Skip to content
2000
Volume 17, Issue 1
  • ISSN: 1874-4672
  • E-ISSN: 1874-4702

Abstract

Hypoxia-inducible factor (HIF) is a nuclear protein that plays a crucial role in oxygen homeostasis through its transcriptional activity and thousands of target gene profiles. Through transcriptional and post-transcriptional regulation, the downstream target genes of HIF can trigger multiple pathological responses in the body, including energy metabolism, cytopenia, and angiogenesis. There are three distinct subtypes of HIF: HIF-1, HIF-2, and HIF-3. HIF-1 is a significant regulator of the cellular response to hypoxia, and the balance between its production and degradation is critical for this response. As hypoxia is linked to several disorders, understanding HIF can open up novel avenues for the treatment of many diseases. This review describes the regulatory mechanisms of HIF-1 synthesis and degradation and the clinical significance of the hypoxia-inducible factor pathway in lung injury, kidney disease, hematologic disorders, and inflammation-related diseases.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmp/10.2174/0118761429266116231123160809
2024-01-01
2024-11-22
Loading full text...

Full text loading...

/deliver/fulltext/cmp/17/1/BMS-CMP-2023-148.html?itemId=/content/journals/cmp/10.2174/0118761429266116231123160809&mimeType=html&fmt=ahah

References

  1. MajmundarA.J. WongW.J. SimonM.C. Hypoxia-inducible factors and the response to hypoxic stress.Mol. Cell201040229430910.1016/j.molcel.2010.09.02220965423
    [Google Scholar]
  2. SemenzaG.L. WangG.L. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation.Mol. Cell. Biol.19921212544754541448077
    [Google Scholar]
  3. WangG.L. JiangB.H. RueE.A. SemenzaG.L. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension.Proc. Natl. Acad. Sci.199592125510551410.1073/pnas.92.12.55107539918
    [Google Scholar]
  4. WuD. PotluriN. LuJ. KimY. RastinejadF. Structural integration in hypoxia-inducible factors.Nature2015524756530330810.1038/nature1488326245371
    [Google Scholar]
  5. MehtaJ. DhallaN.S. Biochemical basis and therapeutic implications of angiogenesis.New York, LondonSpringer201310.1007/978‑1‑4614‑5857‑9
    [Google Scholar]
  6. LuJ. WuT. ZhangB. LiuS. SongW. QiaoJ. RuanH. Types of nuclear localization signals and mechanisms of protein import into the nucleus.Cell Commun. Signal.20211916010.1186/s12964‑021‑00741‑y34022911
    [Google Scholar]
  7. WengerR.H. StiehlD.P. CamenischG. Integration of oxygen signaling at the consensus HRE.Sci. STKE20052005306re1210.1126/stke.3062005re1216234508
    [Google Scholar]
  8. JaakkolaP. MoleD.R. TianY.M. WilsonM.I. GielbertJ. GaskellS.J. KriegsheimA. HebestreitH.F. MukherjiM. SchofieldC.J. MaxwellP.H. PughC.W. RatcliffeP.J. Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation.Science2001292551646847210.1126/science.105979611292861
    [Google Scholar]
  9. SemenzaG.L. Hypoxia-inducible factors in physiology and medicine.Cell2012148339940810.1016/j.cell.2012.01.02122304911
    [Google Scholar]
  10. JokilehtoT. JaakkolaP.M. The role of HIF prolyl hydroxylases in tumour growth.J. Cell. Mol. Med.201014475877010.1111/j.1582‑4934.2010.01030.x20178464
    [Google Scholar]
  11. XiaY. ChoiH.K. LeeK. Recent advances in hypoxia-inducible factor (HIF)-1 inhibitors.Eur. J. Med. Chem.201249244010.1016/j.ejmech.2012.01.03322305612
    [Google Scholar]
  12. KohM.Y. Spivak-KroizmanT.R. PowisG. HIF-1 regulation: Not so easy come, easy go.Trends Biochem. Sci.2008331152653410.1016/j.tibs.2008.08.00218809331
    [Google Scholar]
  13. LeeP. ChandelN.S. SimonM.C. Cellular adaptation to hypoxia through hypoxia inducible factors and beyond.Nat. Rev. Mol. Cell Biol.202021526828310.1038/s41580‑020‑0227‑y32144406
    [Google Scholar]
  14. LeeG. WonH.S. LeeY.M. ChoiJ.W. OhT.I. JangJ.H. ChoiD.K. LimB.O. KimY.J. ParkJ.W. PuigserverP. LimJ.H. Oxidative dimerization of PHD2 is responsible for its inactivation and contributes to metabolic reprogramming via HIF-1α activation.Sci. Rep.2016611892810.1038/srep1892826740011
    [Google Scholar]
  15. SelakM.A. ArmourS.M. MacKenzieE.D. BoulahbelH. WatsonD.G. MansfieldK.D. PanY. SimonM.C. ThompsonC.B. GottliebE. Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-α prolyl hydroxylase.Cancer Cell200571778510.1016/j.ccr.2004.11.02215652751
    [Google Scholar]
  16. PollardP.J. BrièreJ.J. AlamN.A. BarwellJ. BarclayE. WorthamN.C. HuntT. MitchellM. OlpinS. MoatS.J. HargreavesI.P. HealesS.J. ChungY.L. GriffithsJ.R. DalgleishA. McGrathJ.A. GleesonM.J. HodgsonS.V. PoulsomR. RustinP. TomlinsonI.P.M. Accumulation of Krebs cycle intermediates and over-expression of HIF1α in tumours which result from germline FH and SDH mutations.Hum. Mol. Genet.200514152231223910.1093/hmg/ddi22715987702
    [Google Scholar]
  17. IntlekoferA.M. WangB. LiuH. ShahH. Carmona-FontaineC. RustenburgA.S. SalahS. GunnerM.R. ChoderaJ.D. CrossJ.R. ThompsonC.B. L-2-Hydroxyglutarate production arises from noncanonical enzyme function at acidic pH.Nat. Chem. Biol.201713549450010.1038/nchembio.230728263965
    [Google Scholar]
  18. NadtochiyS.M. SchaferX. FuD. NehrkeK. MungerJ. BrookesP.S. Acidic pH is a metabolic switch for 2-hydroxyglutarate generation and signaling.J. Biol. Chem.201629138201882019710.1074/jbc.M116.73879927510037
    [Google Scholar]
  19. LiaoC. ZhangQ. Understanding the oxygen-sensing pathway and its therapeutic implications in diseases.Am. J. Pathol.202019081584159510.1016/j.ajpath.2020.04.00332339495
    [Google Scholar]
  20. LiZ.L. TuY. LiuB.C. Treatment of renal anemia with roxadustat: Advantages and achievement.Kidney Dis.202062657310.1159/00050485032309288
    [Google Scholar]
  21. ChenR.L. OgunsholaO.O. YeohK.K. JaniA. PapadakisM. NagelS. SchofieldC.J. BuchanA.M. HIF prolyl hydroxylase inhibition prior to transient focal cerebral ischaemia is neuroprotective in mice.J. Neurochem.2014131217718910.1111/jnc.1280424974727
    [Google Scholar]
  22. LuoW. ZhongJ. ChangR. HuH. PandeyA. SemenzaG.L. Hsp70 and CHIP selectively mediate ubiquitination and degradation of hypoxia-inducible factor (HIF)-1alpha but Not HIF-2alpha.J. Biol. Chem.201028563651366310.1074/jbc.M109.06857719940151
    [Google Scholar]
  23. ZhouY. ZhuY. ZhangL. WuT. WuT. ZhangW. DeckerA.M. HeJ. LiuJ. WuY. JiangX. ZhangZ. LiangC. ZouD. Human Stem Cells Overexpressing miR-21 Promote Angiogenesis in Critical Limb Ischemia by Targeting CHIP to Enhance HIF-1α Activity.Stem Cells201634492493410.1002/stem.232126841045
    [Google Scholar]
  24. LuoS.Y. WangJ.Q. LiuC. GaoX.M. ZhangY.B. DingJ. HouC.C. ZhuJ.Q. LouB. ShenW.L. WuX.F. ZhangC.D. TangD.J. Hif-1α/Hsf1/Hsp70 signaling pathway regulates redox homeostasis and apoptosis in large yellow croaker (Larimichthys crocea) under environmental hypoxia.Zool. Res.202142674676010.24272/j.issn.2095‑8137.2021.22434636194
    [Google Scholar]
  25. LiuY.V. SemenzaG.L. RACK1 vs. HSP90: Competition for HIF-1α degradation vs. stabilization.Cell Cycle20076665665910.4161/cc.6.6.398117361105
    [Google Scholar]
  26. LiuY.V. BaekJ.H. ZhangH. DiezR. ColeR.N. SemenzaG.L. RACK1 competes with HSP90 for binding to HIF-1alpha and is required for O(2)-independent and HSP90 inhibitor-induced degradation of HIF-1alpha.Mol. Cell200725220721710.1016/j.molcel.2007.01.00117244529
    [Google Scholar]
  27. ArmstrongH.K. GillisJ.L. JohnsonI.R.D. NassarZ.D. MoldovanM. LevrierC. SadowskiM.C. ChinM.Y. Tomlinson GunsE.S. TarulliG. LynnD.J. BrooksD.A. SelthL.A. CenteneraM.M. ButlerL.M. Dysregulated fibronectin trafficking by Hsp90 inhibition restricts prostate cancer cell invasion.Sci. Rep.201881209010.1038/s41598‑018‑19871‑429391407
    [Google Scholar]
  28. ModiS. StopeckA. LindenH. SolitD. ChandarlapatyS. RosenN. D’AndreaG. DicklerM. MoynahanM.E. SugarmanS. MaW. PatilS. NortonL. HannahA.L. HudisC. HSP90 inhibition is effective in breast cancer: A phase II trial of tanespimycin (17-AAG) plus trastuzumab in patients with HER2-positive metastatic breast cancer progressing on trastuzumab.Clin. Cancer Res.201117155132513910.1158/1078‑0432.CCR‑11‑007221558407
    [Google Scholar]
  29. ShaoR. ZhangF.P. TianF. Anders FribergP. WangX. SjölandH. BilligH. Increase of SUMO‐1 expression in response to hypoxia: Drect interaction with HIF‐1α in adult mouse brain and heart in vivo.FEBS Lett.20045691-329330010.1016/j.febslet.2004.05.07915225651
    [Google Scholar]
  30. BaeS.H. JeongJ.W. ParkJ.A. KimS.H. BaeM.K. ChoiS.J. KimK.W. Sumoylation increases HIF-1α stability and its transcriptional activity.Biochem. Biophys. Res. Commun.2004324139440010.1016/j.bbrc.2004.09.06815465032
    [Google Scholar]
  31. ChengJ. KangX. ZhangS. YehE.T.H. SUMO-specific protease 1 is essential for stabilization of HIF1alpha during hypoxia.Cell2007131358459510.1016/j.cell.2007.08.04517981124
    [Google Scholar]
  32. ZhouF. DaiA. JiangY. TanX. ZhangX. SENP-1 enhances hypoxia-induced proliferation of rat pulmonary artery smooth muscle cells by regulating hypoxia-inducible factor-1α.Mol. Med. Rep.20161343482349010.3892/mmr.2016.496926935971
    [Google Scholar]
  33. FoxlerD.E. BridgeK.S. JamesV. WebbT.M. MeeM. WongS.C.K. FengY. Constantin-TeodosiuD. PetursdottirT.E. BjornssonJ. IngvarssonS. RatcliffeP.J. LongmoreG.D. SharpT.V. The LIMD1 protein bridges an association between the prolyl hydroxylases and VHL to repress HIF-1 activity.Nat. Cell Biol.201214220120810.1038/ncb242422286099
    [Google Scholar]
  34. FlügelD. GörlachA. KietzmannT. GSK-3β regulates cell growth, migration, and angiogenesis via Fbw7 and USP28-dependent degradation of HIF-1α.Blood201211951292130110.1182/blood‑2011‑08‑37501422144179
    [Google Scholar]
  35. CrusioK.M. KingB. ReavieL.B. AifantisI. The ubiquitous nature of cancer: The role of the SCFFbw7 complex in development and transformation.Oncogene201029354865487310.1038/onc.2010.22220543859
    [Google Scholar]
  36. KohM.Y. PowisG. SART1/HAF, a protein widely over expressed in human cancer, decreases HIF-1α levels and inhibits tumor growth.Cancer Res.2006668409
    [Google Scholar]
  37. SemenzaG.L. Targeting HIF-1 for cancer therapy.Nat. Rev. Cancer200331072173210.1038/nrc118713130303
    [Google Scholar]
  38. FukudaR. HirotaK. FanF. JungY.D. EllisL.M. SemenzaG.L. Insulin-like growth factor 1 induces hypoxia-inducible factor 1-mediated vascular endothelial growth factor expression, which is dependent on MAP kinase and phosphatidylinositol 3-kinase signaling in colon cancer cells.J. Biol. Chem.200227741382053821110.1074/jbc.M20378120012149254
    [Google Scholar]
  39. FukudaR. KellyB. SemenzaG.L. Vascular endothelial growth factor gene expression in colon cancer cells exposed to prostaglandin E2 is mediated by hypoxia-inducible factor 1.Cancer Res.20036392330233412727858
    [Google Scholar]
  40. LaughnerE. TaghaviP. ChilesK. MahonP.C. SemenzaG.L. HER2 (neu) signaling increases the rate of hypoxia-inducible factor 1alpha (HIF-1alpha) synthesis: Novel mechanism for HIF-1-mediated vascular endothelial growth factor expression.Mol. Cell. Biol.200121123995400410.1128/MCB.21.12.3995‑4004.200111359907
    [Google Scholar]
  41. ZundelW. SchindlerC. Haas-KoganD. KoongA. KaperF. ChenE. GottschalkA.R. RyanH.E. JohnsonR.S. JeffersonA.B. StokoeD. GiacciaA.J. Loss of PTEN facilitates HIF-1-mediated gene expression.Genes Dev.200014439139610.1101/gad.14.4.39110691731
    [Google Scholar]
  42. ZhongH. ChilesK. FeldserD. LaughnerE. HanrahanC. GeorgescuM.M. SimonsJ.W. SemenzaG.L. Modulation of hypoxia-inducible factor 1alpha expression by the epidermal growth factor/phosphatidylinositol 3-kinase/PTEN/AKT/FRAP pathway in human prostate cancer cells: Implications for tumor angiogenesis and therapeutics.Cancer Res.20006061541154510749120
    [Google Scholar]
  43. O’LoghlenA. GonzálezV.M. PiñeiroD. Pérez-MorgadoM.I. SalinasM. MartínM.E. Identification and molecular characterization of Mnk1b, a splice variant of human MAP kinase-interacting kinase Mnk1.Exp. Cell Res.2004299234335510.1016/j.yexcr.2004.06.00615350534
    [Google Scholar]
  44. JiangB.H. LiuL.Z. Role of mTOR in anticancer drug resistance: Perspectives for improved drug treatment.Drug Resist. Updat.2008113637610.1016/j.drup.2008.03.00118440854
    [Google Scholar]
  45. ReilingJ.H. SabatiniD.M. Stress and mTORture signaling.Oncogene200625486373638310.1038/sj.onc.120988917041623
    [Google Scholar]
  46. AranyZ. HuangL.E. EcknerR. BhattacharyaS. JiangC. GoldbergM.A. BunnH.F. LivingstonD.M. An essential role for p300/CBP in the cellular response to hypoxia.Proc. Natl. Acad. Sci.19969323129691297310.1073/pnas.93.23.129698917528
    [Google Scholar]
  47. LiuL.Z. LiC. ChenQ. JingY. CarpenterR. JiangY. KungH.F. LaiL. JiangB.H. MiR-21 induced angiogenesis through AKT and ERK activation and HIF-1α expression.PLoS One201164e1913910.1371/journal.pone.001913921544242
    [Google Scholar]
  48. SemenzaG.L. Oxygen sensing, hypoxia-inducible factors, and disease pathophysiology.Annu. Rev. Pathol.201491477110.1146/annurev‑pathol‑012513‑10472023937437
    [Google Scholar]
  49. FuhrmannD.C. BrüneB. Mitochondrial composition and function under the control of hypoxia.Redox Biol.20171220821510.1016/j.redox.2017.02.01228259101
    [Google Scholar]
  50. Brahimi-HornM.C. PouysségurJ. Hypoxia in cancer cell metabolism and pH regulation.Essays Biochem.20074316517810.1042/bse043016517705800
    [Google Scholar]
  51. LiL. TanJ. MiaoY. LeiP. ZhangQ. ROS and autophagy: Interactions and molecular regulatory mechanisms.Cell. Mol. Neurobiol.201535561562110.1007/s10571‑015‑0166‑x25722131
    [Google Scholar]
  52. KeithB. JohnsonR.S. SimonM.C. HIF1α and HIF2α: Sibling rivalry in hypoxic tumour growth and progression.Nat. Rev. Cancer201212192210.1038/nrc318322169972
    [Google Scholar]
  53. SemenzaG.L. Hypoxia-inducible factor 1: Regulator of mitochondrial metabolism and mediator of ischemic preconditioning.Biochim. Biophys. Acta Mol. Cell Res.2011181371263126810.1016/j.bbamcr.2010.08.00620732359
    [Google Scholar]
  54. LinC.K. LinY.H. HuangT.C. ShiC.S. YangC.T. YangY.L. VEGF mediates fat embolism-induced acute lung injury via VEGF receptor 2 and the MAPK cascade.Sci. Rep.2019911171310.1038/s41598‑019‑47276‑431406128
    [Google Scholar]
  55. TangN. WangL. EskoJ. GiordanoF.J. HuangY. GerberH.P. FerraraN. JohnsonR.S. Loss of HIF-1α in endothelial cells disrupts a hypoxia-driven VEGF autocrine loop necessary for tumorigenesis.Cancer Cell20046548549510.1016/j.ccr.2004.09.02615542432
    [Google Scholar]
  56. SowterH.M. RavalR.R. MooreJ.W. RatcliffeP.J. HarrisA.L. Predominant role of hypoxia-inducible transcription factor (Hif)-1alpha versus Hif-2alpha in regulation of the transcriptional response to hypoxia.Cancer Res.200363196130613414559790
    [Google Scholar]
  57. MehtaJ. DhallaN.S. Biochemical basis and therapeutic implications of angiogenesis.New York, LondonSpringer201310.1007/978‑1‑4614‑5857‑9
    [Google Scholar]
  58. McClendonJ. JansingN.L. RedenteE.F. GandjevaA. ItoY. ColganS.P. AhmadA. RichesD.W.H. ChapmanH.A. MasonR.J. TuderR.M. ZemansR.L. Hypoxia-inducible factor 1α signaling promotes repair of the alveolar epithelium after acute lung injury.Am. J. Pathol.201718781772178610.1016/j.ajpath.2017.04.01228618253
    [Google Scholar]
  59. SchioppaT. UranchimegB. SaccaniA. BiswasS.K. DoniA. RapisardaA. BernasconiS. SaccaniS. NebuloniM. VagoL. MantovaniA. MelilloG. SicaA. Regulation of the chemokine receptor CXCR4 by hypoxia.J. Exp. Med.200319891391140210.1084/jem.2003026714597738
    [Google Scholar]
  60. CeradiniD.J. KulkarniA.R. CallaghanM.J. TepperO.M. BastidasN. KleinmanM.E. CaplaJ.M. GalianoR.D. LevineJ.P. GurtnerG.C. Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1.Nat. Med.200410885886410.1038/nm107515235597
    [Google Scholar]
  61. EckleT. BrodskyK. BonneyM. PackardT. HanJ. BorchersC.H. MarianiT.J. KominskyD.J. MittelbronnM. EltzschigH.K. HIF1A reduces acute lung injury by optimizing carbohydrate metabolism in the alveolar epithelium.PLoS Biol.2013119e100166510.1371/journal.pbio.100166524086109
    [Google Scholar]
  62. LiY. CaoY. XiaoJ. ShangJ. TanQ. PingF. HuangW. WuF. ZhangH. ZhangX. Inhibitor of apoptosis-stimulating protein of p53 inhibits ferroptosis and alleviates intestinal ischemia/reperfusion-induced acute lung injury.Cell Death Differ.20202792635265010.1038/s41418‑020‑0528‑x32203170
    [Google Scholar]
  63. WuG. XuG. ChenD.W. GaoW.X. XiongJ.Q. ShenH.Y. GaoY.Q. Hypoxia exacerbates inflammatory acute lung injury via the toll-like receptor 4 signaling pathway.Front. Immunol.20189166710.3389/fimmu.2018.0166730083155
    [Google Scholar]
  64. ItoM. TanakaT. IshiiT. WakashimaT. FukuiK. NangakuM. Prolyl hydroxylase inhibition protects the kidneys from ischemia via upregulation of glycogen storage.Kidney Int.202097468770110.1016/j.kint.2019.10.02032033782
    [Google Scholar]
  65. XieR. FangX. ZhengX. LvW. LiY. Ibrahim RageH. HeQ. ZhuW. CuiT. Salidroside and FG-4592 ameliorate high glucose-induced glomerular endothelial cells injury via HIF upregulation.Biomed. Pharmacother.201911810917510.1016/j.biopha.2019.10917531351423
    [Google Scholar]
  66. UchidaL. TanakaT. SaitoH. SugaharaM. WakashimaT. FukuiK. NangakuM. Effects of a prolyl hydroxylase inhibitor on kidney and cardiovascular complications in a rat model of chronic kidney disease.Am. J. Physiol. Renal Physiol.20203182F388F40110.1152/ajprenal.00419.201931841388
    [Google Scholar]
  67. YangY. YuX. ZhangY. DingG. ZhuC. HuangS. JiaZ. ZhangA. Hypoxia-inducible factor prolyl hydroxylase inhibitor roxadustat (FG-4592) protects against cisplatin-induced acute kidney injury.Clin. Sci.2018132782583810.1042/CS2017162529581249
    [Google Scholar]
  68. BernhardtW.M. CâmpeanV. KanyS. JürgensenJ.S. WeidemannA. WarneckeC. ArendM. KlausS. GünzlerV. AmannK. WillamC. WiesenerM.S. EckardtK.U. Preconditional activation of hypoxia-inducible factors ameliorates ischemic acute renal failure.J. Am. Soc. Nephrol.20061771970197810.1681/ASN.200512130216762988
    [Google Scholar]
  69. XuX. SongN. ZhangX. JiaoX. HuJ. LiangM. TengJ. DingX. Renal protection mediated by hypoxia inducible factor-1α depends on proangiogenesis function of miR-21 by targeting thrombospondin 1.Transplantation201710181811181910.1097/TP.000000000000150128737660
    [Google Scholar]
  70. SongN. ZhangT. XuX. LuZ. YuX. FangY. HuJ. JiaP. TengJ. DingX. miR-21 protects against ischemia/reperfusion-induced acute kidney injury by preventing epithelial cell apoptosis and inhibiting dendritic cell maturation.Front. Physiol.2018979010.3389/fphys.2018.0079030013485
    [Google Scholar]
  71. LiZ.L. LvL.L. TangT.T. WangB. FengY. ZhouL.T. CaoJ.Y. TangR.N. WuM. LiuH. CrowleyS.D. LiuB.C. HIF-1α inducing exosomal microRNA-23a expression mediates the cross-talk between tubular epithelial cells and macrophages in tubulointerstitial inflammation.Kidney Int.201995238840410.1016/j.kint.2018.09.01330551896
    [Google Scholar]
  72. BenderroG.F. SunX. KuangY. LaMannaJ.C. Decreased VEGF expression and microvascular density, but increased HIF-1 and 2α accumulation and EPO expression in chronic moderate hyperoxia in the mouse brain.Brain Res.20121471465510.1016/j.brainres.2012.06.05522820296
    [Google Scholar]
  73. LiuC. ShiY. HanZ. PanY. LiuN. HanS. ChenY. LanM. QiaoT. FanD. Suppression of the dual-specificity phosphatase MKP-1 enhances HIF-1 trans-activation and increases expression of EPO.Biochem. Biophys. Res. Commun.2003312378078610.1016/j.bbrc.2003.10.18614680833
    [Google Scholar]
  74. EltzschigH.K. BrattonD.L. ColganS.P. Targeting hypoxia signalling for the treatment of ischaemic and inflammatory diseases.Nat. Rev. Drug Discov.2014131185286910.1038/nrd442225359381
    [Google Scholar]
  75. MaxwellP.H. EckardtK.U. HIF prolyl hydroxylase inhibitors for the treatment of renal anaemia and beyond.Nat. Rev. Nephrol.201612315716810.1038/nrneph.2015.19326656456
    [Google Scholar]
  76. HaaseV.H. Hypoxia-inducible factors in the kidney.Am. J. Physiol. Renal Physiol.20062912F271F28110.1152/ajprenal.00071.200616554418
    [Google Scholar]
  77. MimaA. HoriiY. Treatment of renal anemia in patients with hemodialysis using Hypoxia-inducible Factor (HIF) stabilizer, roxadustat: A short-term clinical study. In vivo 20223641785178910.21873/invivo.1289235738640
    [Google Scholar]
  78. EltzschigH.K. CarmelietP. Hypoxia and Inflammation.N. Engl. J. Med.2011364765666510.1056/NEJMra091028321323543
    [Google Scholar]
  79. ShiJ. WangJ. ZhangJ. LiX. TianX. WangW. WangP. LiM. Polysaccharide extracted from Potentilla anserina L ameliorate acute hypobaric hypoxia‐induced brain impairment in rats.Phytother. Res.20203492397240710.1002/ptr.669132298011
    [Google Scholar]
  80. CorradoC. FontanaS. Hypoxia and HIF signaling: One axis with divergent effects.Int. J. Mol. Sci.20202116561110.3390/ijms2116561132764403
    [Google Scholar]
  81. SchumackerP.T. Hypoxia-inducible factor-1 (HIF-1).Crit. Care Med.20053312S423S42510.1097/01.CCM.0000191716.38566.E016340411
    [Google Scholar]
  82. Caro-MaldonadoA. WangR. NicholsA.G. KuraokaM. MilastaS. SunL.D. GavinA.L. AbelE.D. KelsoeG. GreenD.R. RathmellJ.C. Metabolic reprogramming is required for antibody production that is suppressed in anergic but exaggerated in chronically BAFF-exposed B cells.J. Immunol.201419283626363610.4049/jimmunol.130206224616478
    [Google Scholar]
  83. GuanS.Y. LengR.X. TaoJ.H. LiX.P. YeD.Q. OlsenN. ZhengS.G. PanH.F. Hypoxia-inducible factor-1α: A promising therapeutic target for autoimmune diseases.Expert Opin. Ther. Targets201721771572310.1080/14728222.2017.133653928553732
    [Google Scholar]
  84. RatcliffeP.J. Oxygen sensing and hypoxia signalling pathways in animals: The implications of physiology for cancer.J. Physiol.201359182027204210.1113/jphysiol.2013.25147023401619
    [Google Scholar]
  85. MaxwellP.H. WiesenerM.S. ChangG.W. CliffordS.C. VauxE.C. CockmanM.E. WykoffC.C. PughC.W. MaherE.R. RatcliffeP.J. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis.Nature1999399673327127510.1038/2045910353251
    [Google Scholar]
/content/journals/cmp/10.2174/0118761429266116231123160809
Loading
/content/journals/cmp/10.2174/0118761429266116231123160809
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test