Skip to content
2000
image of wM2-like Macrophages-derived CCL17 Promotes Esophageal Squamous Cell Carcinoma Metastasis and Stemness via Activating CCR4-mediated ERK/PD-L1 Pathway

Abstract

Background and objective

High morbidity, high mortality and poor prognosis of esophageal squamous cell carcinoma (ESCC) highlights the urgent need for novel therapeutic strategies against ESCC. The current study addresses the precise role of M2-like macrophages-derived CCL17 in ESCC progression and to thoroughly elucidate the intrinsic molecular mechanisms.

Methods

In this work, for functional experiments, Eca109 cells cultivated in M2-CM were treated with anti-IgG (50 µg/ml) or anti-CCL17 (50 µg/ml) to expound the tumor-promoting effects of M2-like macrophage-derived CCL17 in ESCC. Moreover, for rescue experiments, Eca109 cells were treated with CCL17 (50 ng/ml) and/or CCR4 antagonist AZD2098 (20 µM) to probe whether CCL17 could influence the malignant behaviors including migration, invasion and stemness of ESCC cells activating CCR4/ERK/PD-L1 pathway.

Results

Markedly enhanced CCL17 secretion was observed in M2-like macrophages. CCL17 bound to CCR4 to activate ERK/PD-L1 signaling. M2-like macrophages-derived CCL17 facilitated ESCC cell migration and invasion and enhanced stemness characteristics of ESCC cells, which were partially reserved by AZD2098 treatment. The tumor-promoting effects of M2-like macrophages-derived CCL17 on ECSS was depended on the activation of CCR4/ERK/PD-L1 pathway.

Conclusion

To conclude, M2-like macrophages-derived CCL17 could facilitate ESCC cell migration and invasion and enhance stemness characteristics of ESCC cells activating CCR4/ERK/PD-L1 signaling.

© 2024 The Author(s). Published by Bentham Science Publisher. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240312877241010123403
2024-10-25
2024-11-26
Loading full text...

Full text loading...

/deliver/fulltext/cmm/10.2174/0115665240312877241010123403/BMS-CMM-2024-106.html?itemId=/content/journals/cmm/10.2174/0115665240312877241010123403&mimeType=html&fmt=ahah

References

  1. Sung H. Ferlay J. Siegel R.L. Laversanne M. Soerjomataram I. Jemal A. Bray F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021 71 3 209 249 10.3322/caac.21660 33538338
    [Google Scholar]
  2. Xuan T. Tripartite motif-containing protein 11 silencing inhibits proliferation and glycolysis and promotes apoptosis of esophageal squamous cell carcinoma cells by inactivating signal transduction and activation of transcription factor 3/c-myc signaling. J. Physiolog. Investig. 2024 67 1 37 46 10.4103/EJPI.EJPI‑D‑23‑00013 38780271
    [Google Scholar]
  3. Thrift A.P. Global burden and epidemiology of Barrett oesophagus and oesophageal cancer. Nat. Rev. Gastroenterol. Hepatol. 2021 18 6 432 443 10.1038/s41575‑021‑00419‑3 33603224
    [Google Scholar]
  4. Li S. Chen H. Man J. Zhang T. Yin X. He Q. Yang X. Lu M. Changing trends in the disease burden of esophageal cancer in China from 1990 to 2017 and its predicted level in 25 years. Cancer Med. 2021 10 5 1889 1899 10.1002/cam4.3775 33586344
    [Google Scholar]
  5. He S. Xu J. Liu X. Zhen Y. Advances and challenges in the treatment of esophageal cancer. Acta Pharm. Sin. B 2021 11 11 3379 3392 10.1016/j.apsb.2021.03.008 34900524
    [Google Scholar]
  6. Li J. Song Y. Cai H. Zhou B. Ma J. Roles of circRNA dysregulation in esophageal squamous cell carcinoma tumor microenvironment. Front. Oncol. 2023 13 1153207 10.3389/fonc.2023.1153207 37384299
    [Google Scholar]
  7. Schneider G. Schmidt-Supprian M. Rad R. Saur D. Tissue-specific tumorigenesis: Context matters. Nat. Rev. Cancer 2017 17 4 239 253 10.1038/nrc.2017.5 28256574
    [Google Scholar]
  8. Lin Y. Xu J. Lan H. Tumor-associated macrophages in tumor metastasis: Biological roles and clinical therapeutic applications. J. Hematol. Oncol. 2019 12 1 76 10.1186/s13045‑019‑0760‑3 31300030
    [Google Scholar]
  9. Poh A.R. Ernst M. Targeting macrophages in cancer: From bench to bedside. Front. Oncol. 2018 8 49 10.3389/fonc.2018.00049 29594035
    [Google Scholar]
  10. Owen J.L. Mohamadzadeh M. Macrophages and chemokines as mediators of angiogenesis. Front. Physiol. 2013 4 159 10.3389/fphys.2013.00159 23847541
    [Google Scholar]
  11. Chen J. Yao Y. Gong C. Yu F. Su S. Chen J. Liu B. Deng H. Wang F. Lin L. Yao H. Su F. Anderson K.S. Liu Q. Ewen M.E. Yao X. Song E. CCL18 from tumor-associated macrophages promotes breast cancer metastasis via PITPNM3. Cancer Cell 2011 19 4 541 555 10.1016/j.ccr.2011.02.006 21481794
    [Google Scholar]
  12. Zhang A. Xu Y. Xu H. Ren J. Meng T. Ni Y. Zhu Q. Zhang W.B. Pan Y.B. Jin J. Bi Y. Wu Z.B. Lin S. Lou M. Lactate-induced M2 polarization of tumor-associated macrophages promotes the invasion of pituitary adenoma by secreting CCL17. Theranostics 2021 11 8 3839 3852 10.7150/thno.53749 33664865
    [Google Scholar]
  13. Zhang L. Lu X. Xu Y. La X. Tian J. Li A. Li H. Wu C. Xi Y. Song G. Zhou Z. Bai W. An L. Li Z. Tumor-associated macrophages confer colorectal cancer 5-fluorouracil resistance by promoting MRP1 membrane translocation via an intercellular CXCL17/CXCL22–CCR4–ATF6–GRP78 axis. Cell Death Dis. 2023 14 9 582 10.1038/s41419‑023‑06108‑0 37658050
    [Google Scholar]
  14. Sui X. Chen C. Zhou X. Wen X. Shi C. Chen G. Liu J. He Z. Yao Y. Li Y. Gao Y. Integrative analysis of bulk and single-cell gene expression profiles to identify tumor-associated macrophage-derived CCL18 as a therapeutic target of esophageal squamous cell carcinoma. J. Exp. Clin. Cancer Res. 2023 42 1 51 10.1186/s13046‑023‑02612‑5 36850011
    [Google Scholar]
  15. Chen J Zhu Y Zhao D Co-targeting FAK and Gli1 inhibits the tumor-associated macrophages-released CCL22-mediated esophageal squamous cell carcinoma malignancy. MedComm (2020) 2023 4 6 e381 10.1002/mco2.381
    [Google Scholar]
  16. Hueso L. Marques P. Morant B. Gonzalez-Navarro H. Ortega J. Real J.T. Sanz M.J. Piqueras L. CCL17 and CCL22 chemokines are upregulated in human obesity and play a role in vascular dysfunction. Front. Endocrinol. (Lausanne) 2023 14 1154158 10.3389/fendo.2023.1154158 37124725
    [Google Scholar]
  17. Wang Q. Liu S. Min J. Yin M. Zhang Y. Zhang Y. Tang X. Li X. Liu S. CCL17 drives fibroblast activation in the progression of pulmonary fibrosis by enhancing the TGF-β/Smad signaling. Biochem. Pharmacol. 2023 210 115475 10.1016/j.bcp.2023.115475 36870575
    [Google Scholar]
  18. Li H. Wang C. Li X. Kong Y. Sun W. CCL17‐CCR4 axis contributes to the onset of vitiligo in mice. Immun. Inflamm. Dis. 2021 9 3 702 709 10.1002/iid3.423 34077992
    [Google Scholar]
  19. Carpenter K.J. Hogaboam C.M. Immunosuppressive effects of CCL17 on pulmonary antifungal responses during pulmonary invasive aspergillosis. Infect. Immun. 2005 73 11 7198 7207 10.1128/IAI.73.11.7198‑7207.2005 16239514
    [Google Scholar]
  20. Zhao H. Bo Q. Wang W. Wang R. Li Y. Chen S. Xia Y. Wang W. Wang Y. Zhu K. Liu L. Cui J. Wang S. Liu Q. Wu Z. Guo H. Shi B. CCL17‐CCR4 axis promotes metastasis via ERK/MMP13 pathway in bladder cancer. J. Cell. Biochem. 2019 120 2 1979 1989 10.1002/jcb.27494 30230587
    [Google Scholar]
  21. Tsunemi Y. Saeki H. Nakamura K. Nagakubo D. Nakayama T. Yoshie O. Kagami S. Shimazu K. Kadono T. Sugaya M. Komine M. Matsushima K. Tamaki K. CCL17 transgenic mice show an enhanced Th2‐type response to both allergic and non‐allergic stimuli. Eur. J. Immunol. 2006 36 8 2116 2127 10.1002/eji.200535564 16856206
    [Google Scholar]
  22. Zhou S.L. Zhou Z.J. Hu Z.Q. Huang X.W. Wang Z. Chen E.B. Fan J. Cao Y. Dai Z. Zhou J. Tumor-associated neutrophils recruit macrophages and t-regulatory cells to promote progression of hepatocellular carcinoma and resistance to sorafenib. Gastroenterology 2016 150 7 1646 1658.e17 10.1053/j.gastro.2016.02.040 26924089
    [Google Scholar]
  23. Ou B. Zhao J. Guan S. Feng H. Wangpu X. Zhu C. Zong Y. Ma J. Sun J. Shen X. Zheng M. Lu A. CCR4 promotes metastasis via ERK/NF-κB/MMP13 pathway and acts downstream of TNF-α in colorectal cancer. Oncotarget 2016 7 30 47637 47649 10.18632/oncotarget.10256 27356745
    [Google Scholar]
  24. Cheng X. Wu H. Jin Z.J. Ma D. Yuen S. Jing X.Q. Shi M.M. Shen B.Y. Peng C.H. Zhao R. Qiu W.H. Up-regulation of chemokine receptor CCR4 is associated with Human Hepatocellular Carcinoma malignant behavior. Sci. Rep. 2017 7 1 12362 10.1038/s41598‑017‑10267‑4 28959024
    [Google Scholar]
  25. Lin X. Tu M. Zhang Y. Zhuang W. Cai L. Zhang L. Yu L. Zhang Z. Huang Y. Aberrant NSG1 Expression Promotes Esophageal Squamous Cell Carcinoma Cell EMT by the Activation of ERK Signaling Pathway. Dig. Dis. Sci. 2023 68 5 1847 1857 10.1007/s10620‑022‑07748‑6 36396779
    [Google Scholar]
  26. Ren C. Wu L. Zhang S. Qi K. Zhang Y. Xu J. Ruan Y. Feng M. PPP1r18 promotes tumor progression in esophageal squamous cell carcinoma by regulating the calcineurin-mediated ERK pathway. Carcinogenesis 2024 45 9 673 684 10.1093/carcin/bgae028 38715543
    [Google Scholar]
  27. Zhang L. Chen X. Wang J. Chen M. Chen J. Zhuang W. Xia Y. Huang Z. Zheng Y. Huang Y. Cysteine protease inhibitor 1 promotes metastasis by mediating an oxidative phosphorylation/MEK/ERK axis in esophageal squamous carcinoma cancer. Sci. Rep. 2024 14 1 4985 10.1038/s41598‑024‑55544‑1 38424293
    [Google Scholar]
  28. Song Y. Cheng Y. Lan T. Bai Z. Liu Y. Bi Z. Alu A. Cheng D. Wei Y. Wei X. ERK inhibitor: A candidate enhancing therapeutic effects of conventional chemo-radiotherapy in esophageal squamous cell carcinoma. Cancer Lett. 2023 554 216012 10.1016/j.canlet.2022.216012 36470544
    [Google Scholar]
  29. Pimentel J.M. Zhou J.Y. Wu G.S. Regulation of programmed death ligand 1 (PD‐L1) expression by TNF‐related apoptosis‐inducing ligand (TRAIL) in triple‐negative breast cancer cells. Mol. Carcinog. 2023 62 2 135 144 10.1002/mc.23471 36239572
    [Google Scholar]
  30. Yu J. e T. Zhou M. Niu J. Wang J. Miao R. Dong C. Gao H. Jing C. Liang B. Integrin αvβ6 mediates the immune escape through regulation of PD-L1 and serves as a novel marker for immunotherapy of colon carcinoma. Am. J. Cancer Res. 2024 14 5 2608 2625 10.62347/RHDB8792 38859847
    [Google Scholar]
  31. Zhang H. Qin G. Zhang C. Yang H. Liu J. Hu H. Wu P. Liu S. Yang L. Chen X. Zhao X. Wang L. Zhang Y. TRAIL promotes epithelial-to-mesenchymal transition by inducing PD-L1 expression in esophageal squamous cell carcinomas. J. Exp. Clin. Cancer Res. 2021 40 1 209 10.1186/s13046‑021‑01972‑0 34167551
    [Google Scholar]
  32. Gao Z. Chen J.F. Li X.G. Shi Y.H. Tang Z. Liu W.R. Zhang X. Huang A. Luo X.M. Gao Q. Shi G.M. Ke A.W. Zhou J. Fan J. Fu X.T. Ding Z.B. KRAS acting through ERK signaling stabilizes PD-L1 via inhibiting autophagy pathway in intrahepatic cholangiocarcinoma. Cancer Cell Int. 2022 22 1 128 10.1186/s12935‑022‑02550‑w 35305624
    [Google Scholar]
  33. Luo M. Xia Y. Wang F. Zhang H. Su D. Su C. Yang C. Wu S. An S. Lin S. Fu L. PD0325901, an ERK inhibitor, enhances the efficacy of PD-1 inhibitor in non-small cell lung carcinoma. Acta Pharm. Sin. B 2021 11 10 3120 3133 10.1016/j.apsb.2021.03.010 34729305
    [Google Scholar]
  34. Gu J. Chu X. Huo Y. Liu C. Chen Q. Hu S. Pei Y. Ding P. Pang S. Wang M. Gastric cancer‐derived exosomes facilitate pulmonary metastasis by activating ERK‐mediated immunosuppressive macrophage polarization. J. Cell. Biochem. 2023 124 4 557 572 10.1002/jcb.30390 36842167
    [Google Scholar]
  35. Qian B.Z. Pollard J.W. Macrophage diversity enhances tumor progression and metastasis. Cell 2010 141 1 39 51 10.1016/j.cell.2010.03.014 20371344
    [Google Scholar]
  36. Feng D. Li Y. Zheng H. Wang Y. Deng J. Liu T. Liao W. Shen F. IL-4-induced M2 macrophages inhibit fibrosis of endometrial stromal cells. Reprod. Biol. 2024 24 2 100852 10.1016/j.repbio.2023.100852 38354656
    [Google Scholar]
  37. Chen J. Zhao D. Zhang L. Zhang J. Xiao Y. Wu Q. Wang Y. Zhan Q. Tumor-associated macrophage (TAM)-derived CCL22 induces FAK addiction in esophageal squamous cell carcinoma (ESCC). Cell. Mol. Immunol. 2022 19 9 1054 1066 10.1038/s41423‑022‑00903‑z 35962191
    [Google Scholar]
  38. Li Q. Luo H. Dai F.Q. Wang R.T. Fan X.Q. Luo Y.Y. Deng M.S. Wang Y. Long T. Guo W. Xu B. Xu C.X. Jin H. SAMD9 Promotes Postoperative Recurrence of Esophageal Squamous Cell Carcinoma by Stimulating MYH9‐Mediated GSK3 β/β ‐Catenin Signaling. Adv. Sci. (Weinh.) 2023 10 11 2203573 10.1002/advs.202203573 36757050
    [Google Scholar]
  39. Xiao Z. Tian Y. Jia Y. Shen Q. Jiang W. Chen G. Shang B. Shi M. Wang Z. Zhao X. RUNX3 inhibits the invasion and migration of esophageal squamous cell carcinoma by reversing the epithelial‑mesenchymal transition through TGF‑β/Smad signaling. Oncol. Rep. 2020 43 4 1289 1299 10.3892/or.2020.7508 32323849
    [Google Scholar]
  40. Chen Z. Zhao M. Liang J. Hu Z. Huang Y. Li M. Pang Y. Lu T. Sui Q. Zhan C. Lin M. Guo W. Wang Q. Tan L. Dissecting the single-cell transcriptome network underlying esophagus non-malignant tissues and esophageal squamous cell carcinoma. EBioMedicine 2021 69 103459 10.1016/j.ebiom.2021.103459 34192657
    [Google Scholar]
  41. Noy R. Pollard J.W. Tumor-associated macrophages: From mechanisms to therapy. Immunity 2014 41 1 49 61 10.1016/j.immuni.2014.06.010 25035953
    [Google Scholar]
  42. Shigeoka M. Urakawa N. Nakamura T. Nishio M. Watajima T. Kuroda D. Komori T. Kakeji Y. Semba S. Yokozaki H. Tumor associated macrophage expressing CD 204 is associated with tumor aggressiveness of esophageal squamous cell carcinoma. Cancer Sci. 2013 104 8 1112 1119 10.1111/cas.12188 23648122
    [Google Scholar]
  43. Arango Duque G. Descoteaux A. Macrophage cytokines: Involvement in immunity and infectious diseases. Front. Immunol. 2014 5 491 10.3389/fimmu.2014.00491 25339958
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240312877241010123403
Loading
/content/journals/cmm/10.2174/0115665240312877241010123403
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: ESCC ; CCR4 ; TAMs ; ERK/PD-L1 pathway ; CCL17
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test