.V. VargaJ.L. CarmenaM.J. PrietoJ.C. Vasoactive intestinal peptide (VIP) induces transactivation of EGFR and HER2 in human breast cancer cells.Mol. Cell. Endocrinol.20093021414810.1016/j.mce.2008.11.02419101605
    [Google Scholar]
  103. KohnoM. HoribeT. HaramotoM. YanoY. OharaK. NakajimaO. MatsuzakiK. KawakamiK. A novel hybrid peptide targeting EGFR-expressing cancers.Eur. J. Cancer201147577378310.1016/j.ejca.2010.10.02121112771
    [Google Scholar]
  104. TyagiA. KapoorP. KumarR. ChaudharyK. GautamA. RaghavaG.P.S. In silico models for designing and discovering novel anticancer peptides.Sci. Rep.201331298410.1038/srep0298424136089
    [Google Scholar]
  105. SudhakarD.R. PK. SubbaraoN. Docking and molecular dynamics simulation study of EGFR1 with EGF-like peptides to understand molecular interactions.Mol. Biosyst.20161261987199510.1039/C6MB00032K27072492
    [Google Scholar]
  106. XiangZ. YangX. XuJ. LaiW. WangZ. HuZ. TianJ. GengL. FangQ. Tumor detection using magnetosome nanoparticles functionalized with a newly screened EGFR/HER2 targeting peptide.Biomaterials2017115536410.1016/j.biomaterials.2016.11.02227888699
    [Google Scholar]
  107. SchroederJ.A. Arizona cancer therapeutics LLCEGFR-based inhibitor peptides for combinatorial inactivation of ERBB1, ERBB2, and ERBB3.US10066004B22018
  108. ZhongH. HeJ. YuJ. LiX. MeiY. HaoL. WuX. Mig6 not only inhibits EGFR and HER2 but also targets HER3 and HER4 in a differential specificity: Implications for targeted esophageal cancer therapy.Biochimie202119013214210.1016/j.biochi.2021.07.00234293452
    [Google Scholar]
  109. SpectorN.L. XiaW. BurrisH.III HurwitzH. DeesE.C. DowlatiA. O’NeilB. OvermoyerB. MarcomP.K. BlackwellK.L. SmithD.A. KochK.M. SteadA. MangumS. EllisM.J. LiuL. ManA.K. BremerT.M. HarrisJ. BacusS. Study of the biologic effects of lapatinib, a reversible inhibitor of ErbB1 and ErbB2 tyrosine kinases, on tumor growth and survival pathways in patients with advanced malignancies.J. Clin. Oncol.200523112502251210.1200/JCO.2005.12.15715684311
    [Google Scholar]
  110. MineY. MunirH. NakanishiY. SugiyamaD. Biomimetic peptides for the treatment of cancer.Anticancer Res.20163673565357027354624
    [Google Scholar]
/content/journals/cmp/10.2174/1874467216666230224104950
Loading
/content/journals/cmp/10.2174/1874467216666230224104950
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test