Skip to content
2000
Volume 24, Issue 12
  • ISSN: 1566-5240
  • E-ISSN:

Abstract

Ferroptosis is a nonapoptotic, iron-dependent form of cell death that can be actuated in disease cells by expected improvements and manufactured specialists. Different studies have recently resurrected the role of this newly discovered cell death pathway and demonstrated its efficacy in treating breast cancer. Breast cancer is the most well-known type of cancer among women worldwide. Despite many years of research focusing on cell death in breast cancer, counting apoptosis, clinical treatment leftovers are difficult due to the high likelihood of recurrence. Ferroptosis is defined by a lack of lipid peroxide repair capacity by phospholipid hydroperoxides GPX4, accessibility of redox-active iron, and followed oxidation of polyunsaturated fatty acids acid-containing phospholipids signalling, amino acid and iron metabolism, ferritinophagy, epithelial-to-mesenchymal transition, cell adhesion, and mevalonate and phospholipid biosynthesis can all be factors that influence ferroptosis susceptibility. Ferroptosis, an iron-dependent controlled cell death caused by excessive lipid peroxidation, has been entwined in breast cancer development and therapeutic response for the past decade. Advances in enhancing clinical drugs targeting ferroptosis are developing silver linings to treat breast cancer. Ferroptosis is influenced by metabolism and the expression of certain genes, making it a prospective therapeutic target for monitoring malignant growth and an appealing target for precision cancer medication disclosure. In the coming years, research into biomarkers to follow ferroptosis in patients with breast cancer and the course of events and the subsequent use of novel ferroptosis-based treatments will be captious. We present a fundamental analysis of the actual understanding of molecular mechanisms along with regulatory networks associated with ferroptosis, expected physiological functions in growth concealment, ferroptosis-associated differentially expressed genes, treatment targeting potential, and recent advances in the development of therapeutic strategies in this review.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/1566524023666230913105735
2024-12-01
2024-11-26
Loading full text...

Full text loading...

References

  1. LiZ. ChenL. ChenC. Targeting ferroptosis in breast cancer.Biomark. Res.2020815810.1186/s40364‑020‑00230‑3 33292585
    [Google Scholar]
  2. UroojT. WasimB. MushtaqS. ShahS.N.N. ShahM. Cancer cell-derived secretory factors in breast cancer-associated lung metastasis: Their mechanism and future prospects.Curr. Cancer Drug Targets202020316818610.2174/1568009620666191220151856 31858911
    [Google Scholar]
  3. DeSantisC.E. MaJ. GaudetM.M. Breast cancer statistics, 2019.CA Cancer J. Clin.201969643845110.3322/caac.21583 31577379
    [Google Scholar]
  4. BrayF. FerlayJ. SoerjomataramI. SiegelR.L. TorreL.A. JemalA. Global cancer statistics 2018: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.201868639442410.3322/caac.21492 30207593
    [Google Scholar]
  5. ZhangY. WangY. TianG. JiangT. Long non-coding RNA-based signatures to improve prognostic prediction of breast cancer.Medicine20209940e2220310.1097/MD.0000000000022203 33019395
    [Google Scholar]
  6. LiuB FanY SongZ Identification of DRP1 as a prognostic factor correlated with immune infiltration in breast cancer.Int Immunopharmacol202089Pt B10707810.1016/j.intimp.2020.107078 33049497
    [Google Scholar]
  7. WaksA.G. WinerE.P. Breast cancer treatment.JAMA2019321328830010.1001/jama.2018.19323 30667505
    [Google Scholar]
  8. HolohanC. Van SchaeybroeckS. LongleyD.B. JohnstonP.G. Cancer drug resistance: An evolving paradigm.Nat. Rev. Cancer2013131071472610.1038/nrc3599 24060863
    [Google Scholar]
  9. DixonS.J. StockwellB.R. The hallmarks of ferroptosis.Annu. Rev. Cancer Biol.201931355410.1146/annurev‑cancerbio‑030518‑055844
    [Google Scholar]
  10. FearnheadH.O. VandenabeeleP. Vanden BergheT. How do we fit ferroptosis in the family of regulated cell death?Cell Death Differ.201724121991199810.1038/cdd.2017.149 28984871
    [Google Scholar]
  11. XieY. HouW. SongX. Ferroptosis: Process and function.Cell Death Differ.201623336937910.1038/cdd.2015.158 26794443
    [Google Scholar]
  12. WangW. GreenM. ChoiJ.E. CD8+ T cells regulate tumour ferroptosis during cancer immunotherapy.Nature2019569775527027410.1038/s41586‑019‑1170‑y 31043744
    [Google Scholar]
  13. WuJ. MinikesA.M. GaoM. Intercellular interaction dictates cancer cell ferroptosis via NF2–YAP signalling.Nature2019572776940240610.1038/s41586‑019‑1426‑6 31341276
    [Google Scholar]
  14. ManzD.H. BlanchetteN.L. PaulB.T. TortiF.M. TortiS.V. Iron and cancer: Recent insights.Ann. N. Y. Acad. Sci.20161368114916110.1111/nyas.13008 26890363
    [Google Scholar]
  15. XuX. ChenY. ZhangY. YaoY. JiP. Highly stable and biocompatible hyaluronic acid-rehabilitated nanoscale MOF-Fe 2+ induced ferroptosis in breast cancer cells.J. Mater. Chem. B Mater. Biol. Med.20208399129913810.1039/D0TB01616K
    [Google Scholar]
  16. BrownC.W. AmanteJ.J. ChhoyP. Prominin2 drives ferroptosis resistance by stimulating iron export.Dev. Cell2019515575586.e410.1016/j.devcel.2019.10.007 31735663
    [Google Scholar]
  17. MouY. WangJ. WuJ. Ferroptosis, a new form of cell death: Opportunities and challenges in cancer.J. Hematol. Oncol.20191213410.1186/s13045‑019‑0720‑y 30925886
    [Google Scholar]
  18. DolmaS. LessnickS.L. HahnW.C. StockwellB.R. Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells.Cancer Cell20033328529610.1016/S1535‑6108(03)00050‑3 12676586
    [Google Scholar]
  19. DixonS.J. LembergK.M. LamprechtM.R. Ferroptosis: An iron-dependent form of nonapoptotic cell death.Cell201214951060107210.1016/j.cell.2012.03.042 22632970
    [Google Scholar]
  20. GalluzziL. VitaleI. AaronsonS.A. Molecular mechanisms of cell death: Recommendations of the nomenclature committee on cell death 2018.Cell Death Differ.201825348654110.1038/s41418‑017‑0012‑4 29362479
    [Google Scholar]
  21. ConradM. KaganV.E. BayirH. Regulation of lipid peroxidation and ferroptosis in diverse species.Genes Dev.2018329-1060261910.1101/gad.314674.118 29802123
    [Google Scholar]
  22. TangD. KangR. BergheT.V. VandenabeeleP. KroemerG. The molecular machinery of regulated cell death.Cell Res.201929534736410.1038/s41422‑019‑0164‑5 30948788
    [Google Scholar]
  23. YuH. GuoP. XieX. WangY. ChenG. Ferroptosis, a new form of cell death, and its relationships with tumourous diseases.J. Cell. Mol. Med.201721464865710.1111/jcmm.13008 27860262
    [Google Scholar]
  24. HassanniaB. VandenabeeleP. Vanden BergheT. Targeting ferroptosis to iron out cancer.Cancer Cell201935683084910.1016/j.ccell.2019.04.002 31105042
    [Google Scholar]
  25. WangY.Y. LiuX.L. ZhaoR. Induction of pyroptosis and its implications in cancer management.Front. Oncol.2019997110.3389/fonc.2019.00971 31616642
    [Google Scholar]
  26. YangW.S. StockwellB.R. Ferroptosis: Death by lipid peroxidation.Trends Cell Biol.201626316517610.1016/j.tcb.2015.10.014 26653790
    [Google Scholar]
  27. HangauerM.J. ViswanathanV.S. RyanM.J. Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition.Nature2017551767924725010.1038/nature24297 29088702
    [Google Scholar]
  28. BobińskiR. DutkaM. PizonM. WaksmańskaW. PieleszA. Ferroptosis, acyl starvation, and breast cancer.Mol. Pharmacol.2023103313214410.1124/molpharm.122.000607 36750321
    [Google Scholar]
  29. WangZ. WangM. CarrB.I. Involvement of receptor tyrosine phosphatase DEP-1 mediated PI3K-cofilin signaling pathway in Sorafenib-induced cytoskeletal rearrangement in hepatoma cells.J. Cell. Physiol.2010224255956510.1002/jcp.22160 20432459
    [Google Scholar]
  30. ŽdralevićM. VučetićM. DaherB. MarchiqI. ParksS.K. PouysségurJ. Disrupting the ‘Warburg effect’ re-routes cancer cells to OXPHOS offering a vulnerability point via ‘ferroptosis’-induced cell death.Adv. Biol. Regul.201868556310.1016/j.jbior.2017.12.002 29306548
    [Google Scholar]
  31. HuangJ. ChenS. HuL. Mitoferrin-1 is involved in the progression of alzheimer’s disease through targeting mitochondrial iron metabolism in a caenorhabditis elegans model of alzheimer’s disease.Neuroscience20183859010110.1016/j.neuroscience.2018.06.011 29908215
    [Google Scholar]
  32. StrzyzP. Iron expulsion by exosomes drives ferroptosis resistance.Nat. Rev. Mol. Cell Biol.20202114510.1038/s41580‑019‑0195‑2 31748716
    [Google Scholar]
  33. WangY.Q. ChangS.Y. WuQ. The protective role of mitochondrial ferritin on erastin-induced ferroptosis.Front. Aging Neurosci.2016830810.3389/fnagi.2016.00308 28066232
    [Google Scholar]
  34. BattagliaA.M. ChirilloR. AversaI. SaccoA. CostanzoF. BiamonteF. Ferroptosis and cancer: Mitochondria meet the “Iron Maiden” cell death.Cells202096150510.3390/cells9061505 32575749
    [Google Scholar]
  35. KaganV.E. MaoG. QuF. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis.Nat. Chem. Biol.2017131819010.1038/nchembio.2238 27842066
    [Google Scholar]
  36. YuanH. LiX. ZhangX. KangR. TangD. Identification of ACSL4 as a biomarker and contributor of ferroptosis.Biochem. Biophys. Res. Commun.201647831338134310.1016/j.bbrc.2016.08.124 27565726
    [Google Scholar]
  37. AgmonE. SolonJ. BassereauP. StockwellB.R. Modeling the effects of lipid peroxidation during ferroptosis on membrane properties.Sci. Rep.201881515510.1038/s41598‑018‑23408‑0 29581451
    [Google Scholar]
  38. ManciasJ.D. WangX. GygiS.P. HarperJ.W. KimmelmanA.C. Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy.Nature2014509749810510910.1038/nature13148 24695223
    [Google Scholar]
  39. AlvarezS.W. SviderskiyV.O. TerziE.M. NFS1 undergoes positive selection in lung tumours and protects cells from ferroptosis.Nature2017551768263964310.1038/nature24637 29168506
    [Google Scholar]
  40. YuanH. LiX. ZhangX. KangR. TangD. CISD1 inhibits ferroptosis by protection against mitochondrial lipid peroxidation.Biochem. Biophys. Res. Commun.2016478283884410.1016/j.bbrc.2016.08.034 27510639
    [Google Scholar]
  41. IngoldI. BerndtC. SchmittS. Selenium utilization by GPX4 is required to prevent hydroperoxide-induced ferroptosis.Cell20181723409422.e2110.1016/j.cell.2017.11.048 29290465
    [Google Scholar]
  42. SeilerA. SchneiderM. FörsterH. Glutathione peroxidase 4 senses and translates oxidative stress into 12/15-lipoxygenase dependent- and AIF-mediated cell death.Cell Metab.20088323724810.1016/j.cmet.2008.07.005 18762024
    [Google Scholar]
  43. YangWS SriRamaratnamR WelschME Regulation of ferroptotic cancer cell death by GPX4.Cell20141561-231733110.1016/j.cell.2013.12.010 24439385
    [Google Scholar]
  44. RayS.K. MukherjeeS. Epigenetic reprogramming and landscape of transcriptomic interactions: Impending therapeutic interference of triple-negative breast cancer in molecular medicine.Curr. Mol. Med.2022221083585010.2174/1566524021666211206092437 34872474
    [Google Scholar]
  45. RayS.K. MukherjeeS. Consequences of extracellular matrix remodeling in headway and metastasis of cancer along with novel immunotherapies: A great promise for future endeavor.Anticancer. Agents Med. Chem.20222271257127110.2174/1871520621666210712090017 34254930
    [Google Scholar]
  46. WangH. ChengY. MaoC. Emerging mechanisms and targeted therapy of ferroptosis in cancer.Mol. Ther.20212972185220810.1016/j.ymthe.2021.03.022 33794363
    [Google Scholar]
  47. BartschH. NairJ. OwenR.W. Dietary polyunsaturated fatty acids and cancers of the breast and colorectum: emerging evidence for their role as risk modifiers.Carcinogenesis199920122209221810.1093/carcin/20.12.2209 10590211
    [Google Scholar]
  48. ZanoagaO. JurjA. RadulyL. Implications of dietary ω-3 and ω-6 polyunsaturated fatty acids in breast cancer.Exp. Ther. Med.201815211671176 29434704
    [Google Scholar]
  49. ChajèsV. Torres-MejíaG. BiessyC. ω-3 and ω-6 Polyunsaturated fatty acid intakes and the risk of breast cancer in Mexican women: Impact of obesity status.Cancer Epidemiol. Biomarkers Prev.201221231932610.1158/1055‑9965.EPI‑11‑0896 22194528
    [Google Scholar]
  50. MurffH.J. ShuX.O. LiH. Dietary polyunsaturated fatty acids and breast cancer risk in Chinese women: A prospective cohort study.Int. J. Cancer201112861434144110.1002/ijc.25703 20878979
    [Google Scholar]
  51. ThiébautA.C.M. ChajèsV. GerberM. Dietary intakes of ω-6 and ω-3 polyunsaturated fatty acids and the risk of breast cancer.Int. J. Cancer2009124492493110.1002/ijc.23980 19035453
    [Google Scholar]
  52. YangB. RenX.L. FuY.Q. GaoJ.L. LiD. Ratio of n-3/n-6 PUFAs and risk of breast cancer: A meta-analysis of 274135 adult females from 11 independent prospective studies.BMC Cancer201414110510.1186/1471‑2407‑14‑105 24548731
    [Google Scholar]
  53. DodsonM. Castro-PortuguezR. ZhangD.D. NRF2 plays a critical role in mitigating lipid peroxidation and ferroptosis.Redox Biol.20192310110710.1016/j.redox.2019.101107 30692038
    [Google Scholar]
  54. SunX. OuZ. ChenR. Activation of the p62‐Keap1‐NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells.Hepatology201663117318410.1002/hep.28251 26403645
    [Google Scholar]
  55. Rojo de la VegaM. ChapmanE. ZhangD.D. NRF2 and the hallmarks of cancer.Cancer Cell2018341214310.1016/j.ccell.2018.03.022 29731393
    [Google Scholar]
  56. ZhouX.L. ZhuC.Y. WuZ.G. GuoX. ZouW. The oncoprotein HBXIP competitively binds KEAP1 to activate NRF2 and enhance breast cancer cell growth and metastasis.Oncogene201938214028404610.1038/s41388‑019‑0698‑5 30692632
    [Google Scholar]
  57. UdlerM. MaiaA.T. CebrianA. Common germline genetic variation in antioxidant defense genes and survival after diagnosis of breast cancer.J. Clin. Oncol.200725213015302310.1200/JCO.2006.10.0099 17634480
    [Google Scholar]
  58. LeeS-H. Insulin-induced GPX4 expression in breast cancer cells.J Soonchunhyang Med Sci20081422732
    [Google Scholar]
  59. MonacoM.E. CreightonC.J. LeeP. ZouX. TophamM.K. StafforiniD.M. Expression of long-chain fatty Acyl-CoA synthetase 4 in breast and prostate cancers is associated with sex steroid hormone receptor negativity.Transl. Oncol.201032919810.1593/tlo.09202 20360933
    [Google Scholar]
  60. WuX. LiY. WangJ. Long chain fatty Acyl-CoA synthetase 4 is a biomarker for and mediator of hormone resistance in human breast cancer.PLoS One2013810e7706010.1371/journal.pone.0077060 24155918
    [Google Scholar]
  61. ChuB. KonN. ChenD. ALOX12 is required for p53-mediated tumour suppression through a distinct ferroptosis pathway.Nat. Cell Biol.201921557959110.1038/s41556‑019‑0305‑6 30962574
    [Google Scholar]
  62. OuY. WangS.J. LiD. ChuB. GuW. Activation of SAT1 engages polyamine metabolism with p53-mediated ferroptotic responses.Proc. Natl. Acad. Sci.201611344E6806E681210.1073/pnas.1607152113 27698118
    [Google Scholar]
  63. GascoM. ShamiS. CrookT. The p53 pathway in breast cancer.Breast Cancer Res.200242707610.1186/bcr426 11879567
    [Google Scholar]
  64. BiegingK.T. MelloS.S. AttardiL.D. Unravelling mechanisms of p53-mediated tumour suppression.Nat. Rev. Cancer201414535937010.1038/nrc3711 24739573
    [Google Scholar]
  65. TarangeloA. MagtanongL. Bieging-RolettK.T. p53 Suppresses metabolic stress-induced ferroptosis in cancer cells.Cell Rep.201822356957510.1016/j.celrep.2017.12.077 29346757
    [Google Scholar]
  66. LiuX.X. LiX.J. ZhangB. MicroRNA-26b is underexpressed in human breast cancer and induces cell apoptosis by targeting SLC7A11.FEBS Lett.201158591363136710.1016/j.febslet.2011.04.018 21510944
    [Google Scholar]
  67. SatoR. NakanoT. HosonagaM. RNA sequencing analysis reveals interactions between breast cancer or melanoma cells and the tissue microenvironment during brain metastasis.BioMed Res. Int.2017201711010.1155/2017/8032910 28210624
    [Google Scholar]
  68. ChenM.S. WangS.F. HsuC.Y. CHAC1 degradation of glutathione enhances cystine-starvation-induced necroptosis and ferroptosis in human triple negative breast cancer cells via the GCN2-eIF2α-ATF4 pathway.Oncotarget201787011458811460210.18632/oncotarget.23055 29383104
    [Google Scholar]
  69. YangW.S. StockwellB.R. Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells.Chem. Biol.200815323424510.1016/j.chembiol.2008.02.010 18355723
    [Google Scholar]
  70. PoursaitidisI. WangX. CrightonT. Oncogene–selective sensitivity to synchronous cell death following modulation of the amino acid nutrient cystine.Cell Rep.201718112547255610.1016/j.celrep.2017.02.054 28297659
    [Google Scholar]
  71. HoleP.S. PearnL. TonksA.J. Ras-induced reactive oxygen species promote growth factor–independent proliferation in human CD34+ hematopoietic progenitor cells.Blood201011561238124610.1182/blood‑2009‑06‑222869 20007804
    [Google Scholar]
  72. NguyenT. NioiP. PickettC.B. The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress.J. Biol. Chem.200928420132911329510.1074/jbc.R900010200 19182219
    [Google Scholar]
  73. DeNicolaG.M. KarrethF.A. HumptonT.J. Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis.Nature2011475735410610910.1038/nature10189 21734707
    [Google Scholar]
  74. PietschE.C. ChanJ.Y. TortiF.M. TortiS.V. Nrf2 mediates the induction of ferritin H in response to xenobiotics and cancer chemopreventive dithiolethiones.J. Biol. Chem.200327842361236910.1074/jbc.M210664200 12435735
    [Google Scholar]
  75. HouW. XieY. SongX. Autophagy promotes ferroptosis by degradation of ferritin.Autophagy20161281425142810.1080/15548627.2016.1187366 27245739
    [Google Scholar]
  76. YangM. ChenP. LiuJ. Clockophagy is a novel selective autophagy process favoring ferroptosis.Sci. Adv.201957223810.1126/sciadv.aaw2238
    [Google Scholar]
  77. LiuJ. YangM. KangR. KlionskyD.J. TangD. Autophagic degradation of the circadian clock regulator promotes ferroptosis.Autophagy201915112033203510.1080/15548627.2019.1659623 31441366
    [Google Scholar]
  78. SongX. ZhuS. ChenP. AMPK-mediated BECN1 phosphorylation promotes ferroptosis by directly blocking system Xc(-) activity.Curr. Biol.2018281523882399.e510.1016/j.cub.2018.05.094 30057310
    [Google Scholar]
  79. AnandhanA. DodsonM. SchmidlinC.J. LiuP. ZhangD.D. Breakdown of an ironclad defense system: The critical role of NRF2 in mediating ferroptosis.Cell Chem. Biol.202027443644710.1016/j.chembiol.2020.03.011 32275864
    [Google Scholar]
  80. AndrewsN.C. SchmidtP.J. Iron homeostasis.Annu. Rev. Physiol.2007691698510.1146/annurev.physiol.69.031905.164337 17014365
    [Google Scholar]
  81. FujiharaK.M. ZhangB.Z. ClemonsN.J. Opportunities for Ferroptosis in Cancer Therapy.Antioxidants202110698610.3390/antiox10060986 34205617
    [Google Scholar]
  82. WardD.M. KaplanJ. Ferroportin-mediated iron transport: Expression and regulation.Biochim. Biophys. Acta Mol. Cell Res.2012182391426143310.1016/j.bbamcr.2012.03.004 22440327
    [Google Scholar]
  83. ChenP.H. WuJ. DingC.C. Kinome screen of ferroptosis reveals a novel role of ATM in regulating iron metabolism.Cell Death Differ.20202731008102210.1038/s41418‑019‑0393‑7 31320750
    [Google Scholar]
  84. GengN. ShiB.J. LiS.L. Knockdown of ferroportin accelerates erastin-induced ferroptosis in neuroblastoma cells.Eur. Rev. Med. Pharmacol. Sci.201822123826383610.26355/eurrev_201806_15267 29949159
    [Google Scholar]
  85. ShiZ.Z. FanZ.W. ChenY.X. Ferroptosis in carcinoma: Regulatory mechanisms and new method for cancer therapy.OncoTargets Ther.201912112911130410.2147/OTT.S232852 31908494
    [Google Scholar]
  86. DollS. FreitasF.P. ShahR. FSP1 is a glutathione-independent ferroptosis suppressor.Nature2019575778469369810.1038/s41586‑019‑1707‑0 31634899
    [Google Scholar]
  87. ErdélyiK. DitróiT. JohanssonH.J. Reprogrammed transsulfuration promotes basal-like breast tumor progression via realigning cellular cysteine persulfidation.Proc. Natl. Acad. Sci.202111845e210005011810.1073/pnas.2100050118 34737229
    [Google Scholar]
  88. KraftV.A.N. BezjianC.T. PfeifferS. GTP Cyclohydrolase 1/Tetrahydrobiopterin counteract ferroptosis through lipid remodeling.ACS Cent. Sci.202061415310.1021/acscentsci.9b01063 31989025
    [Google Scholar]
  89. YuH. YangC. JianL. Sulfasalazine induced ferroptosis in breast cancer cells is reduced by the inhibitory effect of estrogen receptor on the transferrin receptor.Oncol. Rep.201942282683810.3892/or.2019.7189 31173262
    [Google Scholar]
  90. BiJ. YangS. LiL. Metadherin enhances vulnerability of cancer cells to ferroptosis.Cell Death Dis.2019101068210.1038/s41419‑019‑1897‑2 31527591
    [Google Scholar]
  91. BelkaidA. DuguayS.R. OuelletteR.J. SuretteM.E. 17β-estradiol induces stearoyl-CoA desaturase-1 expression in estrogen receptor-positive breast cancer cells.BMC Cancer201515144010.1186/s12885‑015‑1452‑1 26022099
    [Google Scholar]
  92. CookK.L. ClarkeP.A.G. ParmarJ. Knockdown of estrogen receptor‐α induces autophagy and inhibits antiestrogen‐mediated unfolded protein response activation, promoting ROS‐induced breast cancer cell death.FASEB J.20142893891390510.1096/fj.13‑247353 24858277
    [Google Scholar]
  93. GaoM. MonianP. QuadriN. RamasamyR. JiangX. Glutaminolysis and transferrin regulate ferroptosis.Mol. Cell201559229830810.1016/j.molcel.2015.06.011 26166707
    [Google Scholar]
  94. KwonM.Y. ParkE. LeeS.J. ChungS.W. Heme oxygenase-1 accelerates erastin-induced ferroptotic cell death.Oncotarget2015627243932440310.18632/oncotarget.5162 26405158
    [Google Scholar]
  95. GammellaE. RecalcatiS. RybinskaI. BurattiP. CairoG. Iron-induced damage in cardiomyopathy: Oxidative-dependent and independent mechanisms.Oxid. Med. Cell. Longev.2015201511010.1155/2015/230182 25878762
    [Google Scholar]
  96. ZaffaroniN. BerettaG.L. Nanoparticles for ferroptosis therapy in cancer.Pharmaceutics20211311178510.3390/pharmaceutics13111785 34834199
    [Google Scholar]
  97. HirschhornT. StockwellB.R. The development of the concept of ferroptosis.Free Radic. Biol. Med.201913313014310.1016/j.freeradbiomed.2018.09.043 30268886
    [Google Scholar]
  98. YagodaN. von RechenbergM. ZaganjorE. RAS–RAF–MEK-dependent oxidative cell death involving voltage-dependent anion channels.Nature2007447714686586910.1038/nature05859 17568748
    [Google Scholar]
  99. JaramilloM.C. ZhangD.D. The emerging role of the Nrf2–Keap1 signaling pathway in cancer.Genes Dev.201327202179219110.1101/gad.225680.113 24142871
    [Google Scholar]
  100. ChioI.I.C. JafarnejadS.M. Ponz-SarviseM. NRF2 promotes tumor maintenance by modulating mRNA translation in pancreatic cancer.Cell2016166496397610.1016/j.cell.2016.06.056 27477511
    [Google Scholar]
  101. RomeroR. SayinV.I. DavidsonS.M. Keap1 loss promotes Kras-driven lung cancer and results in dependence on glutaminolysis.Nat. Med.201723111362136810.1038/nm.4407 28967920
    [Google Scholar]
  102. LienE.C. LyssiotisC.A. JuvekarA. Glutathione biosynthesis is a metabolic vulnerability in PI(3)K/Akt-driven breast cancer.Nat. Cell Biol.201618557257810.1038/ncb3341 27088857
    [Google Scholar]
  103. WakabayashiN. ItohK. WakabayashiJ. Keap1-null mutation leads to postnatal lethality due to constitutive Nrf2 activation.Nat. Genet.200335323824510.1038/ng1248 14517554
    [Google Scholar]
  104. KerinsM.J. OoiA. The roles of NRF2 in modulating cellular iron homeostasis.Antioxid. Redox Signal.201829171756177310.1089/ars.2017.7176 28793787
    [Google Scholar]
  105. StockwellB.R. Friedmann AngeliJ.P. BayirH. Ferroptosis: A regulated cell death nexus linking metabolism, redox biology, and disease.Cell2017171227328510.1016/j.cell.2017.09.021 28985560
    [Google Scholar]
  106. JiangL. KonN. LiT. Ferroptosis as a p53-mediated activity during tumour suppression.Nature20155207545576210.1038/nature14344 25799988
    [Google Scholar]
  107. JennisM. KungC.P. BasuS. An African-specific polymorphism in the TP53 gene impairs p53 tumor suppressor function in a mouse model.Genes Dev.201630891893010.1101/gad.275891.115 27034505
    [Google Scholar]
  108. MaiT.T. HamaïA. HienzschA. Salinomycin kills cancer stem cells by sequestering iron in lysosomes.Nat. Chem.20179101025103310.1038/nchem.2778 28937680
    [Google Scholar]
  109. LachaierE. LouandreC. GodinC. Sorafenib induces ferroptosis in human cancer cell lines originating from different solid tumors.Anticancer Res.2014341164176422 25368241
    [Google Scholar]
  110. YuM. GaiC. LiZ. Targeted exosome‐encapsulated erastin induced ferroptosis in triple negative breast cancer cells.Cancer Sci.2019110103173318210.1111/cas.14181 31464035
    [Google Scholar]
  111. XiongH. WangC. WangZ. JiangZ. ZhouJ. YaoJ. Intracellular cascade activated nanosystem for improving ER+ breast cancer therapy through attacking GSH-mediated metabolic vulnerability.J. Control. Release201930914515710.1016/j.jconrel.2019.07.029 31348976
    [Google Scholar]
  112. LiY. WangX. YanJ. Nanoparticle ferritin-bound erastin and rapamycin: A nanodrug combining autophagy and ferroptosis for anticancer therapy.Biomater. Sci.2019793779378710.1039/C9BM00653B 31211307
    [Google Scholar]
  113. MaS. DielschneiderR.F. HensonE.S. Ferroptosis and autophagy induced cell death occur independently after siramesine and lapatinib treatment in breast cancer cells.PLoS One2017128e018292110.1371/journal.pone.0182921 28827805
    [Google Scholar]
  114. CornaG. SantambrogioP. MinottiG. CairoG. Doxorubicin paradoxically protects cardiomyocytes against iron-mediated toxicity: Role of reactive oxygen species and ferritin.J. Biol. Chem.200427914137381374510.1074/jbc.M310106200 14739295
    [Google Scholar]
  115. SauzayC. LouandreC. BodeauS. Protein biosynthesis, a target of sorafenib, interferes with the unfolded protein response (UPR) and ferroptosis in hepatocellular carcinoma cells.Oncotarget2018998400841410.18632/oncotarget.23843 29492203
    [Google Scholar]
  116. AnP. GaoZ. SunK. Photothermal-enhanced inactivation of glutathione peroxidase for ferroptosis sensitized by an autophagy promotor.ACS Appl. Mater. Interfaces20191146429884299710.1021/acsami.9b16124 31650832
    [Google Scholar]
  117. AnY. ZhuJ. LiuF. Boosting the ferroptotic antitumor efficacy via site-specific amplification of tailored lipid peroxidation.ACS Appl. Mater. Interfaces20191133296552966610.1021/acsami.9b10954 31359759
    [Google Scholar]
  118. MaS. HensonE.S. ChenY. GibsonS.B. Ferroptosis is induced following siramesine and lapatinib treatment of breast cancer cells.Cell Death Dis.201677e230710.1038/cddis.2016.208 27441659
    [Google Scholar]
  119. LinH.Y. HoH.W. ChangY.H. WeiC.J. ChuP.Y. The evolving role of ferroptosis in breast cancer: Translational implications present and future.Cancers20211318457610.3390/cancers13184576 34572802
    [Google Scholar]
  120. ZhuJ. DaiP. LiuF. Upconverting nanocarriers enable triggered microtubule inhibition and concurrent ferroptosis induction for selective treatment of triple-negative breast cancer.Nano Lett.20202096235624510.1021/acs.nanolett.0c00502 32804509
    [Google Scholar]
  121. NietoC. VegaM.A. Martín del ValleE.M. Tailored-made polydopamine nanoparticles to induce ferroptosis in breast cancer cells in combination with chemotherapy.Int. J. Mol. Sci.2021226316110.3390/ijms22063161 33808898
    [Google Scholar]
  122. KatoI. KasukabeT. KumakuraS. Menin MLL inhibitors induce ferroptosis and enhance the anti proliferative activity of auranofin in several types of cancer cells.Int. J. Oncol.20205741057107110.3892/ijo.2020.5116 32945449
    [Google Scholar]
  123. DuJ. WangL. HuangX. Shuganning injection, a traditional Chinese patent medicine, induces ferroptosis and suppresses tumor growth in triple-negative breast cancer cells.Phytomedicine202185153551
    [Google Scholar]
  124. von HagensC. Walter-SackI. GoeckenjanM. Prospective open uncontrolled phase I study to define a well-tolerated dose of oral artesunate as add-on therapy in patients with metastatic breast cancer (ARTIC M33/2).Breast Cancer Res. Treat.2017164235936910.1007/s10549‑017‑4261‑1 28439738
    [Google Scholar]
  125. ZhangH. GeZ. WangZ. GaoY. WangY. QuX. Circular RNA RHOT1 promotes progression and inhibits ferroptosis via mir-106a-5p/STAT3 axis in breast cancer.Aging20211368115812610.18632/aging.202608 33686957
    [Google Scholar]
  126. SunD. LiY.C. ZhangX.Y. Lidocaine promoted ferroptosis by targeting miR-382-5p/SLC7A11 axis in ovarian and breast cancer.Front. Pharmacol.20211268122310.3389/fphar.2021.681223 34122108
    [Google Scholar]
  127. LeeN. CarlisleA.E. PeppersA. xCT-driven expression of GPX4 determines sensitivity of breast cancer cells to ferroptosis inducers.Antioxidants202110231710.3390/antiox10020317 33672555
    [Google Scholar]
  128. WenY. ChenH. ZhangL. Glycyrrhetinic acid induces oxidative/nitrative stress and drives ferroptosis through activating NADPH oxidases and iNOS, and depriving glutathione in triple-negative breast cancer cells.Free Radic. Biol. Med.2021173415110.1016/j.freeradbiomed.2021.07.019 34271106
    [Google Scholar]
  129. ZhouY. YangJ. ChenC. Polyphyllin III-induced ferroptosis in MDA-MB-231 triple-negative breast cancer cells can be protected against by KLF4-mediated upregulation of xCT.Front. Pharmacol.20211267022410.3389/fphar.2021.670224 34040532
    [Google Scholar]
  130. BeattyA. SinghT. TyurinaY.Y. Ferroptotic cell death triggered by conjugated linolenic acids is mediated by ACSL1.Nat. Commun.2021121224410.1038/s41467‑021‑22471‑y 33854057
    [Google Scholar]
  131. BjarnadottirO. RomeroQ. BendahlP.O. Targeting HMG-CoA reductase with statins in a window-of-opportunity breast cancer trial.Breast Cancer Res. Treat.2013138249950810.1007/s10549‑013‑2473‑6 23471651
    [Google Scholar]
  132. GarwoodE.R. KumarA.S. BaehnerF.L. Fluvastatin reduces proliferation and increases apoptosis in women with high grade breast cancer.Breast Cancer Res. Treat.2010119113714410.1007/s10549‑009‑0507‑x 19728082
    [Google Scholar]
  133. HubackovaS. DavidovaE. BoukalovaS. Replication and ribosomal stress induced by targeting pyrimidine synthesis and cellular checkpoints suppress p53-deficient tumors.Cell Death Dis.202011211010.1038/s41419‑020‑2224‑7 32034120
    [Google Scholar]
  134. Mohamad FairusA.K. ChoudharyB. HosahalliS. KavithaN. ShatrahO. Dihydroorotate dehydrogenase (DHODH) inhibitors affect ATP depletion, endogenous ROS and mediate S-phase arrest in breast cancer cells.Biochimie201713515416310.1016/j.biochi.2017.02.003 28196676
    [Google Scholar]
  135. JiangZ. LimS.O. YanM. TYRO3 induces anti–PD-1/PD-L1 therapy resistance by limiting innate immunity and tumoral ferroptosis.J. Clin. Invest.20211318e13943410.1172/JCI139434 33855973
    [Google Scholar]
  136. DingY. ChenX. LiuC. Identification of a small molecule as inducer of ferroptosis and apoptosis through ubiquitination of GPX4 in triple negative breast cancer cells.J. Hematol. Oncol.20211411910.1186/s13045‑020‑01016‑8 33472669
    [Google Scholar]
  137. SongR. LiT. YeJ. Acidity‐activatable dynamic nanoparticles boosting ferroptotic cell death for immunotherapy of cancer.Adv. Mater.20213331210115510.1002/adma.202101155 34170581
    [Google Scholar]
  138. WuX. LiuC. LiZ. Regulation of GSK3β/Nrf2 signaling pathway modulated erastin-induced ferroptosis in breast cancer.Mol. Cell. Biochem.20204731-221722810.1007/s11010‑020‑03821‑8 32642794
    [Google Scholar]
/content/journals/cmm/10.2174/1566524023666230913105735
Loading
/content/journals/cmm/10.2174/1566524023666230913105735
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): apoptosis; biomarkers; breast cancer; ferritinophagy; Ferroptosis; precision medicine
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test