Skip to content
2000
image of The Hormetic Potential of GDF15 in Skeletal Muscle Health and Regeneration: A Comprehensive Systematic Review

Abstract

Background

Growth Differentiation Factor 15 (GDF15) has been described as influencing skeletal physiology. Nevertheless, no systematic appraisal of the effect of GDF15 on skeletal muscle tissues has been developed to the present day.

Objective

The aim of the present work was to review the evidence on the topic.

Methods

In this preregistered systematic review (https://osf.io/wa8xr), articles were retrieved from MEDLINE/PubMed, EMBASE, and WebOfScience. Inclusion criteria comprised studies on humans or animal models, assessment of peripheral or local tissue GDF15 concentrations, as well as the direct expression of GDF15 in skeletal muscle, and direct or indirect correlates of GDF15 with physical activity/ sarcopenia/trophism/ function.

Results

A total of 646 studies were retrieved, and 144 finally included. Molecular inducers or inhibitors of GDF15 in skeletal muscle tissues were described. GDF15 was reported to promote skeletal muscle health, metabolic homeostasis, and overall physical conditioning. In pathology, GDF15 seems to be correlated to the degree of muscle impairment and mitochondrial stress. GDF15 has also been described as having the potential to stratify patients based on clinical prognosis and functional outcome.

Conclusion

A hormetic hypothesis for GDF15 on skeletal muscle was proposed. In fact, GDF15 exhibited beneficial effects when expressed at high levels facing acute stressors (i.e., “myoprotection”). Conversely, GDF15 exhibited maladaptive effects, such as chronic low-grade inflammation, when chronically expressed in pathological processes (e.g., obesity, aging). GDF15 may be a potential molecular target for disease-modifying interventions. The current review underscores the need for further research on GDF15 to elucidate its therapeutic potential across different pathological states.

The study protocol, registered before data collection and analysis, can be retrieved at https://osf.io/wa8xr. It should be noted that the study deviated from the protocol after peer review, including other electronic databases beyond MEDLINE/PubMed alone.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240327723241018073535
2025-01-20
2025-05-11
Loading full text...

Full text loading...

References

  1. Bootcov M.R. Bauskin A.R. Valenzuela S.M. Moore A.G. Bansal M. He X.Y. Zhang H.P. Donnellan M. Mahler S. Pryor K. Walsh B.J. Nicholson R.C. Fairlie W.D. Por S.B. Robbins J.M. Breit S.N. MIC-1, a novel macrophage inhibitory cytokine, is a divergent member of the TGF-β superfamily. Proc. Natl. Acad. Sci. USA 1997 94 21 11514 11519 10.1073/pnas.94.21.11514 9326641
    [Google Scholar]
  2. Nyárády B.B. Kiss L.Z. Bagyura Z. Merkely B. Dósa E. Láng O. Kőhidai L. Pállinger É. Growth and differentiation factor-15: A link between inflammaging and cardiovascular disease. Biomed. Pharmacother. 2024 174 116475 10.1016/j.biopha.2024.116475 38522236
    [Google Scholar]
  3. Fichtner K. Kalwa H. Lin M.M. Gong Y. Müglitz A. Kluge M. Krügel U. GFRAL is widely distributed in the brain and peripheral tissues of mice. Nutrients 2024 16 5 734 10.3390/nu16050734 38474863
    [Google Scholar]
  4. Yokoyama-Kobayashi M. Saeki M. Sekine S. Kato S. Human cDNA encoding a novel TGF-beta superfamily protein highly expressed in placenta. J. Biochem. 1997 122 3 622 626 10.1093/oxfordjournals.jbchem.a021798 9348093
    [Google Scholar]
  5. Unsicker K. Spittau B. Krieglstein K. The multiple facets of the TGF-β family cytokine growth/differentiation factor-15/macrophage inhibitory cytokine-1. Cytokine Growth Factor Rev. 2013 24 4 373 384 10.1016/j.cytogfr.2013.05.003 23787157
    [Google Scholar]
  6. Li J.J. Liu J. Lupino K. Liu X. Zhang L. Pei L. Growth differentiation factor 15 maturation requires proteolytic cleavage by PCSK3, -5, and -6. Mol. Cell. Biol. 2018 38 21 e00249-18 10.1128/MCB.00249‑18 30104250
    [Google Scholar]
  7. Johann K. Kleinert M. Klaus S. The role of GDF15 as a myomitokine. Cells 2021 10 11 2990 10.3390/cells10112990 34831213
    [Google Scholar]
  8. Poulsen N.S. Madsen K.L. Hornsyld T.M. Eisum A.S.V. Fornander F. Buch A.E. Stemmerik M.G. Ruiz-Ruiz C. Krag T.O. Vissing J. Growth and differentiation factor 15 as a biomarker for mitochondrial myopathy. Mitochondrion 2020 50 35 41 10.1016/j.mito.2019.10.005 31669236
    [Google Scholar]
  9. Al-Sawaf O. Weiss J. Skrzypski M. Lam J.M. Karasaki T. Zambrana F. Kidd A.C. Frankell A.M. Watkins T.B.K. Martínez-Ruiz C. Puttick C. Black J.R.M. Huebner A. Bakir M.A. Sokač M. Collins S. Veeriah S. Magno N. Naceur-Lombardelli C. Prymas P. Toncheva A. Ward S. Jayanth N. Salgado R. Bridge C.P. Christiani D.C. Mak R.H. Bay C. Rosenthal M. Sattar N. Welsh P. Liu Y. Perrimon N. Popuri K. Beg M.F. McGranahan N. Hackshaw A. Breen D.M. O’Rahilly S. Birkbak N.J. Aerts H.J.W.L. Watkins T.B.K. Birkbak N.J. Aerts H.J. Lester J.F. Bajaj A. Nakas A. Sodha-Ramdeen A. Ang K. Tufail M. Chowdhry M.F. Scotland M. Boyles R. Rathinam S. Wilson C. Marrone D. Dulloo S. Fennell D.A. Matharu G. Shaw J.A. Riley J. Primrose L. Boleti E. Cheyne H. Khalil M. Richardson S. Cruickshank T. Price G. Kerr K.M. Benafif S. Gilbert K. Naidu B. Patel A.J. Osman A. Lacson C. Langman G. Shackleford H. Djearaman M. Kadiri S. Middleton G. Leek A. Hodgkinson J.D. Totten N. Montero A. Smith E. Fontaine E. Granato F. Doran H. Novasio J. Rammohan K. Joseph L. Bishop P. Shah R. Moss S. Joshi V. Crosbie P. Gomes F. Brown K. Carter M. Chaturvedi A. Priest L. Oliveira P. Lindsay C.R. Blackhall F.H. Krebs M.G. Summers Y. Clipson A. Tugwood J. Kerr A. Rothwell D.G. Kilgour E. Dive C. Schwarz R.F. Kaufmann T.L. Wilson G.A. Rosenthal R. Van Loo P. Szallasi Z. Kisistok J. Sokac M. Diossy M. Demeulemeester J. Bunkum A. Stewart A. Magness A. Rowan A. Karamani A. Chain B. Campbell B.B. Castignani C. Bailey C. Abbosh C. Weeden C.E. Lee C. Richard C. Hiley C.T. Moore D.A. Pearce D.R. Karagianni D. Biswas D. Levi D. Hoxha E. Cadieux E.L. Lim E.L. Colliver E. Nye E. Grönroos E. Gálvez-Cancino F. Athanasopoulou F. Gimeno-Valiente F. Kassiotis G. Stavrou G. Mastrokalos G. Zhai H. Lowe H.L. Matos I.G. Goldman J. Reading J.L. Herrero J. Rane J.K. Nicod J. Hartley J.A. Peggs K.S. Enfield K.S.S. Selvaraju K. Thol K. Litchfield K. Ng K.W. Chen K. Dijkstra K. Grigoriadis K. Thakkar K. Ensell L. Shah M. Duran M.V. Litovchenko M. Sunderland M.W. Hill M.S. Dietzen M. Leung M. Escudero M. Angelova M. Tanić M. Sivakumar M. Kanu N. Chervova O. Lucas O. Pich O. Hobson P. Pawlik P. Stone R.K. Bentham R. Hynds R.E. Vendramin R. Saghafinia S. López S. Gamble S. Ung S.K.A. Quezada S.A. Vanloo S. Zaccaria S. Hessey S. Boeing S. Beck S. Bola S.K. Denner T. Marafioti T. Mourikis T.P. Spanswick V. Barbè V. Lu W-T. Hill W. Liu W.K. Wu Y. Naito Y. Ramsden Z. Veiga C. Royle G. Collins-Fekete C-A. Fraioli F. Ashford P. Clark T. Forster M.D. Lee S.M. Borg E. Falzon M. Papadatos-Pastos D. Wilson J. Ahmad T. Procter A.J. Ahmed A. Taylor M.N. Nair A. Lawrence D. Patrini D. Navani N. Thakrar R.M. Janes S.M. Hoogenboom E.M. Monk F. Holding J.W. Choudhary J. Bhakhri K. Scarci M. Hayward M. Panagiotopoulos N. Gorman P. Khiroya R. Stephens R.C.M. Wong Y.N.S. Bandula S. Sharp A. Smith S. Gower N. Dhanda H.K. Chan K. Pilotti C. Leslie R. Grapa A. Zhang H. AbdulJabbar K. Pan X. Yuan Y. Chuter D. MacKenzie M. Chee S. Alzetani A. Cave J. Scarlett L. Richards J. Ingram P. Austin S. Lim E. De Sousa P. Jordan S. Rice A. Raubenheimer H. Bhayani H. Ambrose L. Devaraj A. Chavan H. Begum S. Buderi S.I. Kaniu D. Malima M. Booth S. Nicholson A.G. Fernandes N. Shah P. Proli C. Hewish M. Danson S. Shackcloth M.J. Robinson L. Russell P. Blyth K.G. Dick C. Le Quesne J. Kirk A. Asif M. Bilancia R. Kostoulas N. Thomas M. Jamal-Hanjani M. Swanton C. Body composition and lung cancer-associated cachexia in TRACERx. Nat. Med. 2023 29 4 846 858 10.1038/s41591‑023‑02232‑8 37045997
    [Google Scholar]
  10. Khan N.A. Nikkanen J. Yatsuga S. Jackson C. Wang L. Pradhan S. Kivelä R. Pessia A. Velagapudi V. Suomalainen A. mTORC1 regulates mitochondrial integrated stress response and mitochondrial myopathy progression. Cell Metab. 2017 26 2 419 428.e5 10.1016/j.cmet.2017.07.007 28768179
    [Google Scholar]
  11. Böttner M. Laaff M. Schechinger B. Rappold G. Unsicker K. Suter-Crazzolara C. Characterization of the rat, mouse, and human genes of growth/differentiation factor-15/macrophage inhibiting cytokine-1 (GDF-15/MIC-1). Gene 1999 237 1 105 111 10.1016/S0378‑1119(99)00309‑1 10524241
    [Google Scholar]
  12. Engström Ruud L. Font-Gironès F. Zajdel J. Kern L. Teixidor-Deulofeu J. Mannerås-Holm L. Carreras A. Becattini B. Björefeldt A. Hanse E. Fenselau H. Solinas G. Brüning J.C. Wunderlich T.F. Bäckhed F. Ruud J. Activation of GFRAL+ neurons induces hypothermia and glucoregulatory responses associated with nausea and torpor. Cell Rep. 2024 43 4 113960 10.1016/j.celrep.2024.113960 38507407
    [Google Scholar]
  13. Huang J. Ding X. Dong Y. Zhu H. Growth differentiation factor-15 orchestrates inflammation-related diseases via macrophage polarization. Discov. Med. 2024 36 181 248 255 10.24976/Discov.Med.202436181.23 38409830
    [Google Scholar]
  14. Emmerson P.J. Wang F. Du Y. Liu Q. Pickard R.T. Gonciarz M.D. Coskun T. Hamang M.J. Sindelar D.K. Ballman K.K. Foltz L.A. Muppidi A. Alsina-Fernandez J. Barnard G.C. Tang J.X. Liu X. Mao X. Siegel R. Sloan J.H. Mitchell P.J. Zhang B.B. Gimeno R.E. Shan B. Wu X. The metabolic effects of GDF15 are mediated by the orphan receptor GFRAL. Nat. Med. 2017 23 10 1215 1219 10.1038/nm.4393 28846098
    [Google Scholar]
  15. Wang D. Townsend L.K. DesOrmeaux G.J. Frangos S.M. Batchuluun B. Dumont L. Kuhre R.E. Ahmadi E. Hu S. Rebalka I.A. Gautam J. Jabile M.J.T. Pileggi C.A. Rehal S. Desjardins E.M. Tsakiridis E.E. Lally J.S.V. Juracic E.S. Tupling A.R. Gerstein H.C. Paré G. Tsakiridis T. Harper M.E. Hawke T.J. Speakman J.R. Blondin D.P. Holloway G.P. Jørgensen S.B. Steinberg G.R. GDF15 promotes weight loss by enhancing energy expenditure in muscle. Nature 2023 619 7968 143 150 10.1038/s41586‑023‑06249‑4 37380764
    [Google Scholar]
  16. Dong X.C. Xu D.Y. Research progress on the role and mechanism of GDF15 in body weight regulation. Obes. Facts 2024 17 1 1 11 10.1159/000535089 37989122
    [Google Scholar]
  17. Ahmad S. Kumar R. An update of new/potential cardiovascular markers: A narrative review. Mol. Biol. Rep. 2024 51 1 179 10.1007/s11033‑023‑08978‑1 38252393
    [Google Scholar]
  18. Liuizė Abramavičiūtė A. Mongirdienė A. TGF-β isoforms and GDF-15 in the development and progression of atherosclerosis. Int. J. Mol. Sci. 2024 25 4 2104 10.3390/ijms25042104 38396781
    [Google Scholar]
  19. Guo M. Zhao H. Growth differentiation factor-15 may be a novel biomarker in pancreatic cancer: A review. Medicine (Baltimore) 2024 103 6 e36594 10.1097/MD.0000000000036594 38335385
    [Google Scholar]
  20. Muruganandam M. Ariza-Hutchinson A. Patel R.A. Sibbitt W.L. Jr Biomarkers in the pathogenesis, diagnosis, and treatment of systemic sclerosis. J. Inflamm. Res. 2023 16 4633 4660 10.2147/JIR.S379815 37868834
    [Google Scholar]
  21. Shayota B.J. Biomarkers of mitochondrial disorders. Neurotherapeutics 2024 21 1 e00325 10.1016/j.neurot.2024.e00325 38295557
    [Google Scholar]
  22. Magliulo L. Bondi D. Pini N. Marramiero L. Di Filippo E.S. The wonder exerkines—novel insights: A critical state-of-the-art review. Mol. Cell. Biochem. 2022 477 1 105 113 10.1007/s11010‑021‑04264‑5 34554363
    [Google Scholar]
  23. Fielding R.A. Atkinson E.J. Aversa Z. White T.A. Heeren A.A. Mielke M.M. Cummings S.R. Pahor M. Leeuwenburgh C. LeBrasseur N.K. Biomarkers of cellular senescence predict the onset of mobility disability and are reduced by physical activity in older adults. J. Gerontol. A Biol. Sci. Med. Sci. 2024 79 3 glad257 10.1093/gerona/glad257 37948612
    [Google Scholar]
  24. Zou A. Xiao T. Chi B. Wang Y. Mao L. Cai D. Gu Q. Chen Q. Wang Q. Ji Y. Sun L. Engineered exosomes with growth differentiation factor-15 overexpression enhance cardiac repair after myocardial injury. Int. J. Nanomedicine 2024 19 3295 3314 10.2147/IJN.S454277 38606373
    [Google Scholar]
  25. Patsalos A. Halasz L. Medina-Serpas M.A. Berger W.K. Daniel B. Tzerpos P. Kiss M. Nagy G. Fischer C. Simandi Z. Varga T. Nagy L. A growth factor–expressing macrophage subpopulation orchestrates regenerative inflammation via GDF-15. J. Exp. Med. 2022 219 1 e20210420 10.1084/jem.20210420 34846534
    [Google Scholar]
  26. Shibasaki I. Otani N. Ouchi M. Fukuda T. Matsuoka T. Hirota S. Yokoyama S. Kanazawa Y. Kato T. Shimizu R. Tezuka M. Takei Y. Tsuchiya G. Saito S. Konishi T. Ogata K. Toyoda S. Fukuda H. Nakajima T. Utility of growth differentiation factor-15 as a predictor of cardiovascular surgery outcomes: Current research and future directions. J. Cardiol. 2024 83 3 211 218 10.1016/j.jjcc.2023.08.013 37648079
    [Google Scholar]
  27. Page M.J. McKenzie J.E. Bossuyt P.M. Boutron I. Hoffmann T.C. Mulrow C.D. Shamseer L. Tetzlaff J.M. Akl E.A. Brennan S.E. Chou R. Glanville J. Grimshaw J.M. Hróbjartsson A. Lalu M.M. Li T. Loder E.W. Mayo-Wilson E. McDonald S. McGuinness L.A. Stewart L.A. Thomas J. Tricco A.C. Welch V.A. Whiting P. Moher D. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021 372 71 n71 10.1136/bmj.n71 33782057
    [Google Scholar]
  28. Campbell M. McKenzie J.E. Sowden A. Katikireddi S.V. Brennan S.E. Ellis S. Hartmann-Boyce J. Ryan R. Shepperd S. Thomas J. Welch V. Thomson H. Synthesis without meta-analysis (SWiM) in systematic reviews: Reporting guideline. BMJ 2020 368 l6890 10.1136/bmj.l6890 31948937
    [Google Scholar]
  29. Haddaway N.R. Page M.J. Pritchard C.C. McGuinness L.A. PRISMA2020 : An R package and Shiny app for producing PRISMA 2020‐compliant flow diagrams, with interactivity for optimised digital transparency and Open Synthesis. Campbell Syst. Rev. 2022 18 2 e1230 10.1002/cl2.1230 36911350
    [Google Scholar]
  30. Laurens C. Parmar A. Murphy E. Carper D. Lair B. Maes P. Vion J. Boulet N. Fontaine C. Marquès M. Larrouy D. Harant I. Thalamas C. Montastier E. Caspar-Bauguil S. Bourlier V. Tavernier G. Grolleau J.L. Bouloumié A. Langin D. Viguerie N. Bertile F. Blanc S. de Glisezinski I. O’Gorman D. Moro C. Growth and differentiation factor 15 is secreted by skeletal muscle during exercise and promotes lipolysis in humans. JCI Insight 2020 5 6 e131870 10.1172/jci.insight.131870 32106110
    [Google Scholar]
  31. Plomgaard P. Hansen J.S. Townsend L.K. Gudiksen A. Secher N.H. Clemmesen J.O. Støving R.K. Goetze J.P. Wright D.C. Pilegaard H. GDF15 is an exercise-induced hepatokine regulated by glucagon and insulin in humans. Front. Endocrinol. (Lausanne) 2022 13 1037948 10.3389/fendo.2022.1037948 36545337
    [Google Scholar]
  32. Chiariello A. Conte G. Rossetti L. Trofarello L. Salvioli S. Conte M. Different roles of circulating and intramuscular GDF15 as markers of skeletal muscle health. Front. Endocrinol. (Lausanne) 2024 15 1404047 10.3389/fendo.2024.1404047 38808117
    [Google Scholar]
  33. Aguilar-Recarte D. Barroso E. Zhang M. Rada P. Pizarro-Delgado J. Peña L. Palomer X. Valverde Á.M. Wahli W. Vázquez-Carrera M. A positive feedback loop between AMPK and GDF15 promotes metformin antidiabetic effects. Pharmacol. Res. 2023 187 106578 10.1016/j.phrs.2022.106578 36435271
    [Google Scholar]
  34. Kobayashi M. Kasamatsu S. Shinozaki S. Yasuhara S. Kaneki M. Myostatin deficiency not only prevents muscle wasting but also improves survival in septic mice. Am. J. Physiol. Endocrinol. Metab. 2021 320 1 E150 E159 10.1152/ajpendo.00161.2020 33284091
    [Google Scholar]
  35. Tang H. Inoki K. Brooks S.V. Okazawa H. Lee M. Wang J. Kim M. Kennedy C.L. Macpherson P.C.D. Ji X. Van Roekel S. Fraga D.A. Wang K. Zhu J. Wang Y. Sharp Z.D. Miller R.A. Rando T.A. Goldman D. Guan K.L. Shrager J.B. mTORC1 underlies age‐related muscle fiber damage and loss by inducing oxidative stress and catabolism. Aging Cell 2019 18 3 e12943 10.1111/acel.12943 30924297
    [Google Scholar]
  36. Jones J.E. Cadena S.M. Gong C. Wang X. Chen Z. Wang S.X. Vickers C. Chen H. Lach-Trifilieff E. Hadcock J.R. Glass D.J. Supraphysiologic administration of GDF11 induces cachexia in part by upregulating GDF15. Cell Rep. 2018 22 6 1522 1530 10.1016/j.celrep.2018.01.044 29425507
    [Google Scholar]
  37. Chung H.K. Ryu D. Kim K.S. Chang J.Y. Kim Y.K. Yi H.S. Kang S.G. Choi M.J. Lee S.E. Jung S.B. Ryu M.J. Kim S.J. Kweon G.R. Kim H. Hwang J.H. Lee C.H. Lee S.J. Wall C.E. Downes M. Evans R.M. Auwerx J. Shong M. Growth differentiation factor 15 is a myomitokine governing systemic energy homeostasis. J. Cell Biol. 2017 216 1 149 165 10.1083/jcb.201607110 27986797
    [Google Scholar]
  38. Karakuyu N. Belviranli M. Okudan N. Association between pentraxin 3 and growth differentiation factor-15 in adolescent male swimmers. Bratisl. Med. J. 2017 118 6 355 360 10.4149/BLL_2017_067 28664745
    [Google Scholar]
  39. Gil C.I. Ost M. Kasch J. Schumann S. Heider S. Klaus S. Role of GDF15 in active lifestyle induced metabolic adaptations and acute exercise response in mice. Sci. Rep. 2019 9 1 20120 10.1038/s41598‑019‑56922‑w 31882966
    [Google Scholar]
  40. Kleinert M. Clemmensen C. Sjøberg K.A. Carl C.S. Jeppesen J.F. Wojtaszewski J.F.P. Kiens B. Richter E.A. Exercise increases circulating GDF15 in humans. Mol. Metab. 2018 9 187 191 10.1016/j.molmet.2017.12.016 29398617
    [Google Scholar]
  41. Sanchis-Gomar F. Bonaguri C. Aloe R. Pareja-Galeano H. Martinez-Bello V. Gomez-Cabrera M.C. Candel J. Viña J. Lippi G. Effects of acute exercise and xanthine oxidase inhibition on novel cardiovascular biomarkers. Transl. Res. 2013 162 2 102 109 10.1016/j.trsl.2013.02.006 23507375
    [Google Scholar]
  42. Munk P.S. Valborgland T. Butt N. Larsen A.I. Response of growth differentiation factor-15 to percutaneous coronary intervention and regular exercise training. Scand. Cardiovasc. J. 2011 45 1 27 32 10.3109/14017431.2010.516368 20836754
    [Google Scholar]
  43. Tchou I. Margeli A. Tsironi M. Skenderi K. Barnet M. Kanaka-Gantenbein C. Papassotiriou I. Beris P. Growth-differentiation factor-15, endoglin and N-terminal pro-brain natriuretic peptide induction in athletes participating in an ultramarathon foot race. Biomarkers 2009 14 6 418 422 10.1080/13547500903062976 19563304
    [Google Scholar]
  44. Miyaue N. Yabe H. Nagai M. Serum GDF-15 levels in patients with parkinson’s disease, progressive supranuclear palsy, and multiple system atrophy. Neurol. Int. 2023 15 3 1044 1051 10.3390/neurolint15030066 37755357
    [Google Scholar]
  45. Hong S.W. Kang J.H. Growth differentiation factor-15 as a modulator of bone and muscle metabolism. Front. Endocrinol. (Lausanne) 2022 13 948176 10.3389/fendo.2022.948176 36325442
    [Google Scholar]
  46. Alcazar J. Frandsen U. Prokhorova T. Kamper R.S. Haddock B. Aagaard P. Suetta C. Changes in systemic GDF15 across the adult lifespan and their impact on maximal muscle power: The copenhagen sarcopenia study. J. Cachexia Sarcopenia Muscle 2021 12 6 1418 1427 10.1002/jcsm.12823 34617415
    [Google Scholar]
  47. Yazawa H. Fukuda T. Kaneda H. Waku R. Sakuma M. Matsumoto A. Toyoda S. Abe S. Nakamura F. Inoue T. Nakajima T. Association of serum growth differentiation factor-15 with eGFR and hemoglobin in healthy older females. Int. J. Cardiol. Heart Vasc. 2020 31 100651 10.1016/j.ijcha.2020.100651 33134478
    [Google Scholar]
  48. Kim H. Kim K.M. Kang M.J. Lim S. Growth differentiation factor-15 as a biomarker for sarcopenia in aging humans and mice. Exp. Gerontol. 2020 142 111115 10.1016/j.exger.2020.111115 33069782
    [Google Scholar]
  49. Conte M. Martucci M. Mosconi G. Chiariello A. Cappuccilli M. Totti V. Santoro A. Franceschi C. Salvioli S. GDF15 plasma level is inversely associated with level of physical activity and correlates with markers of inflammation and muscle weakness. Front. Immunol. 2020 11 915 10.3389/fimmu.2020.00915 32477368
    [Google Scholar]
  50. Enríquez-Schmidt J. Mautner Molina C. Kalazich Rosales M. Muñoz M. Ruiz-Uribe M. Fuentes Leal F. Monrroy Uarac M. Cárcamo Ibaceta C. Fazakerley D.J. Larance M. Ehrenfeld P. Martínez-Huenchullán S. Moderate-intensity constant or high-intensity interval training? Metabolic effects on candidates to undergo bariatric surgery. Nutr. Metab. Cardiovasc. Dis. 2024 34 7 1681 1691 10.1016/j.numecd.2024.03.001 38553359
    [Google Scholar]
  51. Ortolá R. García-Esquinas E. Buño-Soto A. Cabanas-Sánchez V. Martínez-Gómez D. Sotos-Prieto M. Struijk E.A. Caballero F.F. Lopez-Garcia E. Banegas J.R. Rodríguez-Artalejo F. Associations of device‐measured sleep, sedentariness and physical activity with growth differentiation factor 15 in older adults. J. Cachexia Sarcopenia Muscle 2022 13 2 1003 1012 10.1002/jcsm.12924 35132822
    [Google Scholar]
  52. Yasuda T. Ishihara T. Ichimura A. Ishihara N. Mitochondrial dynamics define muscle fiber type by modulating cellular metabolic pathways. Cell Rep. 2023 42 5 112434 10.1016/j.celrep.2023.112434 37097817
    [Google Scholar]
  53. Klein A.B. Nicolaisen T.S. Ørtenblad N. Gejl K.D. Jensen R. Fritzen A.M. Larsen E.L. Karstoft K. Poulsen H.E. Morville T. Sahl R.E. Helge J.W. Lund J. Falk S. Lyngbæk M. Ellingsgaard H. Pedersen B.K. Lu W. Finan B. Jørgensen S.B. Seeley R.J. Kleinert M. Kiens B. Richter E.A. Clemmensen C. Pharmacological but not physiological GDF15 suppresses feeding and the motivation to exercise. Nat. Commun. 2021 12 1 1041 10.1038/s41467‑021‑21309‑x 33589633
    [Google Scholar]
  54. Labour A. Lac M. Frassin L. Lair B. Murphy E. Maslo C. Monbrun L. Calmy M.L. Marquès M. Viguerie N. Tavernier G. Gourdy P. O’Gorman D. Montastier E. Laurens C. Montagner A. Moro C. GDF15 is dispensable for the insulin-sensitizing effects of chronic exercise. Cell Rep. 2024 43 8 114577 10.1016/j.celrep.2024.114577 39096490
    [Google Scholar]
  55. Oba K. Ishikawa J. Tamura Y. Fujita Y. Ito M. Iizuka A. Fujiwara Y. Kodera R. Toba A. Toyoshima K. Chiba Y. Mori S. Tanaka M. Ito H. Harada K. Araki A. Serum growth differentiation factor 15 level is associated with muscle strength and lower extremity function in older patients with cardiometabolic disease. Geriatr. Gerontol. Int. 2020 20 10 980 987 10.1111/ggi.14021 32886834
    [Google Scholar]
  56. Rezaei S. Eslami R. Tartibian B. The effects of TRX suspension training on sarcopenic biomarkers and functional abilities in elderlies with sarcopenia: A controlled clinical trial. BMC Sports Sci. Med. Rehabil. 2024 16 1 58 10.1186/s13102‑024‑00849‑x 38409184
    [Google Scholar]
  57. Deng M. Bian Y. Zhang Q. Zhou X. Hou G. Growth differentiation factor-15 as a biomarker for sarcopenia in patients with chronic obstructive pulmonary disease. Front. Nutr. 2022 9 897097 10.3389/fnut.2022.897097 35845807
    [Google Scholar]
  58. Fukuda T. Nakajima T. Yazawa H. Hirose S. Yokomachi J. Kato T. Nishikawa R. Koshiji N. Tokura M. Nasuno T. Nishino S. Obi S. Shibasaki I. Kanaya T. Nakamura F. Fukuda H. Abe S. Sakuma M. Toyoda S. Relationship between the serum GDF-15 concentration and muscle function in female patients receiving aortic valve replacement (TAVR, SAVR): Comparison with healthy elderly female subjects. Int. J. Cardiol. Heart Vasc. 2022 40 101032 10.1016/j.ijcha.2022.101032 35495578
    [Google Scholar]
  59. Bekfani T. Bekhite Elsaied M. Derlien S. Nisser J. Westermann M. Nietzsche S. Hamadanchi A. Fröb E. Westphal J. Haase D. Kretzschmar T. Schlattmann P. Smolenski U.C. Lichtenauer M. Wernly B. Jirak P. Lehmann G. Möbius-Winkler S. Schulze P.C. Skeletal muscle function, structure, and metabolism in patients with heart failure with reduced ejection fraction and heart failure with preserved ejection fraction. Circ. Heart Fail. 2020 13 12 e007198 10.1161/CIRCHEARTFAILURE.120.007198 33302709
    [Google Scholar]
  60. Herpich C. Franz K. Ost M. Otten L. Coleman V. Klaus S. Müller-Werdan U. Norman K. Associations between serum GDF15 concentrations, muscle mass, and strength show sex-specific differences in older hospital patients. Rejuvenation Res. 2021 24 1 14 19 10.1089/rej.2020.2308 32475214
    [Google Scholar]
  61. Patel M.S. Lee J. Baz M. Wells C.E. Bloch S. Lewis A. Donaldson A.V. Garfield B.E. Hopkinson N.S. Natanek A. Man W.D.C. Wells D.J. Baker E.H. Polkey M.I. Kemp P.R. Growth differentiation factor‐15 is associated with muscle mass in chronic obstructive pulmonary disease and promotes muscle wasting in vivo. J. Cachexia Sarcopenia Muscle 2016 7 4 436 448 10.1002/jcsm.12096 27239406
    [Google Scholar]
  62. Ost M. Igual Gil C. Coleman V. Keipert S. Efstathiou S. Vidic V. Weyers M. Klaus S. Muscle‐derived GDF15 drives diurnal anorexia and systemic metabolic remodeling during mitochondrial stress. EMBO Rep. 2020 21 3 e48804 10.15252/embr.201948804 32026535
    [Google Scholar]
  63. Yamamoto H. Takeshima F. Haraguchi M. Akazawa Y. Matsushima K. Kitayama M. Ogihara K. Tabuchi M. Hashiguchi K. Yamaguchi N. Miyaaki H. Kondo H. Nakao K. High serum concentrations of growth differentiation factor-15 and their association with Crohn’s disease and a low skeletal muscle index. Sci. Rep. 2022 12 1 6591 10.1038/s41598‑022‑10587‑0 35449185
    [Google Scholar]
  64. Deng M. Zhou X. Li Y. Yin Y. Liang C. Zhang Q. Lu J. Wang M. Wang Y. Sun Y. Li R. Yan L. Wang Q. Hou G. Ultrasonic elastography of the rectus femoris, a potential tool to predict sarcopenia in patients with chronic obstructive pulmonary disease. Front. Physiol. 2022 12 783421 10.3389/fphys.2021.783421 35069243
    [Google Scholar]
  65. Lee S.H. Lee J.Y. Lim K.H. Lee Y.S. Koh J.M. Associations between plasma growth and differentiation factor-15 with aging phenotypes in muscle, adipose tissue, and bone. Calcif. Tissue Int. 2022 110 2 236 243 10.1007/s00223‑021‑00912‑6 34499185
    [Google Scholar]
  66. Seo M.W. Jung S.W. Kim S.W. Lee J.M. Jung H.C. Song J.K. Effects of 16 weeks of resistance training on muscle quality and muscle growth factors in older adult women with sarcopenia: A randomized controlled trial. Int. J. Environ. Res. Public Health 2021 18 13 6762 10.3390/ijerph18136762 34201810
    [Google Scholar]
  67. Garfield B.E. Crosby A. Shao D. Yang P. Read C. Sawiak S. Moore S. Parfitt L. Harries C. Rice M. Paul R. Ormiston M.L. Morrell N.W. Polkey M.I. Wort S.J. Kemp P.R. Growth/differentiation factor 15 causes TGFβ-activated kinase 1-dependent muscle atrophy in pulmonary arterial hypertension. Thorax 2019 74 2 164 176 10.1136/thoraxjnl‑2017‑211440 30554141
    [Google Scholar]
  68. Alyami R.M. Alhowikan A.M. Effect of supervised exercise training on exercise capacity, pulmonary function and growth differentiation factor 15 levels in patients with interstitial lung disease: A preliminary study. Isokinet. Exerc. Sci. 2022 30 3 221 229 10.3233/IES‑210123
    [Google Scholar]
  69. Igual Gil C. Löser A. Lossow K. Schwarz M. Weber D. Grune T. Kipp A.P. Klaus S. Ost M. Temporal dynamics of muscle mitochondrial uncoupling-induced integrated stress response and ferroptosis defense. Front. Endocrinol. (Lausanne) 2023 14 1277866 10.3389/fendo.2023.1277866 37941910
    [Google Scholar]
  70. Enarsson M. Feldreich T. Byberg L. Nowak C. Lind L. Ärnlöv J. Association between cardiorespiratory fitness and circulating proteins in 50-year-old Swedish men and women: A cross-sectional study. Sports Med. Open 2021 7 1 52 10.1186/s40798‑021‑00343‑5 34312731
    [Google Scholar]
  71. Zhang H. Mulya A. Nieuwoudt S. Vandanmagsar B. McDowell R. Heintz E.C. Zunica E.R.M. Collier J.J. Bozadjieva-Kramer N. Seeley R.J. Axelrod C.L. Kirwan J.P. GDF15 mediates the effect of skeletal muscle contraction on glucose-stimulated insulin secretion. Diabetes 2023 72 8 1070 1082 10.2337/db22‑0019 37224335
    [Google Scholar]
  72. Dorian D. Gustafson D. Quinn R. Bentley R.F. Dorian P. Goodman J.M. Fish J.E. Connelly K.A. Exercise‐dependent modulation of immunological response pathways in endurance athletes with and without atrial fibrillation. J. Am. Heart Assoc. 2024 13 6 e033640 10.1161/JAHA.123.033640 38497478
    [Google Scholar]
  73. Shiomitsu S. Hansen C.M. Lenfest M.I. Frye C.W. Wakshlag J.J. Serum myostatin decreases in exercising and aging Alaskan sled dogs, while growth and differentiation factor 15 remains unaltered. J. Am. Vet. Med. Assoc. 2022 260 S3 S77 S82 10.2460/javma.22.07.0323 36173760
    [Google Scholar]
  74. Townsend L.K. Medak K. Weber A.J. Dibe H. Shamshoum H. Wright D.C. CHOP is dispensable for exercise-induced increases in GDF15. J. Appl. Physiol. 2022 132 2 413 422 10.1152/japplphysiol.00698.2021 34913737
    [Google Scholar]
  75. Bagheri R. Hooshmand Moghadam B. Candow D.G. Elliott B.T. Wong A. Ashtary-Larky D. Forbes S.C. Rashidlamir A. Effects of Icelandic yogurt consumption and resistance training in healthy untrained older males. Br. J. Nutr. 2022 127 9 1334 1342 10.1017/S0007114521002166 34121642
    [Google Scholar]
  76. Kaleta-Duss A.M. Lewicka-Potocka Z. Dąbrowska-Kugacka A. Raczak G. Lewicka E. Myocardial injury and overload among amateur marathoners as indicated by changes in concentrations of cardiovascular biomarkers. Int. J. Environ. Res. Public Health 2020 17 17 6191 10.3390/ijerph17176191 32859020
    [Google Scholar]
  77. Poffé C. Ramaekers M. Van Thienen R. Hespel P. Ketone ester supplementation blunts overreaching symptoms during endurance training overload. J. Physiol. 2019 597 12 3009 3027 10.1113/JP277831 31039280
    [Google Scholar]
  78. Zhang H. Fealy C.E. Kirwan J.P. Exercise training promotes a GDF15-associated reduction in fat mass in older adults with obesity. Am. J. Physiol. Endocrinol. Metab. 2019 316 5 E829 E836 10.1152/ajpendo.00439.2018 30860878
    [Google Scholar]
  79. Campderrós L. Sánchez-Infantes D. Villarroya J. Nescolarde L. Bayès-Genis A. Cereijo R. Roca E. Villarroya F. Altered GDF15 and FGF21 levels in response to strenuous exercise: A study in marathon runners. Front. Physiol. 2020 11 550102 10.3389/fphys.2020.550102 33329017
    [Google Scholar]
  80. Fiorenza M. Checa A. Sandsdal R.M. Jensen S.B.K. Juhl C.R. Noer M.H. Bogh N.P. Lundgren J.R. Janus C. Stallknecht B.M. Holst J.J. Madsbad S. Wheelock C.E. Torekov S.S. Weight-loss maintenance is accompanied by interconnected alterations in circulating FGF21-adiponectin-leptin and bioactive sphingolipids. Cell Rep. Med. 2024 5 7 101629 10.1016/j.xcrm.2024.101629 38959886
    [Google Scholar]
  81. Moghaddasi Y. Ghazalian F. Abediankenari S. Ebrahim K. Abednatanzi H. Effect of aerobic and resistance training on GDF-15 levels in patients with type 1 diabetes. J. Mazandaran Univ. Med. Sci. 2020 30 186 123 132
    [Google Scholar]
  82. Yardley M. Ueland T. Aukrust P. Michelsen A. Bjørkelund E. Gullestad L. Nytrøen K. Immediate response in markers of inflammation and angiogenesis during exercise: A randomised cross-over study in heart transplant recipients. Open Heart 2017 4 2 e000635 10.1136/openhrt‑2017‑000635 29225901
    [Google Scholar]
  83. Rostami N. Fabre-Estremera B. Buño-Soto A. Banegas J.R. Rodríguez-Artalejo F. Ortolá R. Growth differentiation factor 15 and malnutrition in older adults. J. Nutr. Health Aging 2024 28 6 100230 10.1016/j.jnha.2024.100230 38593633
    [Google Scholar]
  84. Rangraz E. Mirzaei B. Rahmani Nia F. The effect of resistance training on serum levels of NT-proBNP, GDF-15, and markers of cardiac damage in the elderly males. Int J Appl Exerc Physiol 2019 8 138 148 10.30472/ijaep.v8i1.329
    [Google Scholar]
  85. Hofmann M. Schober-Halper B. Oesen S. Franzke B. Tschan H. Bachl N. Strasser E.M. Quittan M. Wagner K.H. Wessner B. Effects of elastic band resistance training and nutritional supplementation on muscle quality and circulating muscle growth and degradation factors of institutionalized elderly women: The Vienna Active Ageing Study (VAAS). Eur. J. Appl. Physiol. 2016 116 5 885 897 10.1007/s00421‑016‑3344‑8 26931422
    [Google Scholar]
  86. Hecht S. Boxhammer E. Kaufmann R. Scharinger B. Reiter C. Kammler J. Kellermair J. Hammerer M. Blessberger H. Steinwender C. Hoppe U.C. Hergan K. Lichtenauer M. CT-Diagnosed sarcopenia and cardiovascular biomarkers in patients undergoing transcatheter aortic valve replacement: is it possible to predict muscle loss based on laboratory tests?-A multicentric retrospective analysis. J. Pers. Med. 2022 12 9 1453 10.3390/jpm12091453 36143238
    [Google Scholar]
  87. Sanchez-Sánchez J.L. He L. Virecoulon Giudici K. Guyonnet S. Parini A. Dray C. Valet P. Pereira O. Vellas B. Rolland Y. de Souto Barreto P. Circulating levels of apelin, GDF-15 and sarcopenia: lack of association in the MAPT study. J. Nutr. Health Aging 2022 26 6 564 570 10.1007/s12603‑022‑1800‑1 35718864
    [Google Scholar]
  88. Kim M. Walston J.D. Won C.W. Associations between elevated growth differentiation factor-15 and sarcopenia among community-dwelling older adults. J Gerontol A Biol Sci Med Sci 2022 77 4 770 780 10.1093/gerona/glab201
    [Google Scholar]
  89. Seo M.W. Jung S.W. Kim S.W. Jung H.C. Kim D.Y. Song J.K. Comparisons of muscle quality and muscle growth factor between sarcopenic and non-sarcopenic older women. Int. J. Environ. Res. Public Health 2020 17 18 6581 10.3390/ijerph17186581 32927586
    [Google Scholar]
  90. Park K. Ahn C.W. Kim Y. Nam J.S. The effect of Korean red ginseng on sarcopenia biomarkers in type 2 diabetes patients. Arch. Gerontol. Geriatr. 2020 90 104108 10.1016/j.archger.2020.104108 32470863
    [Google Scholar]
  91. Osawa Y. Semba R.D. Fantoni G. Candia J. Biancotto A. Tanaka T. Bandinelli S. Ferrucci L. Plasma proteomic signature of the risk of developing mobility disability: A 9‐year follow‐up. Aging Cell 2020 19 4 e13132 10.1111/acel.13132 32157804
    [Google Scholar]
  92. Semba R.D. Gonzalez-Freire M. Tanaka T. Biancotto A. Zhang P. Shardell M. Moaddel R. Ferrucci L. Elevated plasma growth and differentiation factor 15 is associated with slower gait speed and lower physical performance in healthy community-dwelling adults. J. Gerontol. A Biol. Sci. Med. Sci. 2020 75 1 175 180 10.1093/gerona/glz071 30874790
    [Google Scholar]
  93. Hofmann M. Halper B. Oesen S. Franzke B. Stuparits P. Tschan H. Bachl N. Strasser E.M. Quittan M. Ploder M. Wagner K.H. Wessner B. Serum concentrations of insulin-like growth factor-1, members of the TGF-beta superfamily and follistatin do not reflect different stages of dynapenia and sarcopenia in elderly women. Exp. Gerontol. 2015 64 35 45 10.1016/j.exger.2015.02.008 25681638
    [Google Scholar]
  94. Hooshmand-Moghadam B. Johne M. Golestani F. Lorenz K. Asad M. Maculewicz E. Mastalerz A. Effects of soy milk ingestion immediately after resistance training on muscular-related biomarkers in older males: A randomized controlled trial. Biol. Sport 2023 40 4 1207 1217 10.5114/biolsport.2023.123894 37867735
    [Google Scholar]
  95. Raffin J. Rolland Y. Parini A. Lucas A. Guyonnet S. Vellas B. de Souto Barreto P. Association between physical activity, growth differentiation factor 15 and bodyweight in older adults: A longitudinal mediation analysis. J. Cachexia Sarcopenia Muscle 2023 14 2 771 780 10.1002/jcsm.13152 36999490
    [Google Scholar]
  96. Ito T. Nakanishi Y. Yamaji N. Murakami S. Schaffer S.W. Induction of growth differentiation factor 15 in skeletal muscle of old taurine transporter knockout mouse. Biol. Pharm. Bull. 2018 41 3 435 439 10.1248/bpb.b17‑00969 29491220
    [Google Scholar]
  97. Snoke D.B. Bellefleur E. Rehman H.T. Carson J.A. Poynter M.E. Dittus K.L. Toth M.J. Skeletal muscle adaptations in patients with lung cancer: Longitudinal observations from the whole body to cellular level. J. Cachexia Sarcopenia Muscle 2023 14 6 2579 2590 10.1002/jcsm.13332 37727010
    [Google Scholar]
  98. Zhang W. Sun W. Gu X. Miao C. Feng L. Shen Q. Liu X. Zhang X. GDF-15 in tumor-derived exosomes promotes muscle atrophy via Bcl-2/caspase-3 pathway. Cell Death Discov. 2022 8 1 162 10.1038/s41420‑022‑00972‑z 35379793
    [Google Scholar]
  99. Narasimhan A. Shahda S. Kays J.K. Perkins S.M. Cheng L. Schloss K.N.H. Schloss D.E.I. Koniaris L.G. Zimmers T.A. Identification of potential serum protein biomarkers and pathways for pancreatic cancer cachexia using an aptamer-based discovery platform. Cancers (Basel) 2020 12 12 3787 10.3390/cancers12123787 33334063
    [Google Scholar]
  100. Geppert J. Walth A. Terrón Expósito R. Kaltenecker D. Morigny P. Machado J. Becker M. Simoes E. Lima J. Daniel C. Berriel Diaz M. Herzig S. Seelaender M. Rohm M. Aging aggravates cachexia in tumor-bearing mice. Cancers (Basel) 2021 14 1 90 10.3390/cancers14010090 35008253
    [Google Scholar]
  101. Runco D.V. DiMeglio L.A. Vanderpool C.P. Han Y. Daggy J. Kelley M.M. Mikesell R. Zimmers T.A. Growth differentiation factor 15 (GDF15) elevation in children with newly diagnosed cancer. Front. Oncol. 2023 13 1295228 10.3389/fonc.2023.1295228 38146512
    [Google Scholar]
  102. Lee C.W. Kim I. Koh Y. Shin D. Hong J. Kim D.H. Park M.R. Hong S.M. Lee Y. Seo K.S. Monitoring energy balance through clinical and serum biomarkers in patients with hematologic malignancies undergoing chemotherapy. Ann. Hematol. 2022 101 12 2759 2769 10.1007/s00277‑022‑04984‑8 36136099
    [Google Scholar]
  103. Luan Y. Zhang Y. Yu S.Y. You M. Xu P.C. Chung S. Kurita T. Zhu J. Kim S.Y. Development of ovarian tumour causes significant loss of muscle and adipose tissue: A novel mouse model for cancer cachexia study. J. Cachexia Sarcopenia Muscle 2022 13 2 1289 1301 10.1002/jcsm.12864 35044098
    [Google Scholar]
  104. Molfino A. Amabile M.I. Imbimbo G. Rizzo V. Pediconi F. Catalano C. Emiliani A. Belli R. Ramaccini C. Parisi C. Nigri G. Muscaritoli M. Association between growth differentiation factor-15 (GDF-15) serum levels, anorexia and low muscle mass among cancer patients. Cancers (Basel) 2020 13 1 99 10.3390/cancers13010099 33396237
    [Google Scholar]
  105. Bernardo B. Joaquim S. Garren J. Boucher M. Houle C. LaCarubba B. Qiao S. Wu Z. Esquejo R.M. Peloquin M. Kim H. Breen D.M. Characterization of cachexia in the human fibrosarcoma HT‐1080 mouse tumour model. J. Cachexia Sarcopenia Muscle 2020 11 6 1813 1829 10.1002/jcsm.12618 32924335
    [Google Scholar]
  106. Lerner L. Tao J. Liu Q. Nicoletti R. Feng B. Krieger B. Mazsa E. Siddiquee Z. Wang R. Huang L. Shen L. Lin J. Vigano A. Chiu M.I. Weng Z. Winston W. Weiler S. Gyuris J. MAP3K11/GDF15 axis is a critical driver of cancer cachexia. J. Cachexia Sarcopenia Muscle 2016 7 4 467 482 10.1002/jcsm.12077 27239403
    [Google Scholar]
  107. Lerner L. Hayes T.G. Tao N. Krieger B. Feng B. Wu Z. Nicoletti R. Chiu M.I. Gyuris J. Garcia J.M. Plasma growth differentiation factor 15 is associated with weight loss and mortality in cancer patients. J. Cachexia Sarcopenia Muscle 2015 6 4 317 324 10.1002/jcsm.12033 26672741
    [Google Scholar]
  108. Tsai V.W.W. Macia L. Johnen H. Kuffner T. Manadhar R. Jørgensen S.B. Lee-Ng K.K.M. Zhang H.P. Wu L. Marquis C.P. Jiang L. Husaini Y. Lin S. Herzog H. Brown D.A. Sainsbury A. Breit S.N. TGF-b superfamily cytokine MIC-1/GDF15 is a physiological appetite and body weight regulator. PLoS One 2013 8 2 e55174 10.1371/journal.pone.0055174 23468844
    [Google Scholar]
  109. Lehtonen J.M. Forsström S. Bottani E. Viscomi C. Baris O.R. Isoniemi H. Höckerstedt K. Österlund P. Hurme M. Jylhävä J. Leppä S. Markkula R. Heliö T. Mombelli G. Uusimaa J. Laaksonen R. Laaksovirta H. Auranen M. Zeviani M. Smeitink J. Wiesner R.J. Nakada K. Isohanni P. Suomalainen A. FGF21 is a biomarker for mitochondrial translation and mtDNA maintenance disorders. Neurology 2016 87 22 2290 2299 10.1212/WNL.0000000000003374 27794108
    [Google Scholar]
  110. Varhaug K.N. Hikmat O. Nakkestad H.L. Vedeler C.A. Bindoff L.A. Serum biomarkers in primary mitochondrial disorders. Brain Commun. 2021 3 1 fcaa222 10.1093/braincomms/fcaa222 33501425
    [Google Scholar]
  111. Huddar A. Govindaraj P. Chiplunkar S. Deepha S. Jessiena Ponmalar J.N. Philip M. Nagappa M. Narayanappa G. Mahadevan A. Sinha S. Taly A.B. Parayil Sankaran B. Serum fibroblast growth factor 21 and growth differentiation factor 15: Two sensitive biomarkers in the diagnosis of mitochondrial disorders. Mitochondrion 2021 60 170 177 10.1016/j.mito.2021.08.011 34419687
    [Google Scholar]
  112. Lehtonen J.M. Auranen M. Darin N. Sofou K. Bindoff L. Hikmat O. Uusimaa J. Vieira P. Tulinius M. Lönnqvist T. de Coo I.F. Suomalainen A. Isohanni P. Diagnostic value of serum biomarkers FGF21 and GDF15 compared to muscle sample in mitochondrial disease. J. Inherit. Metab. Dis. 2021 44 2 469 480 10.1002/jimd.12307 32857451
    [Google Scholar]
  113. Ji X. Zhao L. Ji K. Zhao Y. Li W. Zhang R. Hou Y. Lu J. Yan C. Growth differentiation factor 15 is a novel diagnostic biomarker of mitochondrial diseases. Mol. Neurobiol. 2017 54 10 8110 8116 10.1007/s12035‑016‑0283‑7 27889897
    [Google Scholar]
  114. Montero R. Yubero D. Villarroya J. GDF-15 is elevated in children with mitochondrial diseases and is induced by mitochondrial dysfunction. PLoS One 2016 11 12 e0148709 10.1371/journal.pone.0148709
    [Google Scholar]
  115. Peñas A. Fernández-De la Torre M. Laine-Menéndez S. Lora D. Illescas M. García-Bartolomé A. Morales-Conejo M. Arenas J. Martín M.A. Morán M. Domínguez-González C. Ugalde C. Plasma gelsolin reinforces the diagnostic value of FGF-21 and GDF-15 for mitochondrial disorders. Int. J. Mol. Sci. 2021 22 12 6396 10.3390/ijms22126396 34203775
    [Google Scholar]
  116. Cai L. Li C. Wang Y. Mo Y. Yin J. Ma X. Increased serum GDF15 related to improvement in metabolism by lifestyle intervention among young overweight and obese adults. Diabetes Metab. Syndr. Obes. 2021 14 1195 1202 10.2147/DMSO.S302033 33762836
    [Google Scholar]
  117. Saeidi A. Nouri-Habashi A. Razi O. Ataeinosrat A. Rahmani H. Mollabashi S.S. Bagherzadeh-Rahmani B. Aghdam S.M. Khalajzadeh L. Al Kiyumi M.H. Hackney A.C. Laher I. Heinrich K.M. Zouhal H. Astaxanthin supplemented with high-intensity functional training decreases adipokines levels and cardiovascular risk factors in men with obesity. Nutrients 2023 15 2 286 10.3390/nu15020286 36678157
    [Google Scholar]
  118. Quist J.S. Klein A.B. Færch K. Beaulieu K. Rosenkilde M. Gram A.S. Sjödin A. Torekov S. Stallknecht B. Clemmensen C. Blond M.B. Effects of acute exercise and exercise training on plasma GDF15 concentrations and associations with appetite and cardiometabolic health in individuals with overweight or obesity – A secondary analysis of a randomized controlled trial. Appetite 2023 182 106423 10.1016/j.appet.2022.106423 36563967
    [Google Scholar]
  119. Chang J.S. Namkung J. Effects of exercise intervention on mitochondrial stress biomarkers in metabolic syndrome patients: A randomized controlled trial. Int. J. Environ. Res. Public Health 2021 18 5 2242 10.3390/ijerph18052242 33668309
    [Google Scholar]
  120. Nga HT. Jang IY. Kim DA. Serum GDF15 level is independent of sarcopenia in older Asian adults. Gerontology 2021 67 5 525 531 10.1159/000513600
    [Google Scholar]
  121. Merchant R.A. Chan Y.H. Anbarasan D. Vellas B. Association of intrinsic capacity with functional ability, sarcopenia and systemic inflammation in pre-frail older adults. Front. Med. (Lausanne) 2024 11 1374197 10.3389/fmed.2024.1374197 38510450
    [Google Scholar]
  122. Picca A. Calvani R. Coelho-Júnior H.J. Marini F. Landi F. Marzetti E. Circulating inflammatory, mitochondrial dysfunction, and senescence-related markers in older adults with physical frailty and sarcopenia: A BIOSPHERE exploratory study. Int. J. Mol. Sci. 2022 23 22 14006 10.3390/ijms232214006 36430485
    [Google Scholar]
  123. Tsai J.S. Wang S.Y. Chang C.H. Chen C.Y. Wen C.J. Chen G.Y. Kuo C.H. Tseng Y.J. Chen C.Y. Identification of traumatic acid as a potential plasma biomarker for sarcopenia using a metabolomics‐based approach. J. Cachexia Sarcopenia Muscle 2022 13 1 276 286 10.1002/jcsm.12895 34939349
    [Google Scholar]
  124. Nishikawa R. Fukuda T. Haruyama A. Shibasaki I. Yamaguchi S. Arikawa T. Obi S. Amano H. Yagi H. Sakuma M. Abe S. Fukuda H. Toyoda S. Nakajima T. Association between serum GDF-15, myostatin, and sarcopenia in cardiovascular surgery patients. Int. J. Cardiol. Heart Vasc. 2022 42 101114 10.1016/j.ijcha.2022.101114 36071948
    [Google Scholar]
  125. Nakajima T. Shibasaki I. Sawaguchi T. Haruyama A. Kaneda H. Nakajima T. Hasegawa T. Arikawa T. Obi S. Sakuma M. Ogawa H. Toyoda S. Nakamura F. Abe S. Fukuda H. Inoue T. Growth differentiation factor-15 (GDF-15) is a biomarker of muscle wasting and renal dysfunction in preoperative cardiovascular surgery patients. J. Clin. Med. 2019 8 10 1576 10.3390/jcm8101576 31581569
    [Google Scholar]
  126. Robach P. Recalcati S. Girelli D. Gelfi C. Aachmann-Andersen N.J. Thomsen J.J. Norgaard A.M. Alberghini A. Campostrini N. Castagna A. Viganò A. Santambrogio P. Kempf T. Wollert K.C. Moutereau S. Lundby C. Cairo G. Alterations of systemic and muscle iron metabolism in human subjects treated with low-dose recombinant erythropoietin. Blood 2009 113 26 6707 6715 10.1182/blood‑2008‑09‑178095 19264680
    [Google Scholar]
  127. Tanno T. Bhanu N.V. Oneal P.A. Goh S.H. Staker P. Lee Y.T. Moroney J.W. Reed C.H. Luban N.L.C. Wang R.H. Eling T.E. Childs R. Ganz T. Leitman S.F. Fucharoen S. Miller J.L. High levels of GDF15 in thalassemia suppress expression of the iron regulatory protein hepcidin. Nat. Med. 2007 13 9 1096 1101 10.1038/nm1629 17721544
    [Google Scholar]
  128. Wen B. Tang R. Tang S. Sun Y. Xu J. Zhao D. Wang T. Yan C. A comparative study on riboflavin responsive multiple acyl-CoA dehydrogenation deficiency due to variants in FLAD1 and ETFDH gene. J. Hum. Genet. 2024 69 3-4 125 131 10.1038/s10038‑023‑01216‑3 38228875
    [Google Scholar]
  129. Duvvuri B. Gonzalez-Chapa J.A. Pachman L.M. Morgan G.A. Naik N. Shenoi S. Lood C. The emerging role of growth differentiation factor 15 as a potential disease biomarker in juvenile dermatomyositis. Rheumatology (Oxford) 2023 kead654 10.1093/rheumatology/kead654 38058222
    [Google Scholar]
  130. De Paepe B. Bracke K.R. De Bleecker J.L. Retrospective study shows that serum levels of chemokine CXCL10 and cytokine GDF15 support a diagnosis of sporadic inclusion body myositis and immune-mediated necrotizing myopathy. Brain Sci. 2023 13 10 1369 10.3390/brainsci13101369 37891738
    [Google Scholar]
  131. Lin Y. Wang J. Ren H. Ma X. Wang W. Zhao Y. Xu Z. Liu S. Wang W. Xu X. Wang B. Zhao D. Wang D. Li W. Liu F. Zhao Y. Lu J. Yan C. Ji K. Mitochondrial myopathy without extraocular muscle involvement: A unique clinicopathologic profile. J. Neurol. 2024 271 2 864 876 10.1007/s00415‑023‑12005‑5 37847292
    [Google Scholar]
  132. Joel M.M. Pontifex C. Martens K. Chhibber S. de Koning J. Pfeffer G. Transcriptome analysis from muscle biopsy tissues in late-onset myopathies identifies potential biomarkers correlating to muscle pathology. Neuromuscul. Disord. 2022 32 8 643 653 10.1016/j.nmd.2022.04.009 35850946
    [Google Scholar]
  133. Kalko S.G. Paco S. Jou C. Rodríguez M.A. Meznaric M. Rogac M. Jekovec-Vrhovsek M. Sciacco M. Moggio M. Fagiolari G. De Paepe B. De Meirleir L. Ferrer I. Roig-Quilis M. Munell F. Montoya J. López-Gallardo E. Ruiz-Pesini E. Artuch R. Montero R. Torner F. Nascimento A. Ortez C. Colomer J. Jimenez-Mallebrera C. Transcriptomic profiling of TK2 deficient human skeletal muscle suggests a role for the p53 signalling pathway and identifies growth and differentiation factor-15 as a potential novel biomarker for mitochondrial myopathies. BMC Genomics 2014 15 1 91 10.1186/1471‑2164‑15‑91 24484525
    [Google Scholar]
  134. Dominguez-Gonzalez C. Badosa C. Madruga-Garrido M. Martí I. Paradas C. Ortez C. Diaz-Manera J. Berardo A. Alonso-Pérez J. Trifunov S. Cuadras D. Kalko S.G. Blázquez-Bermejo C. Cámara Y. Martí R. Mavillard F. Martin M.A. Montoya J. Ruiz-Pesini E. Villarroya J. Montero R. Villarroya F. Artuch R. Hirano M. Nascimento A. Jimenez-Mallebrera C. Growth differentiation factor 15 is a potential biomarker of therapeutic response for TK2 deficient myopathy. Sci. Rep. 2020 10 1 10111 10.1038/s41598‑020‑66940‑8 32572108
    [Google Scholar]
  135. De Paepe B. Verhamme F. De Bleecker J.L. The myokine GDF-15 is a potential biomarker for myositis and associates with the protein aggregates of sporadic inclusion body myositis. Cytokine 2020 127 154966 10.1016/j.cyto.2019.154966 31901761
    [Google Scholar]
  136. Wu Q. Wang W. Qiu L. Peng W. Zhang Y. Fu J. Wu S. Activity prediction modeling based on a combination of growth differentiation factor 15 and serum biomarker levels in dermatomyositis and polymyositis. Arch Med Res 2024 55 7 103058 10.1016/j.arcmed.2024.103058
    [Google Scholar]
  137. Nichterwitz S. Nijssen J. Storvall H. Schweingruber C. Comley L.H. Allodi I. Lee M. Deng Q. Sandberg R. Hedlund E. LCM-seq reveals unique transcriptional adaptation mechanisms of resistant neurons and identifies protective pathways in spinal muscular atrophy. Genome Res. 2020 30 8 1083 1096 10.1101/gr.265017.120 32820007
    [Google Scholar]
  138. Järvilehto J. Harjuhaahto S. Palu E. Auranen M. Kvist J. Zetterberg H. Koskivuori J. Lehtonen M. Saukkonen A.M. Jokela M. Ylikallio E. Tyynismaa H. Serum creatine, not neurofilament light, is elevated in CHCHD10-linked spinal muscular atrophy. Front. Neurol. 2022 13 793937 10.3389/fneur.2022.793937 35250809
    [Google Scholar]
  139. Jennings M.J. Kagiava A. Vendredy L. Spaulding E.L. Stavrou M. Hathazi D. Grüneboom A. De Winter V. Gess B. Schara U. Pogoryelova O. Lochmüller H. Borchers C.H. Roos A. Burgess R.W. Timmerman V. Kleopa K.A. Horvath R. NCAM1 and GDF15 are biomarkers of Charcot-Marie-Tooth disease in patients and mice. Brain 2022 145 11 3999 4015 10.1093/brain/awac055 35148379
    [Google Scholar]
  140. Hirano T. Doi K. Matsunaga K. Takahashi S. Donishi T. Suga K. Oishi K. Yasuda K. Mimura Y. Harada M. Suizu S. Murakawa K. Chikumoto A. Ohteru Y. Matsuda K. Uehara S. Hamada K. Ohata S. Murata Y. Yamaji Y. Asami-Noyama M. Edakuni N. Kakugawa T. A novel role of growth differentiation factor (GDF)-15 in overlap with sedentary lifestyle and cognitive risk in COPD. J. Clin. Med. 2020 9 9 2737 10.3390/jcm9092737 32847145
    [Google Scholar]
  141. Merchant R.A. Chan Y.H. Anbarasan D. Aprahamian I. Association of motoric cognitive risk syndrome with sarcopenia and systemic inflammation in pre-frail older Adults. Brain Sci. 2023 13 6 936 10.3390/brainsci13060936 37371414
    [Google Scholar]
  142. Sabaratnam R. Kristensen J.M. Pedersen A.J.T. Kruse R. Handberg A. Wojtaszewski J.F.P. Højlund K. Acute exercise increases GDF15 and unfolded potein response/integrated stress response in muscle in type 2 diabetes. J. Clin. Endocrinol. Metab. 2024 109 7 1754 1764 10.1210/clinem/dgae032 38242693
    [Google Scholar]
  143. Perrone M.A. Pomiato E. Palmieri R. Di Già G. Piemonte F. Porzio O. Gagliardi M.G. The effects of exercise training on cardiopulmonary exercise testing and cardiac biomarkers in adult patients with hypoplastic left heart syndrome and Fontan circulation. J. Cardiovasc. Dev. Dis. 2022 9 6 171 10.3390/jcdd9060171 35735800
    [Google Scholar]
  144. Barma M. Khan F. Price R.J.G. Donnan P.T. Messow C.M. Ford I. McConnachie A. Struthers A.D. McMurdo M.E.T. Witham M.D. Association between GDF-15 levels and changes in vascular and physical function in older patients with hypertension. Aging Clin. Exp. Res. 2017 29 5 1055 1059 10.1007/s40520‑016‑0636‑0 27734214
    [Google Scholar]
  145. Rullman E. Melin M. Mandić M. Gonon A. Fernandez-Gonzalo R. Gustafsson T. Circulatory factors associated with function and prognosis in patients with severe heart failure. Clin. Res. Cardiol. 2020 109 6 655 672 10.1007/s00392‑019‑01554‑3 31562542
    [Google Scholar]
  146. Mirna M. Lichtenauer M. Wernly B. Paar V. Jung C. Kretzschmar D. Uhlemann M. Franz M. Hoppe U.C. Schulze P.C. Hilberg T. Adams V. Sponder M. Möbius-Winkler S. Novel cardiovascular biomarkers in patients with cardiovascular diseases undergoing intensive physical exercise. Panminerva Med. 2020 62 3 135 142 10.23736/S0031‑0808.20.03838‑0 32309918
    [Google Scholar]
  147. Fukuda T. Yazawa H. Nishikawa R. Tokoi S. Kayashima R. Kono K. Sakuma M. Abe S. Toyoda S. Nakajima T. Physiological role of serum growth differentiation factor-15 (GDF-15) level and iron metabolism in community-dwelling older adults. Cureus 2024 16 5 e60422 10.7759/cureus.60422
    [Google Scholar]
  148. Kamper R.S. Nygaard H. Praeger-Jahnsen L. Ekmann A. Ditlev S.B. Schultz M. Hansen S.K. Hansen P. Pressel E. Suetta C. GDF‐15 is associated with sarcopenia and frailty in acutely admitted older medical patients. J. Cachexia Sarcopenia Muscle 2024 15 4 1549 1557 10.1002/jcsm.13513 38890783
    [Google Scholar]
  149. Li Y. Xie Y.P. Li X.M. Lu T. Effects of early standardized enteral nutrition on preventing acute muscle loss in the acute exacerbation of chronic obstructive pulmonary disease patients with mechanical ventilation. World J. Emerg. Med. 2023 14 3 193 197 10.5847/wjem.j.1920‑8642.2023.046 37152533
    [Google Scholar]
  150. Kemp P.R. Paul R. Hinken A.C. Neil D. Russell A. Griffiths M.J. Metabolic profiling shows pre‐existing mitochondrial dysfunction contributes to muscle loss in a model of ICU‐acquired weakness. J. Cachexia Sarcopenia Muscle 2020 11 5 1321 1335 10.1002/jcsm.12597 32677363
    [Google Scholar]
  151. Xie Y. Liu S. Zheng H. Cao L. Liu K. Li X. Utility of plasma GDF-15 for diagnosis and prognosis assessment of ICU-acquired weakness in mechanically ventilated patients: Prospective observational study. BioMed Res. Int. 2020 2020 1 9 10.1155/2020/3630568 32104689
    [Google Scholar]
  152. Rosenberg B.J. Hirano M. Quinzii C.M. Colantuoni E. Needham D.M. Lederer D.J. Baldwin M.R. Growth differentiation factor-15 as a biomarker of strength and recovery in survivors of acute respiratory failure. Thorax 2019 74 11 1099 1101 10.1136/thoraxjnl‑2019‑213621 31534031
    [Google Scholar]
  153. Bloch S.A.A. Lee J.Y. Syburra T. Rosendahl U. Griffiths M.J.D. Kemp P.R. Polkey M.I. Increased expression of GDF-15 may mediate ICU-acquired weakness by down-regulating muscle microRNAs. Thorax 2015 70 3 219 228 10.1136/thoraxjnl‑2014‑206225 25516419
    [Google Scholar]
  154. Bloch S.A.A. Lee J.Y. Wort S.J. Polkey M.I. Kemp P.R. Griffiths M.J.D. Sustained elevation of circulating growth and differentiation factor-15 and a dynamic imbalance in mediators of muscle homeostasis are associated with the development of acute muscle wasting following cardiac surgery. Crit. Care Med. 2013 41 4 982 989 10.1097/CCM.0b013e318274671b 23328263
    [Google Scholar]
  155. Koo B.K. Um S.H. Seo D.S. Joo S.K. Bae J.M. Park J.H. Chang M.S. Kim J.H. Lee J. Jeong W.I. Kim W. Growth differentiation factor 15 predicts advanced fibrosis in biopsy‐proven non‐alcoholic fatty liver disease. Liver Int. 2018 38 4 695 705 10.1111/liv.13587 28898507
    [Google Scholar]
  156. Tarabeih N. Shalata A. Trofimov S. Kalinkovich A. Livshits G. Growth and differentiation factor 15 is a biomarker for low back pain-associated disability. Cytokine 2019 117 8 14 10.1016/j.cyto.2019.01.011 30776685
    [Google Scholar]
  157. Singer J.P. Calfee C.S. Delucchi K. Diamond J.M. Anderson M.A. Benvenuto L.A. Gao Y. Wang P. Arcasoy S.M. Lederer D.J. Hays S.R. Kukreja J. Venado A. Kolaitis N.A. Leard L.E. Shah R.J. Kleinhenz M.E. Golden J. Betancourt L. Oyster M. Brown M. Zaleski D. Medikonda N. Kalman L. Balar P. Patel S. Calabrese D.R. Greenland J.R. Christie J.D. Subphenotypes of frailty in lung transplant candidates. Am. J. Transplant. 2023 23 4 531 539 10.1016/j.ajt.2023.01.020 36740192
    [Google Scholar]
  158. Xiong Y. Walker K. Min X. Hale C. Tran T. Komorowski R. Yang J. Davda J. Nuanmanee N. Kemp D. Wang X. Liu H. Miller S. Lee K.J. Wang Z. Véniant M.M. Long-acting MIC-1/GDF15 molecules to treat obesity: Evidence from mice to monkeys. Sci. Transl. Med. 2017 9 412 eaan8732 10.1126/scitranslmed.aan8732 29046435
    [Google Scholar]
  159. Stolina M. Luo X. Dwyer D. The evolving systemic biomarker milieu in obese ZSF1 rat model of human cardiometabolic syndrome: Characterization of the model and cardioprotective effect of GDF15. PLoS One. 2020 15 8 e0231234 10.1371/journal.pone.0231234
    [Google Scholar]
  160. Day E.A. Ford R.J. Smith B.K. Mohammadi-Shemirani P. Morrow M.R. Gutgesell R.M. Lu R. Raphenya A.R. Kabiri M. McArthur A.G. McInnes N. Hess S. Paré G. Gerstein H.C. Steinberg G.R. Metformin-induced increases in GDF15 are important for suppressing appetite and promoting weight loss. Nat. Metab. 2019 1 12 1202 1208 10.1038/s42255‑019‑0146‑4 32694673
    [Google Scholar]
  161. Gerstein H.C. Pare G. Hess S. Ford R.J. Sjaarda J. Raman K. McQueen M. Lee S. Haenel H. Steinberg G.R. Growth differentiation factor 15 as a novel biomarker for Metformin. Diabetes Care 2017 40 2 280 283 10.2337/dc16‑1682 27974345
    [Google Scholar]
  162. Lertpatipanpong P. Lee J. Kim I. Eling T. Oh S.Y. Seong J.K. Baek S.J. The anti-diabetic effects of NAG-1/GDF15 on HFD/STZ-induced mice. Sci. Rep. 2021 11 1 15027 10.1038/s41598‑021‑94581‑y 34294853
    [Google Scholar]
  163. Crawford J. Calle R.A. Collins S.M. Weng Y. Lubaczewski S.L. Buckeridge C. Wang E.Q. Harrington M.A. Tarachandani A. Rossulek M.I. Revkin J.H. A Phase Ib first-in-patient study assessing the safety, tolerability, pharmacokinetics, and pharmacodynamics of Ponsegromab in participants with cancer and cachexia. Clin. Cancer Res. 2024 30 3 OF1 OF9 10.1158/1078‑0432.CCR‑23‑1631 37982848
    [Google Scholar]
  164. Kim-Muller J.Y. Song L. LaCarubba Paulhus B. Pashos E. Li X. Rinaldi A. Joaquim S. Stansfield J.C. Zhang J. Robertson A. Pang J. Opsahl A. Boucher M. Breen D. Hales K. Sheikh A. Wu Z. Zhang B.B. GDF15 neutralization restores muscle function and physical performance in a mouse model of cancer cachexia. Cell Rep. 2023 42 1 111947 10.1016/j.celrep.2022.111947 36640326
    [Google Scholar]
  165. Albuquerque B. Chen X. Hirenallur-Shanthappa D. Zhao Y. Stansfield J.C. Zhang B.B. Sheikh A. Wu Z. Neutralization of GDF15 prevents anorexia and weight loss in the monocrotaline-induced cardiac cachexia rat model. Cells 2022 11 7 1073 10.3390/cells11071073 35406637
    [Google Scholar]
  166. Lee B.Y. Jeong J. Jung I. Cho H. Jung D. Shin J. Park J. Park E. Noh S. Shin S. Kang S. Heo J.I. Baek M.C. Yea K. GDNF family receptor alpha‐like antagonist antibody alleviates chemotherapy‐induced cachexia in melanoma‐bearing mice. J. Cachexia Sarcopenia Muscle 2023 14 3 1441 1453 10.1002/jcsm.13219 37017344
    [Google Scholar]
  167. Suriben R. Chen M. Higbee J. Oeffinger J. Ventura R. Li B. Mondal K. Gao Z. Ayupova D. Taskar P. Li D. Starck S.R. Chen H.I.H. McEntee M. Katewa S.D. Phung V. Wang M. Kekatpure A. Lakshminarasimhan D. White A. Olland A. Haldankar R. Solloway M.J. Hsu J.Y. Wang Y. Tang J. Lindhout D.A. Allan B.B. Antibody-mediated inhibition of GDF15–GFRAL activity reverses cancer cachexia in mice. Nat. Med. 2020 26 8 1264 1270 10.1038/s41591‑020‑0945‑x 32661391
    [Google Scholar]
  168. Oikawa Y. Izumi R. Koide M. Mitochondrial dysfunction underlying sporadic inclusion body myositis is ameliorated by the mitochondrial homing drug MA-5. PLoS One 2020 15 12 e0231064 10.1371/journal.pone.0231064
    [Google Scholar]
  169. Shimba A. Ejima A. Ikuta K. Pleiotropic effects of glucocorticoids on the immune system in circadian rhythm and stress. Front. Immunol. 2021 12 706951 10.3389/fimmu.2021.706951 34691020
    [Google Scholar]
  170. Gopi I.K. Rattan S.I.S. Biphasic dose–response and hormetic effects of stress hormone hydrocortisone on telomerase-immortalized human bone marrow stem cells in vitro. Dose Response 2019 17 4 10.1177/1559325819889819 31798356
    [Google Scholar]
  171. Calabrese V. Scapagnini G. Davinelli S. Koverech G. Koverech A. De Pasquale C. Salinaro A.T. Scuto M. Calabrese E.J. Genazzani A.R. Sex hormonal regulation and hormesis in aging and longevity: Role of vitagenes. J. Cell Commun. Signal. 2014 8 4 369 384 10.1007/s12079‑014‑0253‑7 25381162
    [Google Scholar]
  172. Cimino I. Kim H. Tung Y.C.L. Pedersen K. Rimmington D. Tadross J.A. Kohnke S.N. Neves-Costa A. Barros A. Joaquim S. Bennett D. Melvin A. Lockhart S.M. Rostron A.J. Scott J. Liu H. Burling K. Barker P. Clatworthy M.R. Lee E.C. Simpson A.J. Yeo G.S.H. Moita L.F. Bence K.K. Jørgensen S.B. Coll A.P. Breen D.M. O’Rahilly S. Activation of the hypothalamic–pituitary–adrenal axis by exogenous and endogenous GDF15. Proc. Natl. Acad. Sci. USA 2021 118 27 e2106868118 10.1073/pnas.2106868118 34187898
    [Google Scholar]
  173. Díaz M. Campderrós L. Guimaraes M.P. López-Bermejo A. de Zegher F. Villarroya F. Ibáñez L. Circulating growth-and-differentiation factor-15 in early life: Relation to prenatal and postnatal growth and adiposity measurements. Pediatr. Res. 2020 87 5 897 902 10.1038/s41390‑019‑0633‑z 31645058
    [Google Scholar]
  174. Stratos I. Behrendt A.K. Anselm C. Gonzalez A. Mittlmeier T. Vollmar B. Inhibition of TNF-α restores muscle force, inhibits inflammation, and reduces apoptosis of traumatized skeletal mMuscles. Cells 2022 11 15 2397 10.3390/cells11152397 35954240
    [Google Scholar]
  175. Reid M.B. Li Y.P. Tumor necrosis factor-α and muscle wasting: A cellular perspective. Respir. Res. 2001 2 5 269 272 10.1186/rr67 11686894
    [Google Scholar]
  176. Wu J. Lin S. Chen W. Lian G. Wu W. Chen A. Sagor M.I.H. Luo L. Wang H. Xie L. TNF-α contributes to sarcopenia through caspase-8/caspase-3/GSDME-mediated pyroptosis. Cell Death Discov. 2023 9 1 76 10.1038/s41420‑023‑01365‑6 36823174
    [Google Scholar]
  177. Chen S.E. Jin B. Li Y.P. TNF-α regulates myogenesis and muscle regeneration by activating p38 MAPK. Am. J. Physiol. Cell Physiol. 2007 292 5 C1660 C1671 10.1152/ajpcell.00486.2006 17151142
    [Google Scholar]
  178. Moon J.S. Goeminne L.J.E. Kim J.T. Tian J.W. Kim S.H. Nga H.T. Kang S.G. Kang B.E. Byun J.S. Lee Y.S. Jeon J.H. Shong M. Auwerx J. Ryu D. Yi H.S. Growth differentiation factor 15 protects against the aging‐mediated systemic inflammatory response in humans and mice. Aging Cell 2020 19 8 e13195 10.1111/acel.13195 32691494
    [Google Scholar]
  179. Shapiro L. Scherer P.E. The crystal structure of a complement-1q family protein suggests an evolutionary link to tumor necrosis factor. Curr. Biol. 1998 8 6 335 340 10.1016/S0960‑9822(98)70133‑2 9512423
    [Google Scholar]
  180. Martin F.J. Amode M.R. Aneja A. Austine-Orimoloye O. Azov A.G. Barnes I. Becker A. Bennett R. Berry A. Bhai J. Bhurji S.K. Bignell A. Boddu S. Branco Lins P.R. Brooks L. Ramaraju S.B. Charkhchi M. Cockburn A. Da Rin Fiorretto L. Davidson C. Dodiya K. Donaldson S. El Houdaigui B. El Naboulsi T. Fatima R. Giron C.G. Genez T. Ghattaoraya G.S. Martinez J.G. Guijarro C. Hardy M. Hollis Z. Hourlier T. Hunt T. Kay M. Kaykala V. Le T. Lemos D. Marques-Coelho D. Marugán J.C. Merino G.A. Mirabueno L.P. Mushtaq A. Hossain S.N. Ogeh D.N. Sakthivel M.P. Parker A. Perry M. Piližota I. Prosovetskaia I. Pérez-Silva J.G. Salam A.I.A. Saraiva-Agostinho N. Schuilenburg H. Sheppard D. Sinha S. Sipos B. Stark W. Steed E. Sukumaran R. Sumathipala D. Suner M.M. Surapaneni L. Sutinen K. Szpak M. Tricomi F.F. Urbina-Gómez D. Veidenberg A. Walsh T.A. Walts B. Wass E. Willhoft N. Allen J. Alvarez-Jarreta J. Chakiachvili M. Flint B. Giorgetti S. Haggerty L. Ilsley G.R. Loveland J.E. Moore B. Mudge J.M. Tate J. Thybert D. Trevanion S.J. Winterbottom A. Frankish A. Hunt S.E. Ruffier M. Cunningham F. Dyer S. Finn R.D. Howe K.L. Harrison P.W. Yates A.D. Flicek P. Ensembl 2023. Nucleic Acids Res. 2023 51 D1 D933 D941 10.1093/nar/gkac958 36318249
    [Google Scholar]
  181. Karusheva Y. Ratcliff M. Mörseburg A. Barker P. Melvin A. Sattar N. Burling K. Backmark A. Roth R. Jermutus L. Guiu-Jurado E. Blüher M. Welsh P. Hyvönen M. O’Rahilly S. The common H202D variant in GDF-15 does not affect its bioactivity but can significantly interfere with measurement of its circulating levels. J. Appl. Lab. Med. 2022 7 6 1388 1400 10.1093/jalm/jfac055 35796717
    [Google Scholar]
  182. Chow C.F.W. Guo X. Asthana P. Zhang S. Wong S.K.K. Fallah S. Che S. Gurung S. Wang Z. Lee K.B. Ge X. Yuan S. Xu H. Ip J.P.K. Jiang Z. Zhai L. Wu J. Zhang Y. Mahato A.K. Saarma M. Lin C.Y. Kwan H.Y. Huang T. Lyu A. Zhou Z. Bian Z.X. Wong H.L.X. Body weight regulation via MT1-MMP-mediated cleavage of GFRAL. Nat. Metab. 2022 4 2 203 212 10.1038/s42255‑022‑00529‑5 35177851
    [Google Scholar]
  183. Bulik C.M. From awareness to action: An urgent call to address the inadequacy of treatment for anorexia nervosa. Am. J. Psychiatry 2021 178 9 786 788 10.1176/appi.ajp.2021.21070697 34516232
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240327723241018073535
Loading
/content/journals/cmm/10.2174/0115665240327723241018073535
Loading

Data & Media loading...

Supplements

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test