Skip to content
2000
Volume 24, Issue 12
  • ISSN: 1566-5240
  • E-ISSN:

Abstract

Background

The incidence of non-alcoholic fatty liver disease (NAFLD) is increasing worldwide. Adenosine monophosphate-activated protein kinase (AMPK) activation is beneficial for NAFLD treatment. Recent studies show the excessive fission of mitochondria during NAFLD progression, so targeting mitochondria dynamics may be a possible target for NAFLD. Still, little is known about whether AMPK regulates mitochondrial dynamics in hepar.

Objective

This study investigated whether AMPK activation alleviates hepatic steatosis by regulating mitochondrial dynamics mediated by GTPase dynamin-related protein 1 (Drp1).

Methods

Human hepatocyte line L-02 cells were cultured and subjected to palmitic acid (PA) treatment for 24 h to establish a hepatic steatosis model , which was pre-treated with different tool drugs. Hepatocyte function, hepatocyte lipid content, mitochondrial reactive oxygen species (ROS) production, and mitochondrial membrane potential (MMP) were examined. The expression levels of genes and proteins associated with mitochondrial dynamics were assessed using reverse transcription-quantitative PCR and western blotting.

Results

The results indicated that 5-Aminoimidazole-4-carboxamide 1-β-D-ribofura-noside (AICAR), an AMPK activator, improved hepatocyte function, as demonstrated by decreased alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activity (<0.05 or <0.01). In addition, AICAR decreased total cholesterol (TC) and triglyceride (TG) content and lipid deposition in hepatocytes (<0.01); decreased ROS production; improved MMP (<0.01); reduced fission-1 (Fis1) and mitochondrial fission factor (Mff) mRNA expression; and downregulated p-Drp1 (Ser 616) protein expression. In contrast, AICAR increased mitochondrial fusion factor mitofusin-1 (Mfn1) and mitofusin-2 (Mfn2) mRNA expression and upregulated p-Drp1 (Ser 637) protein expression. Mdivi-1, a Drp-1 inhibitor, was used to confirm whether mitochondrial dynamics regulated by Drp1-mediated the role of AICAR. Similar to AICAR, Mdivi-1 improved hepatocyte function and MMP significantly, decreased ROS production and lipid deposition, downregulated Fis1 and Mff mRNA expression, downregulated p-Drp1 (Ser 616) protein expression, and enhanced Mfn1 and Mfn2 mRNA and p-Drp1 (Ser 637) protein expression. However, Compound C, an AMPK-specific inhibitor, had less impact on the protective effect of Mdivi-1.

Conclusion

The results demonstrated that AMPK activation has a protective effect on hepatic steatosis , largely dependent on the inhibition of Drp1-mediated mitochondrial fission.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240275594231229121030
2024-12-01
2024-10-12
Loading full text...

Full text loading...

References

  1. PowellE.E. WongV.W.S. RinellaM. Non-alcoholic fatty liver disease.Lancet2021397102902212222410.1016/S0140‑6736(20)32511‑3 33894145
    [Google Scholar]
  2. FriedmanS.L. Neuschwander-TetriB.A. RinellaM. SanyalA.J. Mechanisms of NAFLD development and therapeutic strategies.Nat. Med.201824790892210.1038/s41591‑018‑0104‑9 29967350
    [Google Scholar]
  3. LiuD. ZhangP. ZhouJ. TNFAIP3 interacting protein 3 overexpression suppresses nonalcoholic steatohepatitis by blocking TAK1 activation.Cell Metab.2020314726740.e810.1016/j.cmet.2020.03.007 32268115
    [Google Scholar]
  4. CohenJ.C. HortonJ.D. HobbsH.H. Human fatty liver disease: Old questions and new insights.Science201133260371519152310.1126/science.1204265 21700865
    [Google Scholar]
  5. ByrneC.D. TargherG. NAFLD: A multisystem disease.J. Hepatol.2015621Suppl.S47S6410.1016/j.jhep.2014.12.012 25920090
    [Google Scholar]
  6. BrowningJ.D. HortonJ.D. Molecular mediators of hepatic steatosis and liver injury.J. Clin. Invest.2004114214715210.1172/JCI200422422 15254578
    [Google Scholar]
  7. CobbinaE. AkhlaghiF. Non-alcoholic fatty liver disease (NAFLD) – pathogenesis, classification, and effect on drug metabolizing enzymes and transporters.Drug Metab. Rev.201749219721110.1080/03602532.2017.1293683 28303724
    [Google Scholar]
  8. NassirF. NAFLD: Mechanisms, treatments, and biomarkers.Biomolecules202212682410.3390/biom12060824 35740949
    [Google Scholar]
  9. PicardM. ShirihaiO.S. Mitochondrial signal transduction.Cell Metab.202234111620165310.1016/j.cmet.2022.10.008 36323233
    [Google Scholar]
  10. GiacomelloM. PyakurelA. GlytsouC. ScorranoL. The cell biology of mitochondrial membrane dynamics.Nat. Rev. Mol. Cell Biol.202021420422410.1038/s41580‑020‑0210‑7 32071438
    [Google Scholar]
  11. RamanathanR. AliA.H. IbdahJ.A. Mitochondrial dysfunction plays central role in nonalcoholic fatty liver disease.Int. J. Mol. Sci.20222313728010.3390/ijms23137280 35806284
    [Google Scholar]
  12. YuL.P. LiY.J. WangT. In vivo recognition of bioactive substances of Polygonum multiflorum for regulating mitochondria against metabolic dysfunction-associated fatty liver disease.World J. Gastroenterol.202329117118910.3748/wjg.v29.i1.171 36683716
    [Google Scholar]
  13. Di CiaulaA. PassarellaS. ShanmugamH. Nonalcoholic fatty liver disease (NAFLD). Mitochondria as players and targets of therapies?Int. J. Mol. Sci.20212210537510.3390/ijms22105375 34065331
    [Google Scholar]
  14. YuR. LiuT. NingC. The phosphorylation status of Ser-637 in dynamin-related protein 1 (Drp1) does not determine Drp1 recruitment to mitochondria.J. Biol. Chem.201929446172621727710.1074/jbc.RA119.008202 31533986
    [Google Scholar]
  15. ZhaoJ. LendahlU. NistérM. Regulation of mitochondrial dynamics: Convergences and divergences between yeast and vertebrates.Cell. Mol. Life Sci.201370695197610.1007/s00018‑012‑1066‑6 22806564
    [Google Scholar]
  16. WestermannB. Mitochondrial fusion and fission in cell life and death.Nat. Rev. Mol. Cell Biol.2010111287288410.1038/nrm3013 21102612
    [Google Scholar]
  17. VenediktovaN. SolomadinI. StarinetsV. Effect of thyroxine on the structural and dynamic features of cardiac mitochondria and mitophagy in rats.Cells202312339610.3390/cells12030396 36766738
    [Google Scholar]
  18. ChanD.C. Mitochondrial dynamics and its involvement in disease.Annu. Rev. Pathol.202015123525910.1146/annurev‑pathmechdis‑012419‑032711 31585519
    [Google Scholar]
  19. WangJ. YangY. SunF. ALKBH5 attenuates mitochondrial fission and ameliorates liver fibrosis by reducing Drp1 methylation.Pharmacol. Res.202318710660810.1016/j.phrs.2022.106608 36566000
    [Google Scholar]
  20. LosónO.C. SongZ. ChenH. ChanD.C. Fis1, Mff, MiD49, and MiD51 mediate Drp1 recruitment in mitochondrial fission.Mol. Biol. Cell201324565966710.1091/mbc.e12‑10‑0721 23283981
    [Google Scholar]
  21. WangM. WeiR. LiG. SUMOylation of SYNJ2BP-COX16 promotes breast cancer progression through DRP1-mediated mitochondrial fission.Cancer Lett.202254721587110.1016/j.canlet.2022.215871 35998797
    [Google Scholar]
  22. XieL. ShiF. LiY. Drp1-dependent remodeling of mitochondrial morphology triggered by EBV-LMP1 increases cisplatin resistance.Signal Transduct. Target. Ther.2020515610.1038/s41392‑020‑0151‑9 32433544
    [Google Scholar]
  23. HuangQ. ChenH. YinK. Formononetin attenuates renal tubular injury and mitochondrial damage in diabetic nephropathy partly via regulating Sirt1/PGC-1α pathway.Front. Pharmacol.20221390123410.3389/fphar.2022.901234 35645821
    [Google Scholar]
  24. PagliusoA. CossartP. StavruF. The ever-growing complexity of the mitochondrial fission machinery.Cell. Mol. Life Sci.201875335537410.1007/s00018‑017‑2603‑0 28779209
    [Google Scholar]
  25. LiesaM. PalacínM. ZorzanoA. Mitochondrial dynamics in mammalian health and disease.Physiol. Rev.200989379984510.1152/physrev.00030.2008 19584314
    [Google Scholar]
  26. BaeS. LeeY.H. LeeJ. ParkJ. JunW. Salvia plebeia R. Br. water extract ameliorates hepatic steatosis in a non-alcoholic fatty liver disease model by regulating the AMPK pathway.Nutrients20221424537910.3390/nu14245379 36558538
    [Google Scholar]
  27. HardieD.G. AMP-activated protein kinase-an energy sensor that regulates all aspects of cell function.Genes Dev.201125181895190810.1101/gad.17420111 21937710
    [Google Scholar]
  28. ForetzM. EvenP. ViolletB. AMPK activation reduces hepatic lipid content by increasing fat oxidation in vivo.Int. J. Mol. Sci.2018199282610.3390/ijms19092826 30235785
    [Google Scholar]
  29. MottilloE.P. DesjardinsE.M. CraneJ.D. Lack of adipocyte AMPK exacerbates insulin resistance and hepatic steatosis through brown and beige adipose tissue function.Cell Metab.201624111812910.1016/j.cmet.2016.06.006 27411013
    [Google Scholar]
  30. SmithB.K. MarcinkoK. DesjardinsE.M. LallyJ.S. FordR.J. SteinbergG.R. Treatment of nonalcoholic fatty liver disease: Role of AMPK.Am. J. Physiol. Endocrinol. Metab.20163114E730E74010.1152/ajpendo.00225.2016 27577854
    [Google Scholar]
  31. KimS.H. YunC. KwonD. LeeY.H. KwakJ.H. JungY.S. Effect of isoquercitrin on free fatty acid-induced lipid accumulation in HepG2 cells.Molecules2023283147610.3390/molecules28031476 36771140
    [Google Scholar]
  32. HuangR. GuoF. LiY. Activation of AMPK by triptolide alleviates nonalcoholic fatty liver disease by improving hepatic lipid metabolism, inflammation and fibrosis.Phytomedicine20219215373910.1016/j.phymed.2021.153739 34592488
    [Google Scholar]
  33. HanH. XueT. LiJ. Plant sterol ester of α-linolenic acid improved non-alcoholic fatty liver disease by attenuating endoplasmic reticulum stress-triggered apoptosis via activation of the AMPK.J. Nutr. Biochem.202210710907210.1016/j.jnutbio.2022.109072 35660097
    [Google Scholar]
  34. DongZ. ZhuangQ. YeX. Adiponectin inhibits NLRP3 inflammasome activation in nonalcoholic steatohepatitis via AMPK-JNK/ErK1/2-NFκB/ROS signaling pathways.Front. Med.2020754644510.3389/fmed.2020.546445 33251225
    [Google Scholar]
  35. PengF. JiangD. XuW. AMPK/MFF Activation: Role in mitochondrial fission and mitophagy in dry eye.Invest. Ophthalmol. Vis. Sci.202263121810.1167/iovs.63.12.18 36374514
    [Google Scholar]
  36. LeeA. KondapalliC. VirgaD.M. Aβ42 oligomers trigger synaptic loss through CAMKK2-AMPK-dependent effectors coordinating mitochondrial fission and mitophagy.Nat. Commun.2022131444410.1038/s41467‑022‑32130‑5 35915085
    [Google Scholar]
  37. DuJ. LiH. SongJ. AMPK activation alleviates myocardial ischemia-reperfusion injury by regulating drp1-mediated mitochondrial dynamics.Front. Pharmacol.20221386220410.3389/fphar.2022.862204 35860026
    [Google Scholar]
  38. LiuJ. YanW. ZhaoX. Sirt3 attenuates post-infarction cardiac injury via inhibiting mitochondrial fission and normalization of AMPK-Drp1 pathways.Cell. Signal.20195311310.1016/j.cellsig.2018.09.009 30219671
    [Google Scholar]
  39. ZhangP. WangP.X. ZhaoL.P. The deubiquitinating enzyme TNFAIP3 mediates inactivation of hepatic ASK1 and ameliorates nonalcoholic steatohepatitis.Nat. Med.2018241849410.1038/nm.4453 29227477
    [Google Scholar]
  40. JiY.X. HuangZ. YangX. The deubiquitinating enzyme cylindromatosis mitigates nonalcoholic steatohepatitis.Nat. Med.201824221322310.1038/nm.4461 29291351
    [Google Scholar]
  41. MouY.L. ZhaoR. LyuS.Y. ZhangZ.Y. ZhuM.F. LiuQ. Crocetin protects cardiomyocytes against hypoxia/reoxygenation injury by attenuating Drp1-mediated mitochondrial fission via PGC-1α.J. Geriatr. Cardiol.2023201688210.26599/1671‑5411.2023.01.001 36875162
    [Google Scholar]
  42. LiJ. WangY. WangY. Pharmacological activation of AMPK prevents Drp1-mediated mitochondrial fission and alleviates endoplasmic reticulum stress-associated endothelial dysfunction.J. Mol. Cell. Cardiol.201586627410.1016/j.yjmcc.2015.07.010 26196303
    [Google Scholar]
  43. SongJ. LiH. ZhangY. Effect of Dunaliella salina on myocardial ischemia-reperfusion injury through KEAP1/NRF2 pathway activation and JAK2/STAT3 pathway inhibition.Gene & Protein in Disease20232238710.36922/gpd.387
    [Google Scholar]
  44. WangH. ChanP.K. PanS.Y. ERp57 is up‐regulated in free fatty acids‐induced steatotic L‐02 cells and human nonalcoholic fatty livers.J. Cell. Biochem.201011061447145610.1002/jcb.22696 20506389
    [Google Scholar]
  45. ZhouS.W. ZhangM. ZhuM. Liraglutide reduces lipid accumulation in steatotic L-02 cells by enhancing autophagy.Mol. Med. Rep.20141052351235710.3892/mmr.2014.2569 25230688
    [Google Scholar]
  46. FangK. WuF. ChenG. Diosgenin ameliorates palmitic acid-induced lipid accumulation via AMPK/ACC/CPT-1A and SREBP-1c/FAS signaling pathways in LO2 cells.BMC Complement. Altern. Med.201919125510.1186/s12906‑019‑2671‑9 31519174
    [Google Scholar]
  47. Swapna SasiU.S. SindhuG. RaghuK.G. Fructose-palmitate based high calorie induce steatosis in HepG2 cells via mitochondrial dysfunction: An in vitro approach.Toxicol. In Vitro20206810495210.1016/j.tiv.2020.104952 32730863
    [Google Scholar]
  48. AlnahdiA. JohnA. RazaH. Augmentation of glucotoxicity, oxidative stress, apoptosis and mitochondrial dysfunction in HepG2 cells by palmitic acid.Nutrients2019119197910.3390/nu11091979 31443411
    [Google Scholar]
  49. EynaudiA. Díaz-CastroF. BórquezJ.C. Bravo-SaguaR. ParraV. TroncosoR. Differential effects of oleic and palmitic acids on lipid droplet-mitochondria interaction in the hepatic cell line HepG2.Front. Nutr.2021877538210.3389/fnut.2021.775382 34869541
    [Google Scholar]
  50. RadaP. González-RodríguezÁ. García-MonzónC. ValverdeÁ.M. Understanding lipotoxicity in NAFLD pathogenesis: Is CD36 a key driver?Cell Death Dis.202011980210.1038/s41419‑020‑03003‑w 32978374
    [Google Scholar]
  51. LiM. XuC. ShiJ. Fatty acids promote fatty liver disease via the dysregulation of 3-mercaptopyruvate sulfurtransferase/hydrogen sulfide pathway.Gut201867122169218010.1136/gutjnl‑2017‑313778 28877979
    [Google Scholar]
  52. LiY. LiuY. ChenZ. Protopanaxadiol ameliorates NAFLD by regulating hepatocyte lipid metabolism through AMPK/SIRT1 signaling pathway.Biomed. Pharmacother.202316011431910.1016/j.biopha.2023.114319 36724639
    [Google Scholar]
  53. HerzigS. ShawR.J. AMPK: Guardian of metabolism and mitochondrial homeostasis.Nat. Rev. Mol. Cell Biol.201819212113510.1038/nrm.2017.95 28974774
    [Google Scholar]
  54. SteinbergG.R. HardieD.G. New insights into activation and function of the AMPK.Nat. Rev. Mol. Cell Biol.202324425527210.1038/s41580‑022‑00547‑x 36316383
    [Google Scholar]
  55. ZhangD. ZhangY. WangZ. LeiL. Thymoquinone attenuates hepatic lipid accumulation by inducing autophagy via AMPK/mTOR/ULK1 ‐dependent pathway in nonalcoholic fatty liver disease.Phytother. Res.202337378179710.1002/ptr.7662 36479746
    [Google Scholar]
  56. MansourS.Z. MoustafaE.M. MoawedF.S.M. Modulation of endoplasmic reticulum stress via sulforaphane-mediated AMPK upregulation against nonalcoholic fatty liver disease in rats.Cell Stress Chaperones202227549951110.1007/s12192‑022‑01286‑w 35779187
    [Google Scholar]
  57. GarciaD. HellbergK. ChaixA. Genetic liver-specific AMPK activation protects against diet-induced obesity and NAFLD.Cell Rep.2019261192208.e610.1016/j.celrep.2018.12.036 30605676
    [Google Scholar]
  58. VidaliS. AminzadehS. LambertB. Mitochondria: The ketogenic diet-A metabolism-based therapy.Int. J. Biochem. Cell Biol.201563555910.1016/j.biocel.2015.01.022 25666556
    [Google Scholar]
  59. HeQ. ChenY. WangZ. HeH. YuP. Cellular uptake, metabolism and sensing of long-chain fatty acids.Frontiers in Bioscience-Landmark20232811010.31083/j.fbl2801010 36722264
    [Google Scholar]
  60. DuJ. ZhangX. HanJ. Pro-Inflammatory CXCR3 impairs mitochondrial function in experimental non-alcoholic steatohepatitis.Theranostics20177174192420310.7150/thno.21400 29158819
    [Google Scholar]
  61. ParadiesG. ParadiesV. RuggieroF.M. PetrosilloG. Oxidative stress, cardiolipin and mitochondrial dysfunction in nonalcoholic fatty liver disease.World J. Gastroenterol.20142039142051421810.3748/wjg.v20.i39.14205 25339807
    [Google Scholar]
  62. TongM. ZablockiD. SadoshimaJ. The role of Drp1 in mitophagy and cell death in the heart.J. Mol. Cell. Cardiol.202014213814510.1016/j.yjmcc.2020.04.015 32302592
    [Google Scholar]
  63. WaiT. LangerT. Mitochondrial dynamics and metabolic regulation.Trends Endocrinol. Metab.201627210511710.1016/j.tem.2015.12.001 26754340
    [Google Scholar]
  64. WangQ. ZhangM. TorresG. Metformin suppresses diabetes-accelerated atherosclerosis via the inhibition of drp1-mediated mitochondrial fission.Diabetes201766119320510.2337/db16‑0915 27737949
    [Google Scholar]
  65. HuY. ChenH. ZhangL. The AMPK-MFN2 axis regulates MAM dynamics and autophagy induced by energy stresses.Autophagy20211751142115610.1080/15548627.2020.1749490 32249716
    [Google Scholar]
  66. FullertonM.D. FordR.J. McGregorC.P. Salicylate improves macrophage cholesterol homeostasis via activation of Ampk.J. Lipid Res.20155651025103310.1194/jlr.M058875 25773887
    [Google Scholar]
  67. O’NeillH.M. HollowayG.P. SteinbergG.R. AMPK regulation of fatty acid metabolism and mitochondrial biogenesis: Implications for obesity.Mol. Cell. Endocrinol.2013366213515110.1016/j.mce.2012.06.019 22750049
    [Google Scholar]
  68. QuilesJ.M. GustafssonÅ.B. The role of mitochondrial fission in cardiovascular health and disease.Nat. Rev. Cardiol.2022191172373610.1038/s41569‑022‑00703‑y 35523864
    [Google Scholar]
  69. ShiW. TanC. LiuC. ChenD. Mitochondrial fission mediated by Drp1-Fis1 pathway and neurodegenerative diseases.Rev. Neurosci.202334327529410.1515/revneuro‑2022‑0056 36059131
    [Google Scholar]
  70. OettinghausB. D’AlonzoD. BarbieriE. DRP1-dependent apoptotic mitochondrial fission occurs independently of BAX, BAK and APAF1 to amplify cell death by BID and oxidative stress.Biochim. Biophys. Acta Bioenerg.2016185781267127610.1016/j.bbabio.2016.03.016 26997499
    [Google Scholar]
  71. LiJ. ChangX. ShangM. The crosstalk between DRP1-dependent mitochondrial fission and oxidative stress triggers hepatocyte apoptosis induced by silver nanoparticles.Nanoscale20211328123561236910.1039/D1NR02153B 34254625
    [Google Scholar]
  72. TaguchiN. IshiharaN. JofukuA. OkaT. MiharaK. Mitotic phosphorylation of dynamin-related GTPase Drp1 participates in mitochondrial fission.J. Biol. Chem.200728215115211152910.1074/jbc.M607279200 17301055
    [Google Scholar]
  73. LiangX. WangS. WangL. CeylanA.F. RenJ. ZhangY. Mitophagy inhibitor liensinine suppresses doxorubicin-induced cardiotoxicity through inhibition of Drp1-mediated maladaptive mitochondrial fission.Pharmacol. Res.202015710484610.1016/j.phrs.2020.104846 32339784
    [Google Scholar]
  74. GomesL.C. BenedettoG.D. ScorranoL. During autophagy mitochondria elongate, are spared from degradation and sustain cell viability.Nat. Cell Biol.201113558959810.1038/ncb2220 21478857
    [Google Scholar]
  75. DingJ. ZhangZ. LiS. Mdivi-1 alleviates cardiac fibrosis post myocardial infarction at infarcted border zone, possibly via inhibition of Drp1-Activated mitochondrial fission and oxidative stress.Arch. Biochem. Biophys.202271810914710.1016/j.abb.2022.109147 35143784
    [Google Scholar]
  76. WuP. LiY. ZhuS. Mdivi-1 alleviates early brain injury after experimental subarachnoid hemorrhage in rats, possibly via inhibition of drp1-activated mitochondrial fission and oxidative stress.Neurochem. Res.20174251449145810.1007/s11064‑017‑2201‑4 28210956
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240275594231229121030
Loading
/content/journals/cmm/10.2174/0115665240275594231229121030
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): AMPK; Hepatic steatosis; L-02 cell; mitochondrial dynamics; MMP; ROS
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test