Skip to content
2000
Volume 24, Issue 12
  • ISSN: 1566-5240
  • E-ISSN:

Abstract

The biochemical integrity of the brain is critical in maintaining normal central nervous system (CNS) functions. One of the factors that plays an important role in causing biochemical impairment of the brain is known as oxidative stress. Oxidative stress is generally defined as the excessive formation of free radicals relative to antioxidant defenses. The brain is particularly susceptible to oxidative stress because of its high oxygen consumption and lipid-rich content. Therefore, oxidative stress damage is associated with abnormal CNS function. Psychiatric disorders are debilitating diseases. The underlying pathophysiology of psychiatric disorders is poorly defined and may involve the interplay of numerous clinical factors and mechanistic mechanisms. Considerable evidence suggests that oxidative stress plays a complex role in several neuropsychiatric disorders, including anxiety, bipolar disorder, depression, obsessive-compulsive disorder, panic disorder, and schizophrenia. To address these issues, we reviewed the literature and considered the role of oxidative stress as one of the first pathological changes in the course of neuropsychiatric disorders, which should receive more attention in future research.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/1566524023666230904150907
2024-12-01
2024-11-22
Loading full text...

Full text loading...

References

  1. van OsJ. KenisG. RuttenB.P.F. The environment and schizophrenia.Nature2010468732120321210.1038/nature09563 21068828
    [Google Scholar]
  2. NanouE. CatterallW.A. Calcium channels, synaptic plasticity, and neuropsychiatric disease.Neuron201898346648110.1016/j.neuron.2018.03.017 29723500
    [Google Scholar]
  3. MarínO. Developmental timing and critical windows for the treatment of psychiatric disorders.Nat. Med.201622111229123810.1038/nm.4225 27783067
    [Google Scholar]
  4. TsukaharaH. Biomarkers for oxidative stress: Clinical application in pediatric medicine.Curr. Med. Chem.200714333935110.2174/092986707779941177 17305536
    [Google Scholar]
  5. MorrisG. StubbsB. KöhlerC.A. The putative role of oxidative stress and inflammation in the pathophysiology of sleep dysfunction across neuropsychiatric disorders: Focus on chronic fatigue syndrome, bipolar disorder and multiple sclerosis.Sleep Med. Rev.20184125526510.1016/j.smrv.2018.03.007 29759891
    [Google Scholar]
  6. AzamiS. ShahriariZ. AsgharzadeS. FarkhondehT. SadeghiM. AhmadiF. Therapeutic potential of saffron (Crocus sativus L.) in ischemia stroke.Evid. Based Complement. Alternat. Med.202120216643950
    [Google Scholar]
  7. ForouzanfarF. HosseinzadehH. Protective Role of Nigella sativa and Thymoquinone in Oxidative Stress: A Review.Nuts and Seeds in Health and Disease Prevention.MassachusettsAcademic Press202012714610.1016/B978‑0‑12‑818553‑7.00011‑5
    [Google Scholar]
  8. RamaniS. PathakA. DalalV. PaulA. BiswasS. Oxidative stress in autoimmune diseases: An under dealt malice.Curr. Protein Pept. Sci.202021661162110.2174/1389203721666200214111816 32056521
    [Google Scholar]
  9. ChiurchiùV. Novel targets in multiple sclerosis: To oxidative stress and beyond.Curr. Top. Med. Chem.201414222590259910.2174/1568026614666141203143801 25478879
    [Google Scholar]
  10. GutteridgeJ.M.C. HalliwellB. Mini-Review: Oxidative stress, redox stress or redox success?Biochem. Biophys. Res. Commun.2018502218318610.1016/j.bbrc.2018.05.045 29752940
    [Google Scholar]
  11. DiasV. JunnE. MouradianM.M. The role of oxidative stress in Parkinson’s disease.J. Parkinsons Dis.20133446149110.3233/JPD‑130230 24252804
    [Google Scholar]
  12. PadurariuM. CiobicaA. HritcuL. StoicaB. BildW. StefanescuC. Changes of some oxidative stress markers in the serum of patients with mild cognitive impairment and Alzheimer’s disease.Neurosci. Lett.2010469161010.1016/j.neulet.2009.11.033 19914330
    [Google Scholar]
  13. ValkoM. LeibfritzD. MoncolJ. CroninM.T.D. MazurM. TelserJ. Free radicals and antioxidants in normal physiological functions and human disease.Int. J. Biochem. Cell Biol.2007391448410.1016/j.biocel.2006.07.001 16978905
    [Google Scholar]
  14. AitkenR.J. RomanS.D. Antioxidant systems and oxidative stress in the testes.Oxid. Med. Cell. Longev.200811152410.4161/oxim.1.1.6843 19794904
    [Google Scholar]
  15. LiguoriI. RussoG. CurcioF. Oxidative stress, aging, and diseases.Clin. Interv. Aging20181375777210.2147/CIA.S158513 29731617
    [Google Scholar]
  16. KimG.H. KimJ.E. RhieS.J. YoonS. The role of oxidative stress in neurodegenerative diseases.Exp. Neurobiol.201524432534010.5607/en.2015.24.4.325 26713080
    [Google Scholar]
  17. JohnsonW.M. Wilson-DelfosseA.L. MieyalJ.J. Dysregulation of glutathione homeostasis in neurodegenerative diseases.Nutrients20124101399144010.3390/nu4101399 23201762
    [Google Scholar]
  18. van VelzenL.S. WijdeveldM. BlackC.N. Oxidative stress and brain morphology in individuals with depression, anxiety and healthy controls.Prog. Neuropsychopharmacol. Biol. Psychiatry20177614014410.1016/j.pnpbp.2017.02.017 28249819
    [Google Scholar]
  19. KulogluM. AtmacaM. TezcanE. GeçiciÖ. TunckolH. UstundagB. Antioxidant enzyme activities and malondialdehyde levels in patients with obsessive-compulsive disorder.Neuropsychobiology2002461273210.1159/000063573 12207144
    [Google Scholar]
  20. HalliwellB. Free radicals and antioxidants – quo vadis?Trends Pharmacol. Sci.201132312513010.1016/j.tips.2010.12.002 21216018
    [Google Scholar]
  21. AdibhatlaR.M. HatcherJ.F. Role of lipids in brain injury and diseases.Future Lipidol.20072440342210.2217/17460875.2.4.403 18176634
    [Google Scholar]
  22. ChiurchiùV. OrlacchioA. MaccarroneM. Is modulation of oxidative stress an answer? The state of the art of redox therapeutic actions in neurodegenerative diseases.Oxid. Med. Cell. Longev.20162016790938010.1155/2016/7909380
    [Google Scholar]
  23. ChiurchiùV. MaccarroneM. Chronic inflammatory disorders and their redox control: From molecular mechanisms to therapeutic opportunities.Antioxid. Redox Signal.20111592605264110.1089/ars.2010.3547 21391902
    [Google Scholar]
  24. LehtinenM. BonniA. Modeling oxidative stress in the central nervous system.Curr. Mol. Med.20066887188110.2174/156652406779010786 17168738
    [Google Scholar]
  25. MassaadC.A. KlannE. Reactive oxygen species in the regulation of synaptic plasticity and memory.Antioxid. Redox Signal.201114102013205410.1089/ars.2010.3208 20649473
    [Google Scholar]
  26. MaesM. YirmyiaR. NorabergJ. The inflammatory & neurodegenerative (I&ND) hypothesis of depression: Leads for future research and new drug developments in depression.Metab. Brain Dis.2009241275310.1007/s11011‑008‑9118‑1 19085093
    [Google Scholar]
  27. ShaoL. MartinM.V. WatsonS.J. Mitochondrial involvement in psychiatric disorders.Ann. Med.200840428129510.1080/07853890801923753 18428021
    [Google Scholar]
  28. GreaneyJ.L. SaundersE.F.H. SanthanamL. AlexanderL.M. Oxidative stress contributes to microvascular endothelial dysfunction in men and women with major depressive disorder.Circ. Res.2019124456457410.1161/CIRCRESAHA.118.313764 30582458
    [Google Scholar]
  29. DalalV. SharmaN.K. BiswasS. Oxidative stress: Diagnostic methods and application in medical science.ChamSpringer201710.1007/978‑981‑10‑4711‑4_2
    [Google Scholar]
  30. MeierS.M. DeckertJ. Genetics of anxiety disorders.Curr. Psychiatry Rep.20192131610.1007/s11920‑019‑1002‑7 30826936
    [Google Scholar]
  31. BlairK.S. BlairR.J.R. A cognitive neuroscience approach to generalized anxiety disorder and social phobia.Emot. Rev.20124213313810.1177/1754073911430251
    [Google Scholar]
  32. YoonH.J. SeoE.H. KimJ.J. ChooI.L.H. Neural correlates of self-referential processing and their clinical implications in social anxiety disorder.Clin. Psychopharmacol. Neurosci.2019171122410.9758/cpn.2019.17.1.12 30690936
    [Google Scholar]
  33. KumarA. KaurG. RinwaP. Buspirone along with melatonin attenuates oxidative damage and anxiety-like behavior in a mouse model of immobilization stress.Chin. J. Nat. Med.201412858258910.1016/S1875‑5364(14)60089‑3 25156283
    [Google Scholar]
  34. PatkiG. AllamF.H. AtroozF. Grape powder intake prevents ovariectomy-induced anxiety-like behavior, memory impairment and high blood pressure in female Wistar rats.PLoS One201389e7452210.1371/journal.pone.0074522 24040270
    [Google Scholar]
  35. BrocardoP.S. BoehmeF. PattenA. CoxA. Gil-MohapelJ. ChristieB.R. Anxiety- and depression-like behaviors are accompanied by an increase in oxidative stress in a rat model of fetal alcohol spectrum disorders: Protective effects of voluntary physical exercise.Neuropharmacology20126241607161810.1016/j.neuropharm.2011.10.006 22019722
    [Google Scholar]
  36. BerryA. CaponeF. GiorgioM. Deletion of the life span determinant p66Shc prevents age-dependent increases in emotionality and pain sensitivity in mice.Exp. Gerontol.2007421-2374510.1016/j.exger.2006.05.018 16809014
    [Google Scholar]
  37. StadtmanE.R. Protein oxidation in aging and age-related diseases.Ann. N. Y. Acad. Sci.20019281223810.1111/j.1749‑6632.2001.tb05632.x 11795513
    [Google Scholar]
  38. FloydR. HensleyK. Oxidative stress in brain agingImplications for therapeutics of neurodegenerative diseases.Neurobiol. Aging200223579580710.1016/S0197‑4580(02)00019‑2 12392783
    [Google Scholar]
  39. MasoodA. NadeemA. MustafaS.J. O’DonnellJ.M. Reversal of oxidative stress-induced anxiety by inhibition of phosphodiesterase-2 in mice.J. Pharmacol. Exp. Ther.2008326236937910.1124/jpet.108.137208 18456873
    [Google Scholar]
  40. SteenkampL.R. HoughC.M. ReusV.I. Severity of anxiety– but not depression– is associated with oxidative stress in Major Depressive Disorder.J. Affect. Disord.201721919320010.1016/j.jad.2017.04.042 28564628
    [Google Scholar]
  41. BlackC.N. BotM. SchefferP.G. PenninxB.W.J.H. Oxidative stress in major depressive and anxiety disorders, and the association with antidepressant use; results from a large adult cohort.Psychol. Med.201747593694810.1017/S0033291716002828 27928978
    [Google Scholar]
  42. BelmakerR.H. BersudskyY. Bipolar disorder: Treatment.Discov. Med.2004424415420 20704941
    [Google Scholar]
  43. AngstF. StassenH.H. ClaytonP.J. AngstJ. Mortality of patients with mood disorders: Follow-up over 34–38 years.J. Affect. Disord.2002682-316718110.1016/S0165‑0327(01)00377‑9 12063145
    [Google Scholar]
  44. RanjekarP.K. HingeA. HegdeM.V. Decreased antioxidant enzymes and membrane essential polyunsaturated fatty acids in schizophrenic and bipolar mood disorder patients.Psychiatry Res.2003121210912210.1016/S0165‑1781(03)00220‑8 14656446
    [Google Scholar]
  45. AndreazzaA.C. Noronha FreyB. ErdtmannB. DNA damage in bipolar disorder.Psychiatry Res.20071531273210.1016/j.psychres.2006.03.025 17582509
    [Google Scholar]
  46. SteckertA.V. ValvassoriS.S. MorettiM. Dal-PizzolF. QuevedoJ. Role of oxidative stress in the pathophysiology of bipolar disorder.Neurochem. Res.20103591295130110.1007/s11064‑010‑0195‑2 20499165
    [Google Scholar]
  47. ClayH.B. SillivanS. KonradiC. Mitochondrial dysfunction and pathology in bipolar disorder and schizophrenia.Int. J. Dev. Neurosci.201129331132410.1016/j.ijdevneu.2010.08.007 20833242
    [Google Scholar]
  48. AndreazzaA.C. Kauer-Sant’AnnaM. FreyB.N. Effects of mood stabilizers on DNA damage in an animal model of mania.J. Psychiatry Neurosci.2008336516524 18982174
    [Google Scholar]
  49. FreyB.N. MartinsM.R. PetronilhoF.C. Dal-PizzolF. QuevedoJ. KapczinskiF. Increased oxidative stress after repeated amphetamine exposure: Possible relevance as a model of mania.Bipolar Disord.20068327528010.1111/j.1399‑5618.2006.00318.x 16696830
    [Google Scholar]
  50. TanH. YoungL.T. ShaoL. CheY. HonerW.G. WangJ.F. Mood stabilizer lithium inhibits amphetamine-increased 4-hydroxynonenal-protein adducts in rat frontal cortex.Int. J. Neuropsychopharmacol.20121591275128510.1017/S1461145711001416 21939588
    [Google Scholar]
  51. KulogluM. UstundagB. AtmacaM. CanatanH. TezcanA.E. CinkilincN. Lipid peroxidation and antioxidant enzyme levels in patients with schizophrenia and bipolar disorder.Cell Biochem. Funct.200220217117510.1002/cbf.940 11979513
    [Google Scholar]
  52. WangJ.F. ShaoL. SunX. YoungL.T. Increased oxidative stress in the anterior cingulate cortex of subjects with bipolar disorder and schizophrenia.Bipolar Disord.200911552352910.1111/j.1399‑5618.2009.00717.x 19624391
    [Google Scholar]
  53. AndreazzaA.C. Kauer-Sant’AnnaM. FreyB.N. Oxidative stress markers in bipolar disorder: A meta-analysis.J. Affect. Disord.20081112-313514410.1016/j.jad.2008.04.013 18539338
    [Google Scholar]
  54. BrownN.C. AndreazzaA.C. YoungL.T. An updated meta-analysis of oxidative stress markers in bipolar disorder.Psychiatry Res.20142181-2616810.1016/j.psychres.2014.04.005 24794031
    [Google Scholar]
  55. FreyB.N. AndreazzaA.C. KunzM. Increased oxidative stress and DNA damage in bipolar disorder: A twin-case report.Prog. Neuropsychopharmacol. Biol. Psychiatry200731128328510.1016/j.pnpbp.2006.06.011 16859818
    [Google Scholar]
  56. AndreazzaA.C. GildengersA. RajjiT.K. ZuzarteP.M.L. MulsantB.H. YoungL.T. Oxidative stress in older patients with bipolar disorder.Am. J. Geriatr. Psychiatry201523331431910.1016/j.jagp.2014.05.008 24974141
    [Google Scholar]
  57. ValvassoriS.S. BavarescoD.V. FeierG. Increased oxidative stress in the mitochondria isolated from lymphocytes of bipolar disorder patients during depressive episodes.Psychiatry Res.201826419220110.1016/j.psychres.2018.03.089 29653348
    [Google Scholar]
  58. AkarsuS. BoluA. AydemirE. The relationship between the number of manic episodes and oxidative stress indicators in bipolar disorder.Psychiatry Investig.201815551451910.30773/pi.2016.12.31 29674601
    [Google Scholar]
  59. BlackC.N. BotM. SchefferP.G. CuijpersP. PenninxB.W.J.H. Is depression associated with increased oxidative stress? A systematic review and meta-analysis.Psychoneuroendocrinology20155116417510.1016/j.psyneuen.2014.09.025 25462890
    [Google Scholar]
  60. MaesM. GaleckiP. ChangY.S. BerkM. A review on the oxidative and nitrosative stress (O&NS) pathways in major depression and their possible contribution to the (neuro)degenerative processes in that illness.Prog. Neuropsychopharmacol. Biol. Psychiatry201135367669210.1016/j.pnpbp.2010.05.004 20471444
    [Google Scholar]
  61. Erenİ. NazıroğluM. DemirdaşA. Venlafaxine modulates depression-induced oxidative stress in brain and medulla of rat.Neurochem. Res.200732349750510.1007/s11064‑006‑9258‑9 17268845
    [Google Scholar]
  62. TodorovićN. TomanovićN. GassP. FilipovićD. Olanzapine modulation of hepatic oxidative stress and inflammation in socially isolated rats.Eur. J. Pharm. Sci.2016819410210.1016/j.ejps.2015.10.010 26474692
    [Google Scholar]
  63. DesouzaF. RodriguesM. TufikS. NobregaJ. DalmeidaV. Acute stressor-selective effects on homocysteine metabolism and oxidative stress parameters in female rats.Pharmacol. Biochem. Behav.200685240040710.1016/j.pbb.2006.09.008 17056102
    [Google Scholar]
  64. ZhangD. WenX. WangX. ShiM. ZhaoY. Antidepressant effect of Shudihuang on mice exposed to unpredictable chronic mild stress.J. Ethnopharmacol.20091231556010.1016/j.jep.2009.02.029 19429340
    [Google Scholar]
  65. YanikM. ErelO. KatiM. The relationship between potency of oxidative stress and severity of depression.Acta Neuropsychiatr.200416420020310.1111/j.0924‑2708.2004.00090.x 26984307
    [Google Scholar]
  66. PaltaP. SamuelL.J. MillerE.R.III SzantonS.L. Depression and oxidative stress: Results from a meta-analysis of observational studies.Psychosom. Med.2014761121910.1097/PSY.0000000000000009 24336428
    [Google Scholar]
  67. LiuT. ZhongS. LiaoX. A meta-analysis of oxidative stress markers in depression.PLoS One20151010e013890410.1371/journal.pone.0138904 26445247
    [Google Scholar]
  68. DinizB.S. Mendes-SilvaA.P. SilvaL.B. Oxidative stress markers imbalance in late-life depression.J. Psychiatr. Res.2018102293310.1016/j.jpsychires.2018.02.023 29574402
    [Google Scholar]
  69. PasqualiM.A. HarlowB.L. SoaresC.N. A longitudinal study of neurotrophic, oxidative, and inflammatory markers in first-onset depression in midlife women.Eur. Arch. Psychiatry Clin. Neurosci.2018268877178110.1007/s00406‑017‑0812‑z 28550365
    [Google Scholar]
  70. KatrenčíkováB. VavákováM. PaduchováZ. Oxidative stress markers and antioxidant enzymes in children and adolescents with depressive disorder and impact of omega-3 fatty acids in randomised clinical trial.Antioxidants2021108125610.3390/antiox10081256 34439504
    [Google Scholar]
  71. TalaeiA. ForouzanfarF. AkhondzadehS. Medicinal plants in the treatment of obsessive-compulsive disorder: A review.Curr. Drug Discov. Technol.202118181610.2174/1570163816666191011105050 31660838
    [Google Scholar]
  72. TalaeiA. HosseiniF.F. AghiliZ. A comparative, single-blind, randomized study on quetiapine and aripiperazole augmentation in treatment of selective serotonin reuptake inhibitor refractory obsessive-compulsive disorder.Can. J. Physiol. Pharmacol.202098423624210.1139/cjpp‑2019‑0381 32228235
    [Google Scholar]
  73. KandemirH. AbuhandanM. AksoyN. SavikE. KayaC. Oxidative imbalance in child and adolescent patients with obsessive compulsive disorder.J. Psychiatr. Res.201347111831183410.1016/j.jpsychires.2013.08.010 24011862
    [Google Scholar]
  74. AliciD. BulbulF. ViritO. Evaluation of oxidative metabolism and oxidative DNA damage in patients with obsessive-compulsive disorder.Psychiatry Clin. Neurosci.201670210911510.1111/pcn.12362 26388322
    [Google Scholar]
  75. SelekS. HerkenH. BulutM. Oxidative imbalance in obsessive compulsive disorder patients: A total evaluation of oxidant–antioxidant status.Prog. Neuropsychopharmacol. Biol. Psychiatry200832248749110.1016/j.pnpbp.2007.10.002 18006203
    [Google Scholar]
  76. ChakrabortyS. DasguptaA. DasH.N. SinghO.P. MandalA.K. MandalN. Study of oxidative stress in obsessive compulsive disorder in response to treatment with Fluoxetine.Indian J. Clin. Biochem.200924219419710.1007/s12291‑009‑0035‑9 23105832
    [Google Scholar]
  77. ChakrabortyS. SinghO.P. DasguptaA. MandalN. DasH.N. Correlation between lipid peroxidation-induced TBARS level and disease severity in obsessive–compulsive disorder.Prog. Neuropsychopharmacol. Biol. Psychiatry200933236336610.1016/j.pnpbp.2009.01.001 19272303
    [Google Scholar]
  78. AtmacaM. TezcanE. KulogluM. UstundagB. Plasma nitrate values in patients with obsessive-compulsive disorder.Psychiatry Clin. Neurosci.200559562162310.1111/j.1440‑1819.2005.01426.x 16194270
    [Google Scholar]
  79. OzdemirE. CetinkayaS. ErsanS. KucukosmanS. ErsanE.E. Serum selenium and plasma malondialdehyde levels and antioxidant enzyme activities in patients with obsessive–compulsive disorder.Prog. Neuropsychopharmacol. Biol. Psychiatry2009331626510.1016/j.pnpbp.2008.10.004 18957313
    [Google Scholar]
  80. Danışman SonkurtM. AltınözA.E. KöşgerF. YiğitaslanS. GüleçG. EşsizoğluA. Are there differences in oxidative stress and inflammatory processes between the autogenous and reactive subtypes of obsessive-compulsive disorder? A controlled cross-sectional study.Br. J. Psychiatry202244217117710.1590/1516‑4446‑2021‑1740 34190826
    [Google Scholar]
  81. KurhanF. KamışG.Z. AlpH.H. Akyuz CimE.F. AtliA. A Cross-Sectional Measurement of Endogenous Oxidative Stress Marker Levels in Obsessive Compulsive Disorder.Psychiatry Clin. Psychopharmacol.202232321522110.5152/pcp.2022.21318
    [Google Scholar]
  82. GreensladeJ.H. HawkinsT. ParsonageW. CullenL. Panic disorder in patients presenting to the emergency department with chest pain: Prevalence and presenting symptoms.Heart Lung Circ.201726121310131610.1016/j.hlc.2017.01.001 28256404
    [Google Scholar]
  83. HodgesL.M. FyerA.J. WeissmanM.M. LogueM.W. HaghighiF. EvgrafovO. Evidence for linkage and association of GABRB3 and GABRA5 to panic disorder.Neuropsychopharmacology201439102423243110.1038/npp.2014.92
    [Google Scholar]
  84. KulogluM. AtmacaM. TezcanE. UstundagB. BulutS. Antioxidant enzyme and malondialdehyde levels in patients with panic disorder.Neuropsychobiology200246418618910.1159/000067810 12566935
    [Google Scholar]
  85. ErsoyM.A. SelekS. CelikH. Role of oxidative and antioxidative parameters in etiopathogenesis and prognosis of panic disorder.Int. J. Neurosci.200811871025103710.1080/00207450701769026 18569158
    [Google Scholar]
  86. GulI.G. KarlidagR. CumurcuB.E. The effect of agoraphobia on oxidative stress in panic disorder.Psychiatry Investig.201310431732510.4306/pi.2013.10.4.317 24474979
    [Google Scholar]
  87. HerkenH. AkyolO. YilmazH.R. Nitric oxide, adenosine deaminase, xanthine oxidase and superoxide dismutase in patients with panic disorder: Alterations by antidepressant treatment.Hum. Psychopharmacol.2006211535910.1002/hup.742 16329160
    [Google Scholar]
  88. NaharZ. SarwarM. Safiqul IslamM. Determination of serum antioxidant vitamins, glutathione and MDA levels in panic disorder patients.Drug Res. (Stuttg.)201363842442810.1055/s‑0033‑1343494 23670827
    [Google Scholar]
  89. MomtazmaneshS. Zare-ShahabadiA. RezaeiN. Cytokine alterations in schizophrenia: An updated review.Front. Psychiatry20191089210.3389/fpsyt.2019.00892 31908647
    [Google Scholar]
  90. MurphyC.E. WalkerA.K. WeickertC.S. Neuroinflammation in schizophrenia: The role of nuclear factor kappa B.Transl. Psychiatry202111152810.1038/s41398‑021‑01607‑0 34650030
    [Google Scholar]
  91. BitanihirweB.K.Y. WooT.U.W. Oxidative stress in schizophrenia: An integrated approach.Neurosci. Biobehav. Rev.201135387889310.1016/j.neubiorev.2010.10.008 20974172
    [Google Scholar]
  92. van KesterenC F MG. GremmelsH. de WitteL.D. Immune involvement in the pathogenesis of schizophrenia: A meta-analysis on postmortem brain studies.Transl. Psychiatry201773e107510.1038/tp.2017.4 28350400
    [Google Scholar]
  93. HerkenH. UzE. ÖzyurtH. SöğütS. ViritO. AkyolÖ. Evidence that the activities of erythrocyte free radical scavenging enzymes and the products of lipid peroxidation are increased in different forms of schizophrenia.Mol. Psychiatry200161667310.1038/sj.mp.4000789 11244487
    [Google Scholar]
  94. GawrylukJ.W. WangJ.F. AndreazzaA.C. ShaoL. YoungL.T. Decreased levels of glutathione, the major brain antioxidant, in post-mortem prefrontal cortex from patients with psychiatric disorders.Int. J. Neuropsychopharmacol.201114112313010.1017/S1461145710000805 20633320
    [Google Scholar]
  95. YaoJ.K. LeonardS. ReddyR. Altered glutathione redox state in schizophrenia.Dis. Markers2006221-2839310.1155/2006/248387 16410648
    [Google Scholar]
  96. ZhangX.Y. ZhouD.F. CaoL.Y. ZhangP.Y. WuG.Y. ShenY.C. The effect of risperidone treatment on superoxide dismutase in schizophrenia.J. Clin. Psychopharmacol.200323212813110.1097/00004714‑200304000‑00004 12640213
    [Google Scholar]
  97. RaffaM. MechriA. OthmanL.B. FendriC. GahaL. KerkeniA. Decreased glutathione levels and antioxidant enzyme activities in untreated and treated schizophrenic patients.Prog. Neuropsychopharmacol. Biol. Psychiatry20093371178118310.1016/j.pnpbp.2009.06.018 19576938
    [Google Scholar]
  98. BaiZ.L. LiX.S. ChenG.Y. Serum oxidative stress marker levels in unmedicated and medicated patients with schizophrenia.J. Mol. Neurosci.201866342843610.1007/s12031‑018‑1165‑4 30298298
    [Google Scholar]
  99. FraguasD. Díaz-CanejaC.M. AyoraM. Hernández-ÁlvarezF. Rodríguez-QuirogaA. RecioS. Oxidative stress and inflammation in first-episode psychosis: A systematic review and meta-analysis.Schizophr. Bull.2018 30169868
    [Google Scholar]
  100. WangY.P. ZhangP.F. YuanX.X. Effects of oxidative stress on cognitive impairment in first episode schizophrenia.Zhonghua Yi Xue Za Zhi2019991913 30641657
    [Google Scholar]
  101. DesrumauxC. RisoldP.Y. SchroederH. Phospholipid transfer protein (PLTP) deficiency reduces brain vitamin E content and increases anxiety in mice.FASEB J.200519211610.1096/fj.04‑2400fje 15576481
    [Google Scholar]
  102. SouzaC.G. MoreiraJ.D. SiqueiraI.R. Highly palatable diet consumption increases protein oxidation in rat frontal cortex and anxiety-like behavior.Life Sci.200781319820310.1016/j.lfs.2007.05.001 17574275
    [Google Scholar]
  103. FreyB.N. ValvassoriS.S. GomesK.M. Increased oxidative stress in submitochondrial particles after chronic amphetamine exposure.Brain Res.20061097122422910.1016/j.brainres.2006.04.076 16730669
    [Google Scholar]
  104. SarandolA. SarandolE. EkerS.S. ErdincS. VatanseverE. KirliS. Major depressive disorder is accompanied with oxidative stress: Short-term antidepressant treatment does not alter oxidative–antioxidative systems.Hum. Psychopharmacol.2007222677310.1002/hup.829 17299810
    [Google Scholar]
  105. BiliciM. EfeH. KöroğluM.A. UyduH.A. BekaroğluM. DeğerO. Antioxidative enzyme activities and lipid peroxidation in major depression: Alterations by antidepressant treatments.J. Affect. Disord.2001641435110.1016/S0165‑0327(00)00199‑3 11292519
    [Google Scholar]
  106. SrivastavaN. BarthwalM.K. DalalP.K. A study on nitric oxide, β-adrenergic receptors and antioxidant status in the polymorphonuclear leukocytes from the patients of depression.J. Affect. Disord.2002721455210.1016/S0165‑0327(01)00421‑9 12204316
    [Google Scholar]
  107. HerkenH. GurelA. SelekS. Adenosine deaminase, nitric oxide, superoxide dismutase, and xanthine oxidase in patients with major depression: Impact of antidepressant treatment.Arch. Med. Res.200738224725210.1016/j.arcmed.2006.10.005 17227736
    [Google Scholar]
  108. ReddyR. KeshavanM. YaoJ.K. Reduced plasma antioxidants in first-episode patients with schizophrenia.Schizophr. Res.200362320521210.1016/S0920‑9964(02)00407‑3 12837516
    [Google Scholar]
  109. ZhangX.Y. TanY.L. CaoL.Y. Antioxidant enzymes and lipid peroxidation in different forms of schizophrenia treated with typical and atypical antipsychotics.Schizophr. Res.2006812-329130010.1016/j.schres.2005.10.011 16309894
    [Google Scholar]
/content/journals/cmm/10.2174/1566524023666230904150907
Loading
/content/journals/cmm/10.2174/1566524023666230904150907
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test