Skip to content
2000
Volume 24, Issue 12
  • ISSN: 1566-5240
  • E-ISSN:

Abstract

A natural flavonoid with exceptional medicinal capabilities, hesperidin, has shown encouraging results in the treatment of diabetes. Thoughts are still being held on the particular processes through which hesperidin exerts its anti-diabetic effects. This work clarifies the complex antidiabetic mechanisms of hesperidin by investigating the molecular pathways involved in glucose homeostasis, insulin signaling, and oxidative stress control. Additionally, the article explores the newly developing field of nanocarrier-based systems as a prospective means of boosting the therapeutic efficiency of hesperidin in the treatment of diabetes. This is because there are difficulties connected with the efficient delivery of hesperidin. These cutting-edge platforms show enormous potential for changing diabetes therapy by utilizing the benefits of nanocarriers, such as enhanced solubility, stability, and targeted delivery. In conclusion, our comprehensive review emphasizes the antidiabetic potential of hesperidin and underscores the intriguing possibilities provided by hesperidin nanocarriers in the search for more effective and individualized diabetes therapies.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240268940231113044317
2024-12-01
2024-10-12
Loading full text...

Full text loading...

References

  1. HussainT. TanB. MurtazaG. Flavonoids and type 2 diabetes: Evidence of efficacy in clinical and animal studies and delivery strategies to enhance their therapeutic efficacy.Pharmacol. Res.202015210462910.1016/j.phrs.2020.104629 31918019
    [Google Scholar]
  2. KusnaI.N. SudirmanS. WidiyantoB. SupriyanaS. The effectiveness of acupressure pen and active stretching (acupenas) on fasting blood sugar levels among type 2 diabetes mellitus patient.Int J Nurs Heal Serv202036672679
    [Google Scholar]
  3. MahsaS. MotlaghH.N. VessalM. ArabsolgharR. The protective effects of Olive leaf extract on Type 2 diabetes, the ex-pression of liver superoxide dismutase and total antioxidant capacity of plasma in rats.Trends Pharmacol. Sci.2020202016
    [Google Scholar]
  4. TsalamandrisS. AntonopoulosA.S. OikonomouE. The role of inflammation in diabetes: Current concepts and future perspectives.Eur. Cardiol.2019141505910.15420/ecr.2018.33.1 31131037
    [Google Scholar]
  5. GandhiG.R. VasconcelosA.B.S. WuD.T. Citrus flavonoids as promising phytochemicals targeting diabetes and related complications: A systematic review of in vitro and in vivo studies.Nutrients20201210290710.3390/nu12102907 32977511
    [Google Scholar]
  6. KhajoueiA. HosseiniE. AbdizadehT. KianM. GhasemiS. Beneficial effects of minocycline on the ovary of polycystic ovary syndrome mouse model: Molecular docking analysis and evaluation of TNF-α, TNFR2, TLR-4 gene expression.J. Reprod. Immunol.202114410328910.1016/j.jri.2021.103289 33610928
    [Google Scholar]
  7. ForouhiN.G. WarehamN.J. Epidemiology of diabetes.Medicine2019471222710.1016/j.mpmed.2018.10.004
    [Google Scholar]
  8. LigaS. PaulC. PéterF. Flavonoids: Overview of biosynthesis, biological activity, and current extraction techniques.Plants20231214273210.3390/plants12142732 37514347
    [Google Scholar]
  9. RengasamyK.R.R. KhanH. GowrishankarS. The role of flavonoids in autoimmune diseases: Therapeutic updates.Pharmacol. Ther.201919410713110.1016/j.pharmthera.2018.09.009 30268770
    [Google Scholar]
  10. HasanS. MansourH. WehbeN. NasserS.A. IratniR. NasrallahG. Therapeutic potential of flavonoids in cancer: ROS-mediated mechanisms.In: Biomedicine & Pharmacotherapy.Elsevier2022
    [Google Scholar]
  11. WangZ. YangL. The therapeutic potential of natural dietary flavonoids against SARS-CoV-2 infection.Nutrients20231515344310.3390/nu15153443 37571380
    [Google Scholar]
  12. YuanD. GuoY. PuF. Opportunities and challenges in enhancing the bioavailability and bioactivity of dietary flavonoids: A novel delivery system perspective.Food Chem.202443013711510.1016/j.foodchem.2023.137115 37566979
    [Google Scholar]
  13. AggarwalV. TuliH.S. ThakralF. Molecular mechanisms of action of hesperidin in cancer: Recent trends and advancements.Exp. Biol. Med.2020245548649710.1177/1535370220903671 32050794
    [Google Scholar]
  14. SulaimanG.M. WaheebH.M. JabirM.S. KhazaalS.H. DewirY.H. NaidooY. Hesperidin loaded on gold nanoparticles as a drug delivery system for a successful biocompatible, anti-cancer, anti-inflammatory and phagocytosis inducer model.Sci. Rep.2020101936210.1038/s41598‑020‑66419‑6 32518242
    [Google Scholar]
  15. MaalikiD. ShaitoA.A. PintusG. El-YazbiA. EidA.H. Flavonoids in hypertension: A brief review of the underlying mechanisms.Curr. Opin. Pharmacol.201945576510.1016/j.coph.2019.04.014 31102958
    [Google Scholar]
  16. FardounM.M. MaalikiD. HalabiN. Flavonoids in adipose tissue inflammation and atherosclerosis: One arrow, two targets.Clin. Sci.2020134121403143210.1042/CS20200356 32556180
    [Google Scholar]
  17. BarrónS.J.C. GonzálezC.C. ParrillaA.E. Nanoparticle-mediated delivery of flavonoids: Impact on proinflammatory cytokine production: A systematic review.Biomolecules2023137115810.3390/biom13071158 37509193
    [Google Scholar]
  18. UmenoA. HorieM. MurotomiK. NakajimaY. YoshidaY. Antioxidative and antidiabetic effects of natural polyphenols and isoflavones.Molecules201621670810.3390/molecules21060708 27248987
    [Google Scholar]
  19. IranshahiM. RezaeeR. ParhizH. RoohbakhshA. SoltaniF. Protective effects of flavonoids against microbes and toxins: The cases of hesperidin and hesperetin.Life Sci.201513712513210.1016/j.lfs.2015.07.014 26188593
    [Google Scholar]
  20. BiliaA.R. IsacchiB. RigheschiC. GuccioneC. BergonziM.C. Flavonoids Loaded in Nanocarriers: An Opportunity to Increase Oral Bioavailability and Bioefficacy.Food Nutr. Sci.20145131212132710.4236/fns.2014.513132
    [Google Scholar]
  21. du PreezB.V.P. de BeerD. JoubertE. By-product of honeybush (Cyclopia maculata) tea processing as source of hesperidin-enriched nutraceutical extract.Ind. Crops Prod.20168713214110.1016/j.indcrop.2016.04.012
    [Google Scholar]
  22. MariaI. IrisC. FreddyJ.T. Hesperidin functions as an ergogenic aid by increasing endothelial function and decreasing exercise-induced oxidative stress and inflammation, thereby contributing to improved exercise performance.Nutrients202214142955
    [Google Scholar]
  23. MilesE.A. CalderP.C. Effects of citrus fruit juices and their bioactive components on inflammation and immunity: A narrative review.Front. Immunol.20211271260810.3389/fimmu.2021.712608 34249019
    [Google Scholar]
  24. BellaviteP. DonzelliA. Hesperidin and SARS-CoV-2: New light on the healthy function of citrus fruits.Antioxidants20209874210.3390/antiox9080742 32823497
    [Google Scholar]
  25. HajialyaniM. FarzaeiH.M. EcheverríaJ. NabaviS.M. UriarteE. Sobarzo-SánchezE. Hesperidin as a neuroprotective agent: A review of animal and clinical evidence.Molecules201924364810.3390/molecules24030648 30759833
    [Google Scholar]
  26. KumarS. PandeyA.K. Chemistry and biological activities of flavonoids: An overview.Sci World J2013201316275010.1155/2013/162750
    [Google Scholar]
  27. PecioŁ. PecioS. MroczekT. OleszekW. Spiro-flavonoids in nature: A critical review of structural diversity and bioactivity.Molecules20232814542010.3390/molecules28145420 37513292
    [Google Scholar]
  28. SohelM. SultanaH. SultanaT. Chemotherapeutic potential of hesperetin for cancer treatment, with mechanistic insights: A comprehensive review.Heliyon202281e0881510.1016/j.heliyon.2022.e08815 35128104
    [Google Scholar]
  29. LuY. LuoQ. JiaX. TamJ.P. YangH. ShenY. Multidisciplinary strategies to enhance therapeutic effects of flavonoids from Epimedii Folium: Integration of herbal medicine, enzyme engineering, and nanotechnology.J. Pharm. Anal.2022 37102112
    [Google Scholar]
  30. CunhaC. Daniel-da-SilvaA.L. OliveiraH. Drug delivery systems and flavonoids: Current knowledge in melanoma treatment and future perspectives.Micromachines20221311183810.3390/mi13111838 36363859
    [Google Scholar]
  31. TejadaS. PinyaS. MartorellM. Potential anti-inflammatory effects of hesperidin from the genus citrus.Curr. Med. Chem.201925374929494510.2174/0929867324666170718104412 28721824
    [Google Scholar]
  32. GargA. GargS. ZaneveldL.J.D. SinglaA.K. Chemistry and pharmacology of the citrus bioflavonoid hesperidin.Phytother. Res.200115865566910.1002/ptr.1074 11746857
    [Google Scholar]
  33. MuQ. ZhangY. ChengQ. HuangH. HuangC. TangL. Research progress on the mechanism of action of hesperetin in cerebral ischemia: A narrative review.Ann. Transl. Med.2022101480610.21037/atm‑22‑3136 35965833
    [Google Scholar]
  34. MajumdarS. SrirangamR. Solubility, stability, physicochemical characteristics and in vitro ocular tissue permeability of hesperidin: A natural bioflavonoid.Pharm. Res.20092651217122510.1007/s11095‑008‑9729‑6 18810327
    [Google Scholar]
  35. KumarP.P. KumarS.K.T. NainitaK.M. Cerebroprotective potential of hesperidin nanoparticles against bilateral common carotid artery occlusion reperfusion injury in rats and in silico approaches.Neurotox. Res.202037226427410.1007/s12640‑019‑00098‑8 31422568
    [Google Scholar]
  36. KimJ. WieM.B. AhnM. TanakaA. MatsudaH. ShinT. Benefits of hesperidin in central nervous system disorders: A review.Anat. Cell Biol.201952436937710.5115/acb.19.119 31949974
    [Google Scholar]
  37. NectouxA.M. AbeC. HuangS.W. Absorption and metabolic behavior of hesperidin (rutinosylated hesperetin) after single oral administration to Sprague-Dawley rats.J. Agric. Food Chem.201967359812981910.1021/acs.jafc.9b03594 31392887
    [Google Scholar]
  38. RoohbakhshA. ParhizH. SoltaniF. RezaeeR. IranshahiM. Neuropharmacological properties and pharmacokinetics of the citrus flavonoids hesperidin and hesperetin - A mini-review.Life Sci.20141131-21610.1016/j.lfs.2014.07.029 25109791
    [Google Scholar]
  39. JiaoQ. XuL. JiangL. JiangY. ZhangJ. LiuB. Metabolism study of hesperetin and hesperidin in rats by UHPLC-LTQ-Orbitrap MSn.Xenobiotica202050111311132210.1080/00498254.2019.1567956 30654682
    [Google Scholar]
  40. Bagwe-ParabS. KaurG. ButtarH.S.T.H. Absorption, metabolism, and disposition of flavonoids and their role in the prevention of distinctive cancer types.Current aspects of flavonoids: Their role in cancer treatment. Singh TuliH. SingaporeSpringer201912513710.1007/978‑981‑13‑5874‑6_6
    [Google Scholar]
  41. Actis-GorettaL. DewT.P. LévèquesA. Gastrointestinal absorption and metabolism of hesperetin‐7‐ O ‐rutinoside and hesperetin‐7‐ O ‐glucoside in healthy humans.Mol. Nutr. Food Res.20155991651166210.1002/mnfr.201500202 26018925
    [Google Scholar]
  42. NourK Y RoumiehR BassilEP GhoubairaJA KobeissyF EidAH Nanoparticles: Attractive tools to treat colorectal cancer.Semin Cancer Biol202286(Pt 2)113
    [Google Scholar]
  43. NikezićA.V. NovakovićJ.G. Nano/microcarriers in drug delivery: Moving the timeline to contemporary.Curr. Med. Chem.202330262996302310.2174/0929867329666220821193938 36017848
    [Google Scholar]
  44. GholamiL. IvariJ.R. NasabN.K. OskueeR.K. SathyapalanT. SahebkarA. Recent advances in lung cancer therapy based on nanomaterials: A review.Curr. Med. Chem.202330333535510.2174/0929867328666210810160901 34375182
    [Google Scholar]
  45. YounisN.K. GhoubairaJ.A. BassilE.P. TantawiH.N. EidA.H. Metal-based nanoparticles: Promising tools for the management of cardiovascular diseases.Nanomedicine20213610243310.1016/j.nano.2021.102433 34171467
    [Google Scholar]
  46. MirhadiE. KesharwaniP. JohnstonT.P. SahebkarA. Nanomedicine-mediated therapeutic approaches for pulmonary arterial hypertension.Drug Discov. Today202328610359910.1016/j.drudis.2023.103599 37116826
    [Google Scholar]
  47. WaheebH.M. SulaimanG.M. JabirM.S. Effect of hesperidin conjugated with golden nanoparticles on phagocytic activity: in vitro study.In: AIP Conference ProceedingsAIP Publishing LLC2020
    [Google Scholar]
  48. HeY Al-MureishA WuN Nanotechnology in the treatment of diabetic complications: A comprehensive narrative review.J Diabetes Res20212021
    [Google Scholar]
  49. DíazM.R. Vivas-MejiaP.E. Nanoparticles as drug delivery systems in cancer medicine: Emphasis on RNAi-containing nanoliposomes.Pharmaceuticals20136111361138010.3390/ph6111361 24287462
    [Google Scholar]
  50. RochaS. LucasM. RibeiroD. CorvoM.L. FernandesE. FreitasM. Nano-based drug delivery systems used as vehicles to enhance polyphenols therapeutic effect for diabetes mellitus treatment.Pharmacol. Res.2021169April10560410.1016/j.phrs.2021.105604 33845125
    [Google Scholar]
  51. KuthatiY. KankalaR.K. LeeC.H. Layered double hydroxide nanoparticles for biomedical applications: Current status and recent prospects.Appl. Clay Sci.2015112-11310011610.1016/j.clay.2015.04.018
    [Google Scholar]
  52. ChakrabortyM. DasguptaS. SenguptaS. A facile synthetic strategy for Mg-Al layered double hydroxide material as nanocarrier for methotrexate.Ceram. Int.201238294194910.1016/j.ceramint.2011.08.014
    [Google Scholar]
  53. ChenB.H. InbarajS.B. Nanoemulsion and nanoliposome based strategies for improving anthocyanin stability and bioavailability.Nutrients2019115105210.3390/nu11051052 31083417
    [Google Scholar]
  54. AhmedE.M. Hydrogel: Preparation, characterization, and applications: A review.J. Adv. Res.20156210512110.1016/j.jare.2013.07.006 25750745
    [Google Scholar]
  55. SharmaG. SharmaA.R. NamJ.S. DossG.P.C. LeeS.S. ChakrabortyC. Nanoparticle based insulin delivery system: The next generation efficient therapy for Type 1 diabetes.J. Nanobiotechnol20151317410.1186/s12951‑015‑0136‑y 26498972
    [Google Scholar]
  56. ElahiN. KamaliM. BaghersadM.H. Recent biomedical applications of gold nanoparticles: A review.Talanta201818453755610.1016/j.talanta.2018.02.088 29674080
    [Google Scholar]
  57. LoiseauA. AsilaV. Boitel-AullenG. LamM. SalmainM. BoujdayS. Silver-based plasmonic nanoparticles for and their use in biosensing.Biosensors2019927810.3390/bios9020078 31185689
    [Google Scholar]
  58. ChatterjeeA. BharadiyaP. HansoraD. Layered double hydroxide based bionanocomposites.Appl. Clay Sci.2019177193610.1016/j.clay.2019.04.022
    [Google Scholar]
  59. MishraG. DashB. PandeyS. Layered double hydroxides: A brief review from fundamentals to application as evolving biomaterials.Appl. Clay Sci.201815317218610.1016/j.clay.2017.12.021
    [Google Scholar]
  60. GanesanP. ArulselvanP. ChoiD.K. Phytobioactive compound-based nanodelivery systems for the treatment of type 2 diabetes mellitus - current status.Int. J. Nanomedicine2017121097111110.2147/IJN.S124601 28223801
    [Google Scholar]
  61. ElshazlyS.M. Abd El MottelebD.M. IbrahimI.A.A.E.H. Hesperidin protects against stress induced gastric ulcer through regulation of peroxisome proliferator activator receptor gamma in diabetic rats.Chem. Biol. Interact.201829115316110.1016/j.cbi.2018.06.027 29944876
    [Google Scholar]
  62. Al-RikabiR. Al-ShmganiH. DewirY.H. El-HendawyS. In vivo and in vitro evaluation of the protective effects of hesperidin in lipopolysaccharide-induced inflammation and cytotoxicity of cell.Molecules202025347810.3390/molecules25030478 31979178
    [Google Scholar]
  63. El-ShahawyA.A.G. Abdel-MoneimA. EbeidA.S.M. EldinZ.E. ZanatyM.I. A novel layered double hydroxide-hesperidin nanoparticles exert antidiabetic, antioxidant and anti-inflammatory effects in rats with diabetes.Mol. Biol. Rep.20214865217523210.1007/s11033‑021‑06527‑2 34244888
    [Google Scholar]
  64. GaurP.K. PalH. PuriD. KumarN. ShanmugamS.K. Formulation and development of hesperidin loaded solid lipid nanoparticles for diabetes.Biointerface Res. Appl. Chem.202010147284733
    [Google Scholar]
  65. PradhanS.P. SahooS. BeheraA. SahooR. SahuP.K. Memory amelioration by hesperidin conjugated gold nanoparticles in diabetes induced cognitive impaired rats.J. Drug Deliv. Sci. Technol.20226910314510.1016/j.jddst.2022.103145
    [Google Scholar]
  66. KumarS. RavichandranS. In vivo antidiabetic evaluation of nanoparticles encompass dual bioflavonoid.Int J Pharmacomet Integr Biosci2018311118
    [Google Scholar]
  67. SaadS. AhmadI. KawishS.M. Improved cardioprotective effects of hesperidin solid lipid nanoparticles prepared by supercritical antisolvent technology.Colloids Surf. B Biointerfaces202018711062810.1016/j.colsurfb.2019.110628 31753617
    [Google Scholar]
  68. FathiM. VarshosazJ. MohebbiM. ShahidiF. Hesperetin-loaded solid lipid nanoparticles and nanostructure lipid carriers for food fortification: Preparation, characterization, and modeling.Food Bioprocess Technol.2013661464147510.1007/s11947‑012‑0845‑2
    [Google Scholar]
  69. JinH. ZhaoZ. LanQ. Nasal delivery of hesperidin/chitosan nanoparticles suppresses cytokine storm syndrome in a mouse model of acute lung injury.Front. Pharmacol.20211159223810.3389/fphar.2020.592238 33584267
    [Google Scholar]
  70. Ramos-LopezO. MilagroF.I. Riezu-BojJ.I. MartinezJ.A. Epigenetic signatures underlying inflammation: An interplay of nutrition, physical activity, metabolic diseases, and environmental factors for personalized nutrition.Inflamm. Res.2021701294910.1007/s00011‑020‑01425‑y 33231704
    [Google Scholar]
  71. de Gonzalo-CalvoD. NeitzertK. FernándezM. Differential inflammatory responses in aging and disease: TNF-α and IL-6 as possible biomarkers.Free Radic. Biol. Med.201049573373710.1016/j.freeradbiomed.2010.05.019 20639132
    [Google Scholar]
  72. AlzamilH. Elevated serum TNF-α is related to obesity in type 2 diabetes mellitus and is associated with glycemic control and insulin resistance.J Obes20202020
    [Google Scholar]
  73. RehmanK. AkashM.S.H. LiaqatA. KamalS. QadirM.I. RasulA. Role of interleukin-6 in development of insulin resistance and type 2 diabetes mellitus.Crit. Rev. Eukaryot. Gene Expr.201727322923610.1615/CritRevEukaryotGeneExpr.2017019712 29199608
    [Google Scholar]
  74. PouvreauC. DayreA. ButkowskiE. de JongB. JelinekH.F. Inflammation and oxidative stress markers in diabetes and hypertension.J. Inflamm. Res.201811616810.2147/JIR.S148911 29497324
    [Google Scholar]
  75. IghodaroO.M. Molecular pathways associated with oxidative stress in diabetes mellitus.Biomed. Pharmacother.201810865666210.1016/j.biopha.2018.09.058 30245465
    [Google Scholar]
  76. DarenskayaM.A. KolesnikovaL.I. KolesnikovS.I. Oxidative stress: Pathogenetic role in diabetes mellitus and its complications and therapeutic approaches to correction.Bull. Exp. Biol. Med.2021171217918910.1007/s10517‑021‑05191‑7 34173093
    [Google Scholar]
  77. SharmaR. SatyanarayanaP. AnandP. Aruna KumariG. Adiponectin level association with MDA in the patients with type 2 diabetes mellitus.Biomed. Pharmacol. J.202013294395510.13005/bpj/1963
    [Google Scholar]
  78. YildirimM. DegirmenciU. AkkapuluM. The effect of Rheum ribes L. on oxidative stress in diabetic rats.J. Basic Clin. Physiol. Pharmacol.2020321 32813675
    [Google Scholar]
  79. Caro-OrdieresT. Marín-RoyoG. Opazo-RíosL. The coming age of flavonoids in the treatment of diabetic complications.J. Clin. Med.20209234610.3390/jcm9020346 32012726
    [Google Scholar]
  80. KumarB. GuptaS.K. SrinivasanB.P. Hesperetin rescues retinal oxidative stress, neuroinflammation and apoptosis in diabetic rats.Microvasc. Res.201387657410.1016/j.mvr.2013.01.002 23376836
    [Google Scholar]
  81. ChenY.J. KongL. TangZ.Z. Hesperetin ameliorates diabetic nephropathy in rats by activating Nrf2/ARE/glyoxalase 1 pathway.Biomed. Pharmacother.20191111166117510.1016/j.biopha.2019.01.030 30841430
    [Google Scholar]
  82. IskenderH. DokumaciogluE. SenT. The effects of hesperidin and quercetin on serum tumor necrosis factor-alpha and interleukin-6 levels in streptozotocin-induced diabetes model.Pharmacogn. Mag.2018145416717310.4103/pm.pm_41_17 29720826
    [Google Scholar]
  83. HanchangW. WongmaneeN. YoopumS. RojanaverawongW. Protective role of hesperidin against diabetes induced spleen damage: Mechanism associated with oxidative stress and inflammation.J. Food Biochem.20224612e1444410.1111/jfbc.14444 36165434
    [Google Scholar]
  84. HomayouniF. HaidariF. HedayatiM. ZakerkishM. AhmadiK. Blood pressure lowering and anti‐inflammatory effects of hesperidin in type 2 diabetes; a randomized double‐blind controlled clinical trial.Phytother. Res.20183261073107910.1002/ptr.6046 29468764
    [Google Scholar]
  85. BeheraA. PradhanS.P. TejaswaniP. SaN. PattnaikS. SahuP.K. Ameliorative and neuroprotective effect of core-shell type se@au conjugated hesperidin nanoparticles in diabetes-induced cognitive impairment.Mol. Neurobiol.202360127329734510.1007/s12035‑023‑03539‑w 37561235
    [Google Scholar]
  86. SvendsenB. LarsenO. GabeM.B.N. Insulin secretion depends on intra-islet glucagon signaling.Cell Rep.201825511271134.e210.1016/j.celrep.2018.10.018 30380405
    [Google Scholar]
  87. HaythorneE. RohmM. van de BuntM. Diabetes causes marked inhibition of mitochondrial metabolism in pancreatic β-cells.Nat. Commun.2019101247410.1038/s41467‑019‑10189‑x 31171772
    [Google Scholar]
  88. RahmiR. MachrinaY. YamamotoZ. The effect of various training on the expression of the 5’amp-activated protein kinase A2 and glucose transporter-4 in type-2 diabetes mellitus rat.Open Access Maced. J. Med. Sci.20221015
    [Google Scholar]
  89. AshcroftF.M. GribbleF.M. ATP-sensitive K + channels and insulin secretion: Their role in health and disease.Diabetologia199942890391910.1007/s001250051247 10491749
    [Google Scholar]
  90. YangH. YangL. Targeting cAMP/PKA pathway for glycemic control and type 2 diabetes therapy.J. Mol. Endocrinol.2016572R93R10810.1530/JME‑15‑0316 27194812
    [Google Scholar]
  91. XiongH. WangJ. RanQ. Hesperidin: A therapeutic agent for obesity.Drug Des. Devel. Ther.2019133855386610.2147/DDDT.S227499 32009777
    [Google Scholar]
  92. HameedA. AshrafS. Israr KhanM. HafizurR.M. Ul-HaqZ. Protein kinase A-dependent insulinotropic effect of selected flavonoids.Int. J. Biol. Macromol.201811914915610.1016/j.ijbiomac.2018.07.012 30003913
    [Google Scholar]
  93. EghtesadiS MohammadiM VafaM Effects of hesperidin supplementation on glycemic control, lipid profile and inflammatory factors in patients with type 2 diabetes: A randomized, double-blind and placebo-controlled clinical trial.Endocrine Abst20164310.1530/endoabs.43.OC16
    [Google Scholar]
  94. Manoel-CaetanoF.S. XavierD.J. EvangelistaA.F. Gene expression profiles displayed by peripheral blood mononuclear cells from patients with type 2 diabetes mellitus focusing on biological processes implicated on the pathogenesis of the disease.Gene2012511215116010.1016/j.gene.2012.09.090 23036710
    [Google Scholar]
  95. Hill-BriggsF. AdlerN.E. BerkowitzS.A. Social determinants of health and diabetes: A scientific review.Diabetes Care2021441258279
    [Google Scholar]
  96. MaC. ZhangY. LiY. ChenC. CaiW. ZengY. The role of PPARγ in advanced glycation end products-induced inflammatory response in human chondrocytes.PLoS One2015105e012577610.1371/journal.pone.0125776 26024533
    [Google Scholar]
  97. ChenY.J. ChanD.C. LanK.C. PPARγ is involved in the hyperglycemia‐induced inflammatory responses and collagen degradation in human chondrocytes and diabetic mouse cartilages.J. Orthop. Res.201533337338110.1002/jor.22770 25410618
    [Google Scholar]
  98. AgrawalY.O. SharmaP.K. ShrivastavaB. Hesperidin produces cardioprotective activity via PPAR-γ pathway in ischemic heart disease model in diabetic rats.PLoS One2014911e11121210.1371/journal.pone.0111212 25369053
    [Google Scholar]
  99. PallaufK DucksteinN HaslerM KlotzL-O RimbachG Flavonoids as putative inducers of the transcription factors Nrf2, FoxO, and PPARγ.Oxid Med Cell Longev20172017
    [Google Scholar]
  100. MahmoudA.M. MohammedH.M. KhadrawyS.M. GalalyS.R. Hesperidin protects against chemically induced hepatocarcinogenesis via modulation of Nrf2/ARE/HO-1, PPARγ and TGF-β1/Smad3 signaling, and amelioration of oxidative stress and inflammation.Chem. Biol. Interact.201727714615810.1016/j.cbi.2017.09.015 28935427
    [Google Scholar]
  101. ZhuX. LiuH. LiuY. ChenY. LiuY. YinX. The antidepressant-like effects of hesperidin in streptozotocin‐induced diabetic rats by activating Nrf2/ARE/Glyoxalase 1 pathway.Front. Pharmacol.202011132510.3389/fphar.2020.01325 32982741
    [Google Scholar]
  102. KuzuM. KandemirF.M. YıldırımS. ÇağlayanC. KüçüklerS. Attenuation of sodium arsenite-induced cardiotoxicity and neurotoxicity with the antioxidant, anti-inflammatory, and antiapoptotic effects of hesperidin.Environ. Sci. Pollut. Res. Int.2021289108181083110.1007/s11356‑020‑11327‑5 33099738
    [Google Scholar]
  103. RoohbakhshA. ParhizH. SoltaniF. RezaeeR. IranshahiM. Molecular mechanisms behind the biological effects of hesperidin and hesperetin for the prevention of cancer and cardiovascular diseases.Life Sci.2015124647410.1016/j.lfs.2014.12.030 25625242
    [Google Scholar]
  104. KarimN. ShishirM.R.I. GowdV. ChenW. Hesperidin-an emerging bioactive compound against metabolic diseases and its potential biosynthesis pathway in microorganism.Food Rev. Int.2021123
    [Google Scholar]
  105. YariZ. MovahedianM. ImaniH. AlavianS.M. HedayatiM. HekmatdoostA. The effect of hesperidin supplementation on metabolic profiles in patients with metabolic syndrome: A randomized, double-blind, placebo-controlled clinical trial.Eur. J. Nutr.20205962569257710.1007/s00394‑019‑02105‑2 31844967
    [Google Scholar]
  106. Ferreira de OliveiraJ.M.P. SantosC. FernandesE. Therapeutic potential of hesperidin and its aglycone hesperetin: Cell cycle regulation and apoptosis induction in cancer models.Phytomedicine20207315288710.1016/j.phymed.2019.152887 30975541
    [Google Scholar]
  107. BalakrishnanK. CasimeerS.C. GhidanA.Y. Al AntaryT.M. SingaraveluA. Exploration of antioxidant, antibacterial activities of green synthesized hesperidin loaded PLGA nanoparticles.Biointerface Res. Appl. Chem.2021116145201452810.33263/BRIAC116.1452014528
    [Google Scholar]
  108. NajafiZ. EinafsharE. MirzaviF. AmiriH. Jalili-NikM. SoukhtanlooM. Protective effect of hesperidin-loaded selenium nanoparticles stabilized by chitosan on glutamate-induced toxicity in PC12 cells.J. Nanopart. Res.202325917810.1007/s11051‑023‑05828‑w
    [Google Scholar]
  109. SimosY.V. SpyrouK. PatilaM. Trends of nanotechnology in type 2 diabetes mellitus treatment.Asian J Pharmaceut Sci2021161627610.1016/j.ajps.2020.05.001 33613730
    [Google Scholar]
  110. XuY. Van HulM. SurianoF. PréatV. CaniP.D. BeloquiA. Novel strategy for oral peptide delivery in incretin-based diabetes treatment.Gut202069591191910.1136/gutjnl‑2019‑319146 31401561
    [Google Scholar]
  111. El-NaggarM.E. Al-JoufiF. AnwarM. AttiaM.F. El-BanaM.A. Curcumin-loaded PLA-PEG copolymer nanoparticles for treatment of liver inflammation in streptozotocin-induced diabetic rats.Colloids Surf. B Biointerfaces201917738939810.1016/j.colsurfb.2019.02.024 30785036
    [Google Scholar]
  112. KarthickV. KumarV.G. DhasT.S. SingaraveluG. SadiqA.M. GovindarajuK. Effect of biologically synthesized gold nanoparticles on alloxan-induced diabetic rats-An in vivo approach.Colloids Surf. B Biointerfaces201412250551110.1016/j.colsurfb.2014.07.022 25092583
    [Google Scholar]
  113. GhoshS. MoreP. NitnavareR. JagtapS. ChippalkattiR. DerleA. Antidiabetic and antioxidant properties of copper nanoparticles synthesized by medicinal plant Dioscorea bulbifera.J. Nanomed. Nanotechnol.2015S61
    [Google Scholar]
  114. AlkhalafM.I. HusseinR.H. HamzaA. Green synthesis of silver nanoparticles by Nigella sativa extract alleviates diabetic neuropathy through anti-inflammatory and antioxidant effects.Saudi J. Biol. Sci.20202792410241910.1016/j.sjbs.2020.05.005 32884424
    [Google Scholar]
  115. AmjadiS. Mesgari AbbasiM. ShokouhiB. GhorbaniM. HamishehkarH. Enhancement of therapeutic efficacy of betanin for diabetes treatment by liposomal nanocarriers.J. Funct. Foods20195911912810.1016/j.jff.2019.05.015
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240268940231113044317
Loading
/content/journals/cmm/10.2174/0115665240268940231113044317
Loading

Data & Media loading...

  • Article Type: Review Article
Keyword(s): antidiabetic mechanisms; diabetes; efficient delivery; Hesperidin; nanocarrier; treatment
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test