Skip to content
2000
Volume 24, Issue 12
  • ISSN: 1566-5240
  • E-ISSN:

Abstract

Immune checkpoint inhibitors have revolutionized cancer treatment by allowing T cells to reactivate. Tumor mutational burden (TMB) is a biomarker that has emerged as a viable diagnostic for locating patients who would benefit from immunotherapy in particular cancer types. Greater neo-antigens mean more opportunities for T cell identification, and TMB is clinically linked to better immune checkpoint inhibitors. Tumor foreignness is a cancer immunogram, and TMB can be used as a substitute for foreignness. The role of TMB analysis as an independent predictor of immunotherapy response in the context of immune checkpoint inhibitor medications is the subject of this mini-review.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240266906231024111920
2024-12-01
2024-11-22
Loading full text...

Full text loading...

References

  1. GonzalezH. HagerlingC. WerbZ. Roles of the immune system in cancer: From tumor initiation to metastatic progression.Genes Dev.20183219-201267128410.1101/gad.314617.118 30275043
    [Google Scholar]
  2. HavelJ.J. ChowellD. ChanT.A. The evolving landscape of biomarkers for checkpoint inhibitor immunotherapy.Nat. Rev. Cancer201919313315010.1038/s41568‑019‑0116‑x 30755690
    [Google Scholar]
  3. RayS.K. MukherjeeS. Current headway in cancer immunotherapy emphasizing the practice of genetically engineered T cells to target selected tumor antigens.Crit. Rev. Immunol.2021411234010.1615/CritRevImmunol.2020037044 33822523
    [Google Scholar]
  4. FarkonaS. DiamandisE.P. BlasutigI.M. Cancer immunotherapy: The beginning of the end of cancer?BMC Med.20161417310.1186/s12916‑016‑0623‑5 27151159
    [Google Scholar]
  5. WaldmanA.D. FritzJ.M. LenardoM.J. A guide to cancer immunotherapy: from T cell basic science to clinical practice.Nat. Rev. Immunol.2020201165166810.1038/s41577‑020‑0306‑5 32433532
    [Google Scholar]
  6. ZitvogelL. ApetohL. GhiringhelliF. KroemerG. Immunological aspects of cancer chemotherapy.Nat. Rev. Immunol.200881597310.1038/nri2216 18097448
    [Google Scholar]
  7. FuscoM.J. WestH.J. WalkoC.M. Tumor mutation burden and cancer treatment.JAMA Oncol.20217231610.1001/jamaoncol.2020.6371 33331847
    [Google Scholar]
  8. GaluppiniF. Dal PozzoC.A. DeckertJ. LoupakisF. FassanM. BaffaR. Tumor mutation burden: From comprehensive mutational screening to the clinic.Cancer Cell Int.201919120910.1186/s12935‑019‑0929‑4 31406485
    [Google Scholar]
  9. AlsaabH.O. SauS. AlzhraniR. PD-1 and PD-L1 checkpoint signaling inhibition for cancer immunotherapy: mechanism, combinations, and clinical outcome.Front. Pharmacol.2017856110.3389/fphar.2017.00561 28878676
    [Google Scholar]
  10. JiangY. ChenM. NieH. YuanY. PD-1 and PD-L1 in cancer immunotherapy: Clinical implications and future considerations.Hum. Vaccin. Immunother.20191551111112210.1080/21645515.2019.1571892 30888929
    [Google Scholar]
  11. SuspitsynE.N. SokolenkoA.P. ImyanitovE.N. [Whole exome sequencing in oncology].Vopr. Onkol.2016626713718 30695557
    [Google Scholar]
  12. KimJ.Y. KronbichlerA. EisenhutM. Tumor mutational burden and efficacy of immune checkpoint inhibitors: A systematic review and meta-analysis.Cancers20191111179810.3390/cancers11111798 31731749
    [Google Scholar]
  13. JardimD.L. GoodmanA. de Melo GagliatoD. KurzrockR. The challenges of tumor mutational burden as an immunotherapy biomarker.Cancer Cell202139215417310.1016/j.ccell.2020.10.001 33125859
    [Google Scholar]
  14. KlempnerS.J. FabrizioD. BaneS. Tumor mutational burden as a predictive biomarker for response to immune checkpoint inhibitors: A review of current evidence.Oncologist2020251e147e15910.1634/theoncologist.2019‑0244 31578273
    [Google Scholar]
  15. FumetJ.D. TruntzerC. YarchoanM. GhiringhelliF. Tumour mutational burden as a biomarker for immunotherapy: Current data and emerging concepts.Eur. J. Cancer2020131405010.1016/j.ejca.2020.02.038 32278982
    [Google Scholar]
  16. KageH. KohsakaS. TatsunoK. Tumor mutational burden measurement using comprehensive genomic profiling assay.Jpn. J. Clin. Oncol.202252892592910.1093/jjco/hyac063 35482395
    [Google Scholar]
  17. MarabelleA. LeD.T. AsciertoP.A. Efficacy of pembrolizumab in patients with noncolorectal high microsatellite instability/mismatch repair–deficient cancer: Results from the phase II KEYNOTE-158 study.J. Clin. Oncol.202038111010.1200/JCO.19.02105 31682550
    [Google Scholar]
  18. LeD.T. KimT.W. Van CutsemE. Phase II open-label study of pembrolizumab in treatment-refractory, microsatellite instability–high/mismatch repair–deficient metastatic colorectal cancer: KEYNOTE-164.J. Clin. Oncol.2020381111910.1200/JCO.19.02107 31725351
    [Google Scholar]
  19. LabriolaM.K. ZhuJ. GuptaR. Characterization of tumor mutation burden, PD-L1 and DNA repair genes to assess relationship to immune checkpoint inhibitors response in metastatic renal cell carcinoma.J. Immunother. Cancer202081e00031910.1136/jitc‑2019‑000319 32221016
    [Google Scholar]
  20. SundarR. SmythE.C. PengS. YeongJ.P.S. TanP. Predictive biomarkers of immune checkpoint inhibition in gastroesophageal cancers.Front. Oncol.20201076310.3389/fonc.2020.00763 32500029
    [Google Scholar]
  21. HeydtC. RehkerJ. PappeschR. Analysis of tumor mutational burden: Correlation of five large gene panels with whole exome sequencing.Sci. Rep.20201011138710.1038/s41598‑020‑68394‑4 32647293
    [Google Scholar]
  22. ChalmersZ.R. ConnellyC.F. FabrizioD. Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden.Genome Med.2017913410.1186/s13073‑017‑0424‑2 28420421
    [Google Scholar]
  23. ForschnerA. BattkeF. HadaschikD. Tumor mutation burden and circulating tumor DNA in combined CTLA-4 and PD-1 antibody therapy in metastatic melanoma – results of a prospective biomarker study.J. Immunother. Cancer20197118010.1186/s40425‑019‑0659‑0 31300034
    [Google Scholar]
  24. MeléndezB. Van CampenhoutC. RoriveS. RemmelinkM. SalmonI. D’HaeneN. Methods of measurement for tumor mutational burden in tumor tissue.Transl. Lung Cancer Res.20187566166710.21037/tlcr.2018.08.02 30505710
    [Google Scholar]
  25. FancelloL. GandiniS. PelicciP.G. MazzarellaL. Tumor mutational burden quantification from targeted gene panels: Major advancements and challenges.J. Immunother. Cancer20197118310.1186/s40425‑019‑0647‑4 31307554
    [Google Scholar]
  26. LiY. LuoY. Optimizing the evaluation of gene-targeted panels for tumor mutational burden estimation.Sci. Rep.20211112107210.1038/s41598‑021‑00626‑7 34702927
    [Google Scholar]
  27. LiJ.X. LiR.Z. MaL.R. Targeting mutant Kirsten rat sarcoma viral oncogene homolog in non-small cell lung cancer: current difficulties, integrative treatments and future perspectives.Front. Pharmacol.20221387533010.3389/fphar.2022.875330 35517800
    [Google Scholar]
  28. RayS.K. MeshramY. MukherjeeS. Cancer immunology and CAR-T cells: A turning point therapeutic approach in colorectal carcinoma with clinical insight.Curr. Mol. Med.202121322123610.2174/1566524020666200824103749 32838717
    [Google Scholar]
  29. RiazN. HavelJ.J. MakarovV. Tumor and microenvironment evolution during immunotherapy with nivolumab.Cell20171714934949.e1610.1016/j.cell.2017.09.028 29033130
    [Google Scholar]
  30. RizviN.A. HellmannM.D. SnyderA. Mutational landscape determines sensitivity to PD-1 blockade in non–small cell lung cancer.Science2015348623012412810.1126/science.aaa1348 25765070
    [Google Scholar]
  31. NiknafsN. BalanA. CherryC. Persistent mutation burden drives sustained anti-tumor immune responses.Nat. Med.202329244044910.1038/s41591‑022‑02163‑w 36702947
    [Google Scholar]
  32. SamsteinR.M. LeeC.H. ShoushtariA.N. Tumor mutational load predicts survival after immunotherapy across multiple cancer types.Nat. Genet.201951220220610.1038/s41588‑018‑0312‑8 30643254
    [Google Scholar]
  33. VogelsteinB. PapadopoulosN. VelculescuV.E. ZhouS. DiazL.A.Jr KinzlerK.W. Cancer genome landscapes.Science2013339612715461558
    [Google Scholar]
  34. GoodmanA.M. KatoS. BazhenovaL. Tumor mutational burden as an independent predictor of response to immunotherapy in diverse cancerstmb predicts response to immunotherapy in diverse cancers.Mol. Cancer Ther.201716112598260810.1158/1535‑7163.MCT‑17‑0386 28835386
    [Google Scholar]
  35. GalaninaN. BejarR. ChoiM. Comprehensive genomic profiling reveals diverse but actionable molecular portfolios across hematologic malignancies: Implications for next generation clinical trials.Cancers20181111110.3390/cancers11010011 30583461
    [Google Scholar]
  36. BaiR. LvZ. XuD. CuiJ. Predictive biomarkers for cancer immunotherapy with immune checkpoint inhibitors.Biomark. Res.2020813410.1186/s40364‑020‑00209‑0 32864131
    [Google Scholar]
  37. MartyR. KaabinejadianS. RossellD. MHC-I genotype restricts the oncogenic mutational landscape.Cell2017171612721283.e1510.1016/j.cell.2017.09.050 29107334
    [Google Scholar]
  38. CaiZ. ChenJ. YuZ. BCAT2 shapes a noninflamed tumor microenvironment and induces resistance to Anti-PD-1/PD-L1 immunotherapy by negatively regulating proinflammatory chemokines and anticancer immunity.Adv. Sci.2023108e2207155
    [Google Scholar]
  39. LiH. ChenJ. LiZ. S100A5 attenuates efficiency of anti-PD-L1/PD-1 immunotherapy by inhibiting CD8+ T cell-mediated anti-cancer immunity in bladder carcinoma.Adv. Sci.20231025e2300110
    [Google Scholar]
  40. van DijkN. FuntS.A. BlankC.U. PowlesT. RosenbergJ.E. van der HeijdenM.S. The cancer immunogram as a framework for personalized immunotherapy in urothelial cancer.Eur. Urol.201975343544410.1016/j.eururo.2018.09.022 30274701
    [Google Scholar]
  41. HendriksL.E. RouleauE. BesseB. Clinical utility of tumor mutational burden in patients with non-small cell lung cancer treated with immunotherapy.Transl. Lung Cancer Res.20187564766010.21037/tlcr.2018.09.22 30505709
    [Google Scholar]
  42. GabbiaD. De MartinS. Tumor mutational burden for predicting prognosis and therapy outcome of hepatocellular carcinoma.Int. J. Mol. Sci.2023244344110.3390/ijms24043441 36834851
    [Google Scholar]
  43. ParraN.S. RossH.M. KhanA. Advancements in the diagnosis of hepatocellular carcinoma.J. Transl. Med.202331516510.3390/ijtm3010005
    [Google Scholar]
  44. McGrailD.J. PiliéP.G. RashidN.U. High tumor mutation burden fails to predict immune checkpoint blockade response across all cancer types.Ann. Oncol.202132566167210.1016/j.annonc.2021.02.006 33736924
    [Google Scholar]
  45. BronteF. BronteG. CusenzaS. Targeted therapies in hepatocellular carcinoma.Curr. Med. Chem.201421896697410.2174/09298673113209990234 23992323
    [Google Scholar]
  46. CampaniC. Zucman-RossiJ. NaultJ.C. Genetics of hepatocellular carcinoma: From tumor to circulating DNA.Cancers202315381710.3390/cancers15030817 36765775
    [Google Scholar]
  47. HuJ. ChenJ. OuZ. Neoadjuvant immunotherapy, chemotherapy, and combination therapy in muscle-invasive bladder cancer: A multi-center real-world retrospective study.Cell Rep. Med.202231110078510.1016/j.xcrm.2022.100785 36265483
    [Google Scholar]
  48. WanL. WangZ. XueJ. YangH. ZhuY. Tumor mutation burden predicts response and survival to immune checkpoint inhibitors: A meta-analysis.Transl. Cancer Res.2020995437544910.21037/tcr‑20‑1131 35117909
    [Google Scholar]
  49. ChanT.A. YarchoanM. JaffeeE. Development of tumor mutation burden as an immunotherapy biomarker: Utility for the oncology clinic.Ann. Oncol.2019301445610.1093/annonc/mdy495 30395155
    [Google Scholar]
  50. MukaiS. KanzakiH. OgasawaraS. Exploring microsatellite instability in patients with advanced hepatocellular carcinoma and its tumor microenvironment.JGH Open20215111266127410.1002/jgh3.12660 34816012
    [Google Scholar]
  51. RayS.K. MukherjeeS. Cell free DNA as an evolving liquid biopsy biomarker for initial diagnosis and therapeutic nursing in cancer- an evolving aspect in medical biotechnology.Curr. Pharm. Biotechnol.202223111212210.2174/1389201021666201211102710 33308128
    [Google Scholar]
  52. WuX. LiJ. GassaA. Circulating tumor DNA as an emerging liquid biopsy biomarker for early diagnosis and therapeutic monitoring in hepatocellular carcinoma.Int. J. Biol. Sci.20201691551156210.7150/ijbs.44024 32226301
    [Google Scholar]
  53. MakrooniM.A. O’SullivanB. SeoigheC. Bias and inconsistency in the estimation of tumour mutation burden.BMC Cancer202222184010.1186/s12885‑022‑09897‑3 35918650
    [Google Scholar]
  54. SunD. XuM. PanC. Systematic assessment and optimizing algorithm of tumor mutational burden calculation and their implications in clinical decision-making.Front. Oncol.20221297297210.3389/fonc.2022.972972 36425562
    [Google Scholar]
  55. DoughertyB.A. LaiZ. HodgsonD.R. Biological and clinical evidence for somatic mutations in BRCA1 and BRCA2 as predictive markers for olaparib response in high-grade serous ovarian cancers in the maintenance setting.Oncotarget2017827436534366110.18632/oncotarget.17613 28525389
    [Google Scholar]
  56. PtashkinR.N. EwaltM.D. JayakumaranG. Enhanced clinical assessment of hematologic malignancies through routine paired tumor:normal sequencing.medRxiv202210.1101/2022.10.03.22280675
    [Google Scholar]
  57. ShaD. JinZ. BudcziesJ. KluckK. StenzingerA. SinicropeF.A. Tumor mutational burden as a predictive biomarker in solid tumors.Cancer Discov.202010121808182510.1158/2159‑8290.CD‑20‑0522 33139244
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240266906231024111920
Loading
/content/journals/cmm/10.2174/0115665240266906231024111920
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test