Skip to content
2000
image of NEDD4 Knockdown Suppresses Human Endometrial Stromal Cell Growth and Invasion by Regulating PTGS2-Mediated Ferroptosis in Endometriosis

Abstract

Background

Endometriosis (EM) is a gynecological disease characterized by the benign growth of endometrial tissue outside the uterus. Upregulation of neuronally expressed developmentally downregulated 4 (NEDD4) has been reported to accelerate endometrial cancer progression.

Objectives

We explored whether abnormal expression of NEDD4 is correlated with EM.

Methods

Endometrial tissue in patients without endometriosis was used to develop the original generation of endometrial stromal cells (ESCs). Different types of endometrial tissue of patients with endometriosis were used to measure the expression of NEDD4 by immunohistochemistry (IHC) and western blotting. Its biological functions in ESCs were investigated using a cell counting kit-8 assay, fluorescein diacetate (FDA) staining, and Transwell invasion assays. Additionally, its involvement in ferroptosis was assessed by measuring Fe2+, malondialdehyde (MDA), glutathione (GSH), and reactive oxygen species (ROS) levels and the expression of ferroptosis markers.

Results

Compared with normal controls, NEDD4 levels were significantly elevated in the endometrial tissue of patients with EM. Furthermore, NEDD4 expression was higher in the ectopic endometrium than in the eutopic endometrium. NEDD4 knockdown reduced the viability and invasive capacity of ESCs, increased Fe2+, MDA, and ROS levels, and decreased GSH content. Further analysis revealed that NEDD4 knockdown promoted ferroptosis in ESCs by increasing the expression of prostaglandin-endoperoxide synthase 2 (PTGS2). As an E3 ubiquitin ligase, NEDD4 reduced PTGS2 protein levels by accelerating its ubiquitination and subsequent proteasomal degradation.

Conclusion

These findings suggest that inhibiting NEDD4 reduces ESC growth and invasion in EM by regulating PTGS2-dependent ferroptosis.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240311438241011052341
2024-11-04
2025-05-26
Loading full text...

Full text loading...

References

  1. McNamara H.C. Frawley H.C. Donoghue J.F. Readman E. Healey M. Ellett L. Reddington C. Hicks L.J. Harlow K. Rogers P.A.W. Cheng C. Peripheral, central, and cross sensitization in endometriosis-associated pain and comorbid pain syndromes. Front. Reprod. Health 2021 3 729642 10.3389/frph.2021.729642 36303969
    [Google Scholar]
  2. Chapron C. Marcellin L. Borghese B. Santulli P. Rethinking mechanisms, diagnosis and management of endometriosis. Nat. Rev. Endocrinol. 2019 15 11 666 682 10.1038/s41574‑019‑0245‑z 31488888
    [Google Scholar]
  3. Malvezzi H. Marengo E.B. Podgaec S. Piccinato C.A. Endometriosis: Current challenges in modeling a multifactorial disease of unknown etiology. J. Transl. Med. 2020 18 1 311 10.1186/s12967‑020‑02471‑0 32787880
    [Google Scholar]
  4. Horne A.W. Missmer S.A. Pathophysiology, diagnosis, and management of endometriosis. BMJ 2022 379 e070750 10.1136/bmj‑2022‑070750 36375827
    [Google Scholar]
  5. Taylor H.S. Kotlyar A.M. Flores V.A. Endometriosis is a chronic systemic disease: Clinical challenges and novel innovations. Lancet 2021 397 10276 839 852 10.1016/S0140‑6736(21)00389‑5 33640070
    [Google Scholar]
  6. Yang F. Liu B. Xu L. Liu H. Age at surgery and recurrence of ovarian endometrioma after conservative surgery: A meta-analysis including 3125 patients. Arch. Gynecol. Obstet. 2020 302 1 23 30 10.1007/s00404‑020‑05586‑3 32430756
    [Google Scholar]
  7. Jiang D. Zhang X. Shi J. Tao D. Nie X. Risk factors for ovarian endometrioma recurrence following surgical excision: A systematic review and meta‑analysis. Arch. Gynecol. Obstet. 2021 304 3 589 598 10.1007/s00404‑021‑06129‑0 34148122
    [Google Scholar]
  8. Signorile P.G. Viceconte R. Baldi A. New insights in pathogenesis of endometriosis. Front. Med. (Lausanne) 2022 9 879015 10.3389/fmed.2022.879015 35572957
    [Google Scholar]
  9. Wang Y. Nicholes K. Shih I.M. The origin and pathogenesis of endometriosis. Annu. Rev. Pathol. 2020 15 1 71 95 10.1146/annurev‑pathmechdis‑012419‑032654 31479615
    [Google Scholar]
  10. Sampson J.A. Peritoneal endometriosis due to the menstrual dissemination of endometrial tissue into the peritoneal cavity. Am. J. Obstet. Gynecol. 1927 14 4 422 469 10.1016/S0002‑9378(15)30003‑X
    [Google Scholar]
  11. Ye L. Whitaker L.H.R. Mawson R.L. Hickey M. Endometriosis. BMJ 2022 379 e068950 10.1136/bmj‑2021‑068950 36442873
    [Google Scholar]
  12. Van Langendonckt A. Casanas-Roux F. Donnez J. Iron overload in the peritoneal cavity of women with pelvic endometriosis. Fertil. Steril. 2002 78 4 712 718 10.1016/S0015‑0282(02)03346‑0 12372445
    [Google Scholar]
  13. Skarżyńska E. Wróbel M. Zborowska H. Kołek M.F. Mańka G. Kiecka M. Lipa M. Warzecha D. Spaczyński R. Piekarski P. Banaszewska B. Jakimiuk A. Issat T. Rokita W. Młodawski J. Szubert M. Sieroszewski P. Raba G. Szczupak K. Kluz T. Kluza M. Wielgoś M. Lisowska-Myjak B. Laudański P. The influence of lactoferrin in plasma and peritoneal fluid on iron metabolism in women with endometriosis. Int. J. Mol. Sci. 2023 24 2 1619 10.3390/ijms24021619 36675136
    [Google Scholar]
  14. Zhou Y. Zhao X. Zhang L. Xia Q. Peng Y. Zhang H. Yan D. Yang Z. Li J. Iron overload inhibits cell proliferation and promotes autophagy via PARP1/SIRT1 signaling in endometriosis and adenomyosis. Toxicology 2022 465 153050 10.1016/j.tox.2021.153050 34826546
    [Google Scholar]
  15. Woo J.H. Choi Y.S. Choi J.H. Iron-storage protein ferritin is upregulated in endometriosis and iron overload contributes to a migratory phenotype. Biomedicines 2020 8 11 454 10.3390/biomedicines8110454 33121166
    [Google Scholar]
  16. Zhang C. Liu X. Jin S. Chen Y. Guo R. Ferroptosis in cancer therapy: A novel approach to reversing drug resistance. Mol. Cancer 2022 21 1 47 10.1186/s12943‑022‑01530‑y 35151318
    [Google Scholar]
  17. Hambright W.S. Fonseca R.S. Chen L. Na R. Ran Q. Ablation of ferroptosis regulator glutathione peroxidase 4 in forebrain neurons promotes cognitive impairment and neurodegeneration. Redox Biol. 2017 12 8 17 10.1016/j.redox.2017.01.021 28212525
    [Google Scholar]
  18. Jiang X. Stockwell B.R. Conrad M. Ferroptosis: Mechanisms, biology and role in disease. Nat. Rev. Mol. Cell Biol. 2021 22 4 266 282 10.1038/s41580‑020‑00324‑8 33495651
    [Google Scholar]
  19. Deng L. He S. Guo N. Tian W. Zhang W. Luo L. Molecular mechanisms of ferroptosis and relevance to inflammation. Inflamm. Res. 2023 72 2 281 299 10.1007/s00011‑022‑01672‑1 36536250
    [Google Scholar]
  20. Wang H. Liu C. Zhao Y. Gao G. Mitochondria regulation in ferroptosis. Eur. J. Cell Biol. 2020 99 1 151058 10.1016/j.ejcb.2019.151058 31810634
    [Google Scholar]
  21. Ye Z. Liu W. Zhuo Q. Hu Q. Liu M. Sun Q. Zhang Z. Fan G. Xu W. Ji S. Yu X. Qin Y. Xu X. Ferroptosis: Final destination for cancer? Cell Prolif. 2020 53 3 e12761 10.1111/cpr.12761 32100402
    [Google Scholar]
  22. Li L.B. Chai R. Zhang S. Xu S.F. Zhang Y.H. Li H.L. Fan Y.G. Guo C. Iron exposure and the cellular mechanisms linked to neuron degeneration in adult mice. Cells 2019 8 2 198 10.3390/cells8020198 30813496
    [Google Scholar]
  23. Wan Y. Gu C. Kong J. Sui J. Zuo L. Song Y. Chen J. Long noncoding RNA ADAMTS9-AS1 represses ferroptosis of endometrial stromal cells by regulating the miR-6516-5p/GPX4 axis in endometriosis. Sci. Rep. 2022 12 1 2618 10.1038/s41598‑022‑04963‑z 35173188
    [Google Scholar]
  24. Galy B. Conrad M. Muckenthaler M. Mechanisms controlling cellular and systemic iron homeostasis. Nat. Rev. Mol. Cell Biol. 2024 25 2 133 155 10.1038/s41580‑023‑00648‑1 37783783
    [Google Scholar]
  25. Scutiero G. Iannone P. Bernardi G. Bonaccorsi G. Spadaro S. Volta C.A. Greco P. Nappi L. Oxidative stress and endometriosis: A systematic review of the literature. Oxid. Med. Cell. Longev. 2017 2017 1 7265238 10.1155/2017/7265238 29057034
    [Google Scholar]
  26. Ng S.W. Norwitz S.G. Taylor H.S. Norwitz E.R. Endometriosis: The role of iron overload and ferroptosis. Reprod. Sci. 2020 27 7 1383 1390 10.1007/s43032‑020‑00164‑z 32077077
    [Google Scholar]
  27. Garcia-Bermudez J. Birsoy K. A mitochondrial gatekeeper that helps cells escape death by ferroptosis. Nature 2021 593 7860 514 515 10.1038/d41586‑021‑01203‑8 33981062
    [Google Scholar]
  28. Asghari S. Valizadeh A. Aghebati-Maleki L. Nouri M. Yousefi M. Endometriosis: Perspective, lights, and shadows of etiology. Biomed. Pharmacother. 2018 106 163 174 10.1016/j.biopha.2018.06.109 29958140
    [Google Scholar]
  29. Heard-Lipsmeyer M.E. Alhallak I. Simmen F.A. Melnyk S.B. Simmen R.C.M. Lesion genotype modifies high-fat diet effects on endometriosis development in mice. Front. Physiol. 2021 12 702674 10.3389/fphys.2021.702674 34712146
    [Google Scholar]
  30. He H. Huang C. Chen Z. Huang H. Wang X. Chen J. An outlined review for the role of Nedd4-1 and Nedd4-2 in lung disorders. Biomed. Pharmacother. 2020 125 109983 10.1016/j.biopha.2020.109983 32092816
    [Google Scholar]
  31. Zhang Y. Qian H. Wu B. You S. Wu S. Lu S. Wang P. Cao L. Zhang N. Sun Y. E3 ubiquitin ligase NEDD4 family‑regulatory network in cardiovascular disease. Int. J. Biol. Sci. 2020 16 14 2727 2740 10.7150/ijbs.48437 33110392
    [Google Scholar]
  32. Haouari S. Vourc’h P. Jeanne M. Marouillat S. Veyrat-Durebex C. Lanznaster D. Laumonnier F. Corcia P. Blasco H. Andres C.R. The roles of NEDD4 subfamily of HECT E3 ubiquitin ligases in neurodevelopment and neurodegeneration. Int. J. Mol. Sci. 2022 23 7 3882 10.3390/ijms23073882 35409239
    [Google Scholar]
  33. Wang Z. Hu X. Ye M. Lin M. Chu M. Shen X. NEDD4 E3 ligase: Functions and mechanism in human cancer. Semin. Cancer Biol. 2020 67 Pt 2 92 101 10.1016/j.semcancer.2020.03.006 32171886
    [Google Scholar]
  34. Yang Y. Luo M. Zhang K. Zhang J. Gao T. Connell D.O. Yao F. Mu C. Cai B. Shang Y. Chen W. Nedd4 ubiquitylates VDAC2/3 to suppress erastin-induced ferroptosis in melanoma. Nat. Commun. 2020 11 1 433 10.1038/s41467‑020‑14324‑x 31974380
    [Google Scholar]
  35. Guo Y. Wang Y. Liu H. Jiang X. Lei S. High glucose environment induces NEDD4 deficiency that impairs angiogenesis and diabetic wound healing. J. Dermatol. Sci. 2023 112 3 148 157 10.1016/j.jdermsci.2023.09.007 37932175
    [Google Scholar]
  36. Lv B. Fu P. Wang M. Cui L. Bao L. Wang X. Yu L. Zhou C. Zhu M. Wang F. Pang Y. Qi S. Zhang Z. Cui G. DMT1 ubiquitination by Nedd4 protects against ferroptosis after intracerebral hemorrhage. CNS Neurosci. Ther. 2024 30 4 e14685 10.1111/cns.14685 38634270
    [Google Scholar]
  37. Wang Y. Liu Y. Liu J. Kang R. Tang D. NEDD4L-mediated LTF protein degradation limits ferroptosis. Biochem. Biophys. Res. Commun. 2020 531 4 581 587 10.1016/j.bbrc.2020.07.032 32811647
    [Google Scholar]
  38. Wan L. Liu T. Hong Z. Pan Y. Sizemore S.T. Zhang J. Ma Z. NEDD4 expression is associated with breast cancer progression and is predictive of a poor prognosis. Breast Cancer Res. 2019 21 1 148 10.1186/s13058‑019‑1236‑7 31856858
    [Google Scholar]
  39. Zhang Y. Goodfellow R. Li Y. Yang S. Winters C.J. Thiel K.W. Leslie K.K. Yang B. NEDD4 ubiquitin ligase is a putative oncogene in endometrial cancer that activates IGF-1R/PI3K/Akt signaling. Gynecol. Oncol. 2015 139 1 127 133 10.1016/j.ygyno.2015.07.098 26193427
    [Google Scholar]
  40. Yang H. Hu T. Hu P. Qi C. Qian L. miR‑143‑3p inhibits endometriotic stromal cell proliferation and invasion by inactivating autophagy in endometriosis. Mol. Med. Rep. 2021 23 5 356 10.3892/mmr.2021.11995 33760149
    [Google Scholar]
  41. Shi Y.L. Luo X.Z. Zhu X.Y. Hua K.Q. Zhu Y. Li D.J. Effects of combined 17β-estradiol with TCDD on secretion of chemokine IL-8 and expression of its receptor CXCR1 in endometriotic focus-associated cells in co-culture. Hum. Reprod. 2006 21 4 870 879 10.1093/humrep/dei414 16517565
    [Google Scholar]
  42. Yang A. Liang C. Hu T. Yang H. The effects and action mechanism of miR-199a on the adhesion andinvasion of endometrial stem cells in vitro. Hebei J. Med. 2021 43 10 1451 1454
    [Google Scholar]
  43. Wang X. Trotman L.C. Koppie T. Alimonti A. Chen Z. Gao Z. Wang J. Erdjument-Bromage H. Tempst P. Cordon-Cardo C. Pandolfi P.P. Jiang X. NEDD4-1 is a proto-oncogenic ubiquitin ligase for PTEN. Cell 2007 128 1 129 139 10.1016/j.cell.2006.11.039 17218260
    [Google Scholar]
  44. Ramón L. Gilabert-Estellés J. Castelló R. Gilabert J. España F. Romeu A. Chirivella M. Aznar J. Estellés A. mRNA analysis of several components of the plasminogen activator and matrix metalloproteinase systems in endometriosis using a real-time quantitative RT–PCR assay. Hum. Reprod. 2005 20 1 272 278 10.1093/humrep/deh571 15579491
    [Google Scholar]
  45. Ham J. Park W. Song J. Kim H.S. Song G. Lim W. Park S.J. Park S. Fraxetin reduces endometriotic lesions through activation of ER stress, induction of mitochondria-mediated apoptosis, and generation of ROS. Phytomedicine 2024 123 155187 10.1016/j.phymed.2023.155187 37984125
    [Google Scholar]
  46. Ruan J. Tian Q. Li S. Zhou X. Sun Q. Wang Y. Xiao Y. Li M. Chang K. Yi X. The IL-33-ST2 axis plays a vital role in endometriosis via promoting epithelial–mesenchymal transition by phosphorylating β-catenin. Cell Commun. Signal. 2024 22 1 318 10.1186/s12964‑024‑01683‑x 38858740
    [Google Scholar]
  47. Iwase A. Kotani T. Goto M. Kobayashi H. Takikawa S. Nakahara T. Nakamura T. Kondo M. Bayasula Nagatomo Y. Kikkawa F. Possible involvement of CD10 in the development of endometriosis due to its inhibitory effects on CD44-dependent cell adhesion. Reprod. Sci. 2014 21 1 82 88 10.1177/1933719113488449 23653392
    [Google Scholar]
  48. Zhan H. Peng B. Ma J. Lin K. Xu K. Lin J. Yong P.J. Leung P.C.K. Bedaiwy M.A. Lin J. Epidermal growth factor promotes stromal cells migration and invasion via up-regulation of hyaluronate synthase 2 and hyaluronan in endometriosis. Fertil. Steril. 2020 114 4 888 898 10.1016/j.fertnstert.2020.05.005 32762950
    [Google Scholar]
  49. Yazdani M. Concerns in the application of fluorescent probes DCDHF-DA, DHR 123 and DHE to measure reactive oxygen species in vitro. Toxicol. In Vitro 2015 30 1 Pt B 578 582 10.1016/j.tiv.2015.08.010 26318276
    [Google Scholar]
  50. Li Y. Xu B. Ren X. Wang L. Xu Y. Zhao Y. Yang C. Yuan C. Li H. Tong X. Wang Y. Du J. Inhibition of CISD2 promotes ferroptosis through ferritinophagy-mediated ferritin turnover and regulation of p62–Keap1–NRF2 pathway. Cell. Mol. Biol. Lett. 2022 27 1 81 10.1186/s11658‑022‑00383‑z 36180832
    [Google Scholar]
  51. Figueroa D. Asaduzzaman M. Young F. Real time monitoring and quantification of reactive oxygen species in breast cancer cell line MCF-7 by 2′,7′–dichlorofluorescin diacetate (DCFDA) assay. J. Pharmacol. Toxicol. Methods 2018 94 Pt 1 26 33 10.1016/j.vascn.2018.03.007 29630935
    [Google Scholar]
  52. Ngounou Wetie A.G. Sokolowska I. Woods A.G. Roy U. Deinhardt K. Darie C.C. Protein–protein interactions: Switch from classical methods to proteomics and bioinformatics-based approaches. Cell. Mol. Life Sci. 2014 71 2 205 228 10.1007/s00018‑013‑1333‑1 23579629
    [Google Scholar]
  53. Monti M. Orrù S. Pagnozzi D. Pucci P. Interaction Proteomics. Biosci. Rep. 2005 25 1-2 45 56 10.1007/s10540‑005‑2847‑z 16222419
    [Google Scholar]
  54. Rumzhum N.N. Patel B.S. Prabhala P. Gelissen I.C. Oliver B.G. Ammit A.J. IL‐17A increases TNF‐α‐induced COX‐2 protein stability and augments PGE 2 secretion from airway smooth muscle cells: impact on β 2‐adrenergic receptor desensitization. Allergy 2016 71 3 387 396 10.1111/all.12810 26606373
    [Google Scholar]
  55. Terzic M. Aimagambetova G. Kunz J. Bapayeva G. Aitbayeva B. Terzic S. Laganà A.S. Molecular basis of endometriosis and endometrial cancer: current knowledge and future perspectives. Int. J. Mol. Sci. 2021 22 17 9274 10.3390/ijms22179274 34502183
    [Google Scholar]
  56. Li Y. Zeng X. Lu D. Yin M. Shan M. Gao Y. Erastin induces ferroptosis via ferroportin-mediated iron accumulation in endometriosis. Hum. Reprod. 2021 36 4 951 964 10.1093/humrep/deaa363 33378529
    [Google Scholar]
  57. Li G. Lin Y. Zhang Y. Gu N. Yang B. Shan S. Liu N. Ouyang J. Yang Y. Sun F. Xu H. Endometrial stromal cell ferroptosis promotes angiogenesis in endometriosis. Cell Death Discov. 2022 8 1 29 10.1038/s41420‑022‑00821‑z 35039492
    [Google Scholar]
  58. Sun L. Amraei R. Rahimi N. NEDD4 regulates ubiquitination and stability of the cell adhesion molecule IGPR-1 via lysosomal pathway. J. Biomed. Sci. 2021 28 1 35 10.1186/s12929‑021‑00731‑9 33962630
    [Google Scholar]
  59. Burney R.O. Giudice L.C. Pathogenesis and pathophysiology of endometriosis. Fertil. Steril. 2012 98 3 511 519 10.1016/j.fertnstert.2012.06.029 22819144
    [Google Scholar]
  60. Amant F. Moerman P. Neven P. Timmerman D. Van Limbergen E. Vergote I. Endometrial cancer. Lancet 2005 366 9484 491 505 10.1016/S0140‑6736(05)67063‑8 16084259
    [Google Scholar]
  61. Wu J. Zhang L. Wu S. Liu Z. Ferroptosis: Opportunities and challenges in treating endometrial cancer. Front. Mol. Biosci. 2022 9 929832 10.3389/fmolb.2022.929832 35847989
    [Google Scholar]
  62. Sampson J.A. Metastatic or embolic endometriosis, due to the menstrual dissemination of endometrial tissue into the venous circulation. Am. J. Pathol. 1927 3 2 93 110 19969738
    [Google Scholar]
  63. Gupta S. Harlev A. Agarwal A. Gokul S. Kumaresan D. Role of iron in the pathogenesis of endometriosis. Endometriosis Springer Cham 2015 37 48 10.1007/978‑3‑319‑18308‑4_5
    [Google Scholar]
  64. Lousse J.C. Defrère S. Van Langendonckt A. Gras J. González-Ramos R. Colette S. Donnez J. Iron storage is significantly increased in peritoneal macrophages of endometriosis patients and correlates with iron overload in peritoneal fluid. Fertil. Steril. 2009 91 5 1668 1675 10.1016/j.fertnstert.2008.02.103 18396284
    [Google Scholar]
  65. Moen M.H. Halvorsen T.B. Histologic confirmation of endometriosis in different peritoneal lesions. Acta Obstet. Gynecol. Scand. 1992 71 5 337 342 10.3109/00016349209021069 1326207
    [Google Scholar]
  66. Ma J. Zhang H. Chen Y. Liu X. Tian J. Shen W. The role of macrophage iron overload and ferroptosis in atherosclerosis. Biomolecules 2022 12 11 1702 10.3390/biom12111702 36421722
    [Google Scholar]
  67. Wyatt J. Fernando S.M. Powell S.G. Hill C.J. Arshad I. Probert C. Ahmed S. Hapangama D.K. The role of iron in the pathogenesis of endometriosis: A systematic review. Hum. Reprod. Open 2023 2023 3 hoad033 10.1093/hropen/hoad033 37638130
    [Google Scholar]
  68. Li B. Duan H. Wang S. Li Y. Ferroptosis resistance mechanisms in endometriosis for diagnostic model establishment. Reprod. Biomed. Online 2021 43 1 127 138 10.1016/j.rbmo.2021.04.002 33992553
    [Google Scholar]
  69. Dong X. Xu L. Wang S. Jiao X. Yan S. Huang Y. Yuan M. Wang G. Endometrial stromal cell autophagy-dependent ferroptosis caused by iron overload in ovarian endometriosis is inhibited by the ATF4-xCT pathway. Mol. Hum. Reprod. 2023 30 1 gaad046 10.1093/molehr/gaad046 38113413
    [Google Scholar]
  70. Wu X.G. Chen J.J. Zhou H.L. Wu Y. Lin F. Shi J. Wu H.Z. Xiao H.Q. Wang W. Identification and validation of the signatures of infiltrating immune cells in the eutopic endometrium endometria of women with endometriosis. Front. Immunol. 2021 12 671201 10.3389/fimmu.2021.671201 34539624
    [Google Scholar]
  71. Xie S. Xia L. Song Y. Liu H. Wang Z. Zhu X. Insights into the biological role of NEDD4L E3 ubiquitin ligase in human cancers. Front. Oncol. 2021 11 774648 10.3389/fonc.2021.774648 34869021
    [Google Scholar]
  72. Zhang M. Zhang Z. Tian X. Zhang E. Wang Y. Tang J. Zhao J. NEDD4L in human tumors: Regulatory mechanisms and dual effects on anti-tumor and pro-tumor. Front. Pharmacol. 2023 14 1291773 10.3389/fphar.2023.1291773 38027016
    [Google Scholar]
  73. Lee J. Kim J. Shin J. Kang Y. Choi J. Cheong H. ATG101 degradation by HUWE1-mediated ubiquitination impairs autophagy and reduces survival in cancer cells. Int. J. Mol. Sci. 2021 22 17 9182 10.3390/ijms22179182 34502089
    [Google Scholar]
  74. Salah Z. Cohen S. Itzhaki E. Aqeilan R. NEDD4 E3 ligase inhibits the activity of the Hippo pathway by targeting LATS1 for degradation. Cell Cycle 2013 12 24 3817 3823 10.4161/cc.26672 24107629
    [Google Scholar]
  75. Xie Y. Zhou X. Li J. Yao X.C. Liu W.L. Kang F.H. Zou Z.X. Xu K.P. Xu P.S. Tan G.S. Identification of a new natural biflavonoids against breast cancer cells induced ferroptosis via the mitochondrial pathway. Bioorg. Chem. 2021 109 104744 10.1016/j.bioorg.2021.104744 33639365
    [Google Scholar]
  76. Liang C. Wang Q.S. Yang X. Zhu D. Sun Y. Niu N. Yao J. Dong B.H. Jiang S. Tang L.L. Lou J. Yu C.J. Shao Q. Wu M.M. Zhang Z.R. Homocysteine causes endothelial dysfunction via inflammatory factor-mediated activation of epithelial sodium channel (ENaC). Front. Cell Dev. Biol. 2021 9 672335 10.3389/fcell.2021.672335 34222246
    [Google Scholar]
  77. Yang B. Kumar S. Nedd4 and Nedd4-2: Closely related ubiquitin-protein ligases with distinct physiological functions. Cell Death Differ. 2010 17 1 68 77 10.1038/cdd.2009.84 19557014
    [Google Scholar]
  78. Sood R. Ritov G. Boltyansky B. Spector-Chotiner A. Richter-Levin G. Barki-Harrington L. Underwater trauma causes a long-term specific increase in the expression of cyclooxygenase-2 in the ventral CA1 of the hippocampus. Psychoneuroendocrinology 2014 49 62 68 10.1016/j.psyneuen.2014.06.015 25058273
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240311438241011052341
Loading
/content/journals/cmm/10.2174/0115665240311438241011052341
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keywords: endometriosis ; cell viability ; endometrial stromal cells ; PTGS2 ; NEDD4 ; ferroptosis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test