Skip to content
2000
Volume 25, Issue 11
  • ISSN: 1566-5240
  • E-ISSN: 1875-5666

Abstract

Background

Gastric cancer is a major global cause of cancer-related deaths, necessitating investigation into Matrix Metalloproteinases’ (MMPs) diagnostic and prognostic value. Our study aimed to analyze their significance in gastric cancer.

Methods

We evaluated MMP family genes' mRNA and protein expression using the University of Alabama at Birmingham (UALCAN) and Human Protein Atlas (HPA) databases. Then, we analyzed the relationship between their mRNA expression and gastric cancer staging and survival using Gene Expression Profiling Interactive Analysis (GEPIA) and Kaplan–Meier plotter. Furthermore, we assessed this family’s gene mutation rates in gastric cancer patients using Search Tool for the Retrieval of Interaction Genes/Proteins (STRING) and explored potential pathways and mechanisms Database for Annotation, Visualization, and Integrated Discovery (DAVID), cBioPortal, and R. Finally, we established a predictive model for gastric cancer based on these analyses to understand these genes’ roles in cancer.

Results

Our findings revealed significantly upregulated mRNA expression of MMP1/2/3/7/9/10/11/12/13/14 in gastric cancer tissues (p<0.05). Higher levels of MMP2/7/10-encoded proteins (middle or high) were observed in tumor tissues, with MMP2/11/14 closely associated with different cancer stages (p<0.05). Additionally, MMP2/7/11/14/20 mRNA levels correlated with short-term overall survival (about 20 months), while MMP1/3/9/12/13 expression was associated with favorable overall survival (about 30 months). Gastric cancer patients exhibited a 21% mutation rate of MMP family genes, which correlated with favorable overall survival. Enrichment analysis and protein-protein interaction results underscored the close association of MMPs with gastric cancer development. The MMP2 model demonstrated a significant decline in survival rates for the high expression group, with a Hazard Ratio (HR) of 1.78 (95% CI 1.47-2.16) and a log-rank P value of 2.9e-09. Statistical significance was set at p < 0.05. Univariate Cox regression identified MMP2 as a risk factor for gastric cancer patients.

Conclusion

Our findings highlighted MMPs' essential role in gastric cancer progression, impacting patient survival. MMP2 emerged as a promising target for gastric carcinoma detection and treatment.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240309837241204184939
2025-01-03
2025-12-23
Loading full text...

Full text loading...

/deliver/fulltext/cmm/25/11/CMM-25-11-09.html?itemId=/content/journals/cmm/10.2174/0115665240309837241204184939&mimeType=html&fmt=ahah

References

  1. SungH. FerlayJ. SiegelR.L. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.21660 33538338
    [Google Scholar]
  2. CaoW. ChenH.D. YuY.W. LiN. ChenW.Q. Changing profiles of cancer burden worldwide and in China: A secondary analysis of the global cancer statistics 2020.Chin. Med. J. (Engl.)2021134778379110.1097/CM9.0000000000001474 33734139
    [Google Scholar]
  3. JoshiS.S. BadgwellB.D. Current treatment and recent progress in gastric cancer.CA Cancer J. Clin.202171326427910.3322/caac.21657 33592120
    [Google Scholar]
  4. AjucarmelprecillaA. PandiJ. DhandapaniR. In silico identification of hub genes as observing biomarkers for gastric cancer metastasis.Evid. Based Complement. Alternat. Med.2022202211210.1155/2022/6316158 35535159
    [Google Scholar]
  5. ChinnappanJ. RamuA. v VR, S AK. Integrative bioinformatics approaches to therapeutic gene target selection in various cancers for Nitroglycerin.Sci. Rep.20211112203610.1038/s41598‑021‑01508‑8 34764329
    [Google Scholar]
  6. SmythE.C. NilssonM. GrabschH.I. van GriekenN.C.T. LordickF. Gastric cancer.Lancet20203961025163564810.1016/S0140‑6736(20)31288‑5 32861308
    [Google Scholar]
  7. YeohK.G. TanP. Mapping the genomic diaspora of gastric cancer.Nat. Rev. Cancer2021 34702982
    [Google Scholar]
  8. OverallC.M. KleifeldO. Validating matrix metalloproteinases as drug targets and anti-targets for cancer therapy.Nat. Rev. Cancer20066322723910.1038/nrc1821 16498445
    [Google Scholar]
  9. DufourA. OverallC.M. Missing the target: Matrix metalloproteinase antitargets in inflammation and cancer.Trends Pharmacol. Sci.201334423324210.1016/j.tips.2013.02.004 23541335
    [Google Scholar]
  10. LiuJ. ChenT. LiS. LiuW. WangP. ShangG. Targeting matrix metalloproteinases by E3 ubiquitin ligases as a way to regulate the tumor microenvironment for cancer therapy.Semin. Cancer Biol.202286Pt 225926810.1016/j.semcancer.2022.06.004 35724822
    [Google Scholar]
  11. AlaseemA. AlhazzaniK. DondapatiP. AlobidS. BishayeeA. RathinaveluA. Matrix metalloproteinases: A challenging paradigm of cancer management.Semin. Cancer Biol.20195610011510.1016/j.semcancer.2017.11.008 29155240
    [Google Scholar]
  12. MustafaS. KoranS. AlOmairL. Insights into the role of matrix metalloproteinases in cancer and its various therapeutic aspects: A review.Front. Mol. Biosci.2022989609910.3389/fmolb.2022.896099 36250005
    [Google Scholar]
  13. YueB. Biology of the extracellular matrix: An overview.J. Glaucoma2014238Suppl. 1S20S2310.1097/IJG.0000000000000108 25275899
    [Google Scholar]
  14. SurguchevA.A. EmamzadehF.N. SurguchovA. Cell responses to extracellular α-synuclein.Molecules201924230510.3390/molecules24020305 30650656
    [Google Scholar]
  15. CsapoR. GumpenbergerM. WessnerB. Skeletal muscle extracellular matrix – What do we know about its composition, regulation, and physiological roles? A narrative review.Front. Physiol.20201125310.3389/fphys.2020.00253 32265741
    [Google Scholar]
  16. LuP. TakaiK. WeaverV.M. WerbZ. Extracellular matrix degradation and remodeling in development and disease.Cold Spring Harb. Perspect. Biol.2011312a00505810.1101/cshperspect.a005058 21917992
    [Google Scholar]
  17. Cabral-PachecoG.A. Garza-VelozI. Castruita-De la RosaC. The roles of matrix metalloproteinases and their inhibitors in human diseases.Int. J. Mol. Sci.20202124973910.3390/ijms21249739 33419373
    [Google Scholar]
  18. ShayG. LynchC.C. FingletonB. Moving targets: Emerging roles for MMPs in cancer progression and metastasis.Matrix Biol.201544-4620020610.1016/j.matbio.2015.01.019 25652204
    [Google Scholar]
  19. WalkerC. MojaresE. Del Río HernándezA. Role of extracellular matrix in development and cancer progression.Int. J. Mol. Sci.20181910302810.3390/ijms19103028 30287763
    [Google Scholar]
  20. JacobA. PrekerisR. The regulation of MMP targeting to invadopodia during cancer metastasis.Front. Cell Dev. Biol.20153410.3389/fcell.2015.00004 25699257
    [Google Scholar]
  21. Łukaszewicz-ZającM. MroczkoB. SzmitkowskiM. Gastric cancer — The role of matrix metalloproteinases in tumor progression.Clin. Chim. Acta201141219-201725173010.1016/j.cca.2011.06.003 21693112
    [Google Scholar]
  22. ZhengH. TakahashiH. MuraiY. Expressions of MMP-2, MMP-9 and VEGF are closely linked to growth, invasion, metastasis and angiogenesis of gastric carcinoma.Anticancer Res.2006265A35793583 17094486
    [Google Scholar]
  23. IiM. YamamotoH. AdachiY. MaruyamaY. ShinomuraY. Role of matrix metalloproteinase-7 (matrilysin) in human cancer invasion, apoptosis, growth, and angiogenesis.Exp. Biol. Med. (Maywood)20062311202710.1177/153537020623100103 16380641
    [Google Scholar]
  24. ChandrashekarD.S. BashelB. BalasubramanyaS.A.H. UALCAN: A portal for facilitating tumor subgroup gene expression and survival analyses.Neoplasia201719864965810.1016/j.neo.2017.05.002 28732212
    [Google Scholar]
  25. YangQ. HongK. LiY. ShiP. YanF. ZhangP. Receptor-interacting protein kinase 2 is associated with tumor immune infiltration, immunotherapy-related biomarkers, and affects gastric cancer cells growth in vivo.J. Cancer202415117619110.7150/jca.90008 38164277
    [Google Scholar]
  26. MaT. MaN. ChenJ.L. Expression and prognostic value of Chromobox family members in gastric cancer.J. Gastrointest. Oncol.202011598399810.21037/jgo‑20‑223 33209492
    [Google Scholar]
  27. RaoX. JiangJ. LiangZ. Down-regulated CLDN10 predicts favorable prognosis and correlates with immune infiltration in gastric cancer.Front. Genet.20211274758110.3389/fgene.2021.747581 34721537
    [Google Scholar]
  28. AsplundA. EdqvistP.H.D. SchwenkJ.M. PonténF. Antibodies for profiling the human proteome — The Human protein atlas as a resource for cancer research.Proteomics201212132067207710.1002/pmic.201100504 22623277
    [Google Scholar]
  29. LánczkyA. GyőrffyB. Web-based survival analysis tool tailored for medical research (KMplot): Development and implementation.J. Med. Internet Res.2021237e2763310.2196/27633 34309564
    [Google Scholar]
  30. FuD. WangC. YuL. YuR. Induction of ferroptosis by ATF3 elevation alleviates cisplatin resistance in gastric cancer by restraining Nrf2/Keap1/xCT signaling.Cell. Mol. Biol. Lett.20212612610.1186/s11658‑021‑00271‑y 34098867
    [Google Scholar]
  31. CeramiE. GaoJ. DogrusozU. The cBio cancer geno-mics portal: An open platform for exploring multidimensional cancer genomics data.Cancer Discov.20122540140410.1158/2159‑8290.CD‑12‑0095 22588877
    [Google Scholar]
  32. GaoJ. AksoyB.A. DogrusozU. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal.Sci. Signal.20136269pl110.1126/scisignal.2004088 23550210
    [Google Scholar]
  33. TangZ. LiC. KangB. GaoG. LiC. ZhangZ. GEPIA: A web server for cancer and normal gene expression profiling and interactive analyses.Nucleic Acids Res.201745W1W98W10210.1093/nar/gkx247 28407145
    [Google Scholar]
  34. HuangDW ShermanBT TanQ DAVID bioinformatics resources: Expanded annotation database and novel algorithms to better extract biology from large gene lists.Nucleic Acids Res200735(Web Server Issue)W169W17510.1093/nar/gkm41517576678
    [Google Scholar]
  35. HuangD.W. ShermanB.T. LempickiR.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources.Nat. Protoc.200941445710.1038/nprot.2008.211 19131956
    [Google Scholar]
  36. GuoJ.Y. JingZ. LiX. LiuL. Bioinformatic analysis identifying PSMB 1/2/3/4/6/8/9/10 as prognostic indicators in clear cell renal cell carcinoma.Int. J. Med. Sci.202219579681210.7150/ijms.71152 35693739
    [Google Scholar]
  37. LiS. PritchardD.M. YuL.G. Regulation and function of matrix metalloproteinase-13 in cancer progression and metastasis.Cancers (Basel)20221413326310.3390/cancers14133263 35805035
    [Google Scholar]
  38. WątrobaS. WiśniowskiT. BrydaJ. KurzepaJ. The role of matrix metalloproteinases in pathogenesis of human bladder cancer.Acta Biochim. Pol.202168454755510.18388/abp.2020_5600 34314132
    [Google Scholar]
  39. SiddharthaR. GargM. Molecular and clinical insights of matrix metalloproteinases into cancer spread and potential therapeutic interventions.Toxicol. Appl. Pharmacol.202142611559310.1016/j.taap.2021.115593 34038713
    [Google Scholar]
  40. PezeshkianZ. NobiliS. PeyravianN. Insights into the role of matrix metalloproteinases in precancerous conditions and in colorectal cancer.Cancers (Basel)20211324622610.3390/cancers13246226 34944846
    [Google Scholar]
  41. LinH. XuP. HuangM. Structure-based molecular insights into matrix metalloproteinase inhibitors in cancer treatments.Future Med. Chem.2022141355110.4155/fmc‑2021‑0246 34779649
    [Google Scholar]
  42. Gonzalez-AvilaG. SommerB. García-HernandezA.A. RamosC. Flores-SotoE. Nanotechnology and matrix metallo-proteinases in cancer diagnosis and treatment.Front. Mol. Biosci.2022991878910.3389/fmolb.2022.918789 35720130
    [Google Scholar]
  43. SokolovaO. NaumannM. Matrix metalloproteinases in Helicobacter pylori–associated gastritis and gastric cancer.Int. J. Mol. Sci.2022233188310.3390/ijms23031883 35163805
    [Google Scholar]
  44. NilandS. RiscanevoA.X. EbleJ.A. Matrix metalloproteinases shape the tumor microenvironment in cancer progression.Int. J. Mol. Sci.202123114610.3390/ijms23010146 35008569
    [Google Scholar]
  45. Gonzalez-AvilaG. SommerB. Mendoza-PosadaD.A. RamosC. Garcia-HernandezA.A. Falfan-ValenciaR. Matrix metalloproteinases participation in the metastatic process and their diagnostic and therapeutic applications in cancer.Crit. Rev. Oncol. Hematol.2019137578310.1016/j.critrevonc.2019.02.010 31014516
    [Google Scholar]
  46. KaczorowskaA. MiękusN. StefanowiczJ. Adamkiewicz-DrożyńskaE. Selected matrix metalloproteinases (MMP-2, MMP-7) and their inhibitor (TIMP-2) in adult and pediatric cancer.Diagnostics (Basel)202010854710.3390/diagnostics10080547 32751899
    [Google Scholar]
  47. ZhongY. LuY.T. SunY. Recent opportunities in matrix metalloproteinase inhibitor drug design for cancer.Expert Opin. Drug Discov.2018131758710.1080/17460441.2018.1398732 29088927
    [Google Scholar]
  48. LiuC. LiY. HuS. Clinical significance of matrix metalloproteinase-2 in endometrial cancer.Medicine (Baltimore)20189729e1099410.1097/MD.0000000000010994 30024495
    [Google Scholar]
  49. TauroM. LynchC. Cutting to the chase: How matrix metalloproteinase-2 activity controls breast-cancer-to-bone metastasis.Cancers (Basel)201810618510.3390/cancers10060185 29874869
    [Google Scholar]
  50. ChenL. LiM. LiQ. WangC. XieS. DKK1 promotes hepatocellular carcinoma cell migration and invasion through β-catenin/MMP7 signaling pathway.Mol. Cancer201312115710.1186/1476‑4598‑12‑157 24325363
    [Google Scholar]
  51. HemersE. DuvalC. McCaigC. HandleyM. DockrayG.J. VarroA. Insulin-like growth factor binding protein-5 is a target of matrix metalloproteinase-7: Implications for epithelial-mesenchymal signaling.Cancer Res.200565167363736910.1158/0008‑5472.CAN‑05‑0157 16103088
    [Google Scholar]
  52. MiyataY. IwataT. OhbaK. KandaS. NishikidoM. KanetakeH. Expression of matrix metalloproteinase-7 on cancer cells and tissue endothelial cells in renal cell carcinoma: Prognostic implications and clinical significance for invasion and metastasis.Clin. Cancer Res.200612236998700310.1158/1078‑0432.CCR‑06‑1626 17145820
    [Google Scholar]
  53. KenjiS.F. KurmaK. ColletB. MMP7 cleavage of amino-terminal CD95 death receptor switches signaling toward non-apoptotic pathways.Cell Death Dis.2022131089510.1038/s41419‑022‑05352‑0 36274061
    [Google Scholar]
  54. LiaoH.Y. DaC.M. LiaoB. ZhangH.H. Roles of matrix metalloproteinase-7 (MMP-7) in cancer.Clin. Biochem.20219291810.1016/j.clinbiochem.2021.03.003 33713636
    [Google Scholar]
  55. HuachuanZ. XiaohanL. JinminS. QianC. YanX. YinchangZ. Expression of matrix metalloproteinase-7 involving in growth, invasion, metastasis and angiogenesis of gastric cancer.Chin. Med. Sci. J.20031828086 12903787
    [Google Scholar]
  56. KoskensaloS. MrenaJ. WikstenJ.P. MMP-7 overexpression is an independent prognostic marker in gastric cancer.Tumour Biol.201031314915510.1007/s13277‑010‑0020‑1 20300917
    [Google Scholar]
  57. Abdel-HamidN.M. AbassS.A. Matrix metalloproteinase contribution in management of cancer proliferation, metastasis and drug targeting.Mol. Biol. Rep.20214896525653810.1007/s11033‑021‑06635‑z 34379286
    [Google Scholar]
  58. MondalS. AdhikariN. BanerjeeS. AminS.A. JhaT. Matrix metalloproteinase-9 (MMP-9) and its inhibitors in cancer: A minireview.Eur. J. Med. Chem.202019411226010.1016/j.ejmech.2020.112260 32224379
    [Google Scholar]
  59. CaiN. ChengK. MaY. Targeting MMP9 in CTNNB1 mutant hepatocellular carcinoma restores CD8 + T cell-mediated antitumour immunity and improves anti-PD-1 efficacy.Gut202473698599910.1136/gutjnl‑2023‑331342 38123979
    [Google Scholar]
  60. KarremanM.A. BauerA.T. SoleckiG. Active remodeling of capillary endothelium via cancer cell–derived MMP9 promotes metastatic brain colonization.Cancer Res.20238381299131410.1158/0008‑5472.CAN‑22‑3964 36652557
    [Google Scholar]
  61. McCartyJ.H. MMP9 clears the way for metastatic cell penetration across the blood–brain barrier.Cancer Res.20238381167116910.1158/0008‑5472.CAN‑23‑0151 37057598
    [Google Scholar]
  62. DongH. DiaoH. ZhaoY. Overexpression of matrix metalloproteinase‐9 in breast cancer cell lines remarkably increases the cell malignancy largely via activation of transforming growth factor beta/SMAD signalling.Cell Prolif.2019525e1263310.1111/cpr.12633 31264317
    [Google Scholar]
  63. HuangH. Matrix metalloproteinase-9 (MMP-9) as a cancer biomarker and MMP-9 biosensors: Recent advances.Sensors (Basel)20181810324910.3390/s18103249 30262739
    [Google Scholar]
  64. ZhangZ. GeH. Micrometastasis in gastric cancer.Cancer Lett.20133361344510.1016/j.canlet.2013.04.021 23624301
    [Google Scholar]
  65. HashemiM. AparvizR. BeickzadeM. Advances in RNAi therapies for gastric cancer: Targeting drug resistance and nanoscale delivery.Biomed. Pharmacother.202316911592710.1016/j.biopha.2023.115927 38006616
    [Google Scholar]
  66. LiD. XuM. WangZ. The EMT-induced lncRNA NR2F1-AS1 positively modulates NR2F1 expression and drives gastric cancer via miR-29a-3p/VAMP7 axis.Cell Death Dis.20221318410.1038/s41419‑022‑04540‑2 35082283
    [Google Scholar]
  67. ZhouY. ZhouB. PacheL. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets.Nat. Commun.2019101152310.1038/s41467‑019‑09234‑6 30944313
    [Google Scholar]
  68. Quintero-FabiánS. ArreolaR. Becerril-VillanuevaE. Role of matrix metalloproteinases in angiogenesis and cancer.Front. Oncol.20199137010.3389/fonc.2019.01370 31921634
    [Google Scholar]
  69. GweeY.X. ChiaD.K.A. SoJ. Integration of genomic biology into therapeutic strategies of gastric cancer peritoneal metastasis.J. Clin. Oncol.20224024283010.1200/JCO.21.02745 35649219
    [Google Scholar]
  70. NakajimaT. KondaY. KanaiM. Prohormone convertase furin has a role in gastric cancer cell proliferation with parathyroid hormone-related peptide in a reciprocal manner.Dig. Dis. Sci.200247122729273710.1023/A:1021005221934 12498293
    [Google Scholar]
  71. GuanX. ZhaoH. NiuJ. TanD. AjaniJ.A. WeiQ. Polymor-phisms of TGFB1 and VEGF genes and survival of patients with gastric cancer.J. Exp. Clin. Cancer Res.20092819410.1186/1756‑9966‑28‑94 19566948
    [Google Scholar]
  72. HouW. KongL. HouZ. JiH. CD44 is a prognostic biomarker and correlated with immune infiltrates in gastric cancer.BMC Med. Genomics202215122510.1186/s12920‑022‑01383‑w 36316684
    [Google Scholar]
  73. ZhangY. ZhouM. WeiH. Furin promotes epithelial-mesenchymal transition in pancreatic cancer cells via Hippo-YAP pathway.Int. J. Oncol.20175041352136210.3892/ijo.2017.3896 28259973
    [Google Scholar]
  74. FörstiA. LiX. WagnerK. Polymorphisms in the transforming growth factor beta 1 pathway in relation to colorectal cancer progression.Genes Chromosomes Cancer201049327028110.1002/gcc.20738 19998449
    [Google Scholar]
  75. BlanchetteF. RuddP. GrondinF. AttisanoL. DuboisC.M. Involvement of Smads in TGFβ1‐induced furin (fur) transcription.J. Cell. Physiol.2001188226427310.1002/jcp.1116 11424093
    [Google Scholar]
  76. ZengJ. YangL. ZengL. Visualizing cancer resistance via nano-quenching and recovery detector of CD44.J. Nanobiotechnology202422145210.1186/s12951‑024‑02732‑w 39080641
    [Google Scholar]
  77. LordickF. ShitaraK. JanjigianY.Y. New agents on the horizon in gastric cancer.Ann. Oncol.20172881767177510.1093/annonc/mdx051 28184417
    [Google Scholar]
  78. AlsinaM. ArrazubiV. DiezM. TaberneroJ. Current developments in gastric cancer: From molecular profiling to treatment strategy.Nat. Rev. Gastroenterol. Hepatol.2022 36344677
    [Google Scholar]
  79. LeiZ.N. TengQ.X. TianQ. Signaling pathways and therapeutic interventions in gastric cancer.Signal Transduct. Target. Ther.20227135810.1038/s41392‑022‑01190‑w 36209270
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240309837241204184939
Loading
/content/journals/cmm/10.2174/0115665240309837241204184939
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test