Skip to content
2000
image of A Comprehensive Analysis of the Role of PAX9 in Head and Neck Squamous Cell Carcinoma

Abstract

Background

Paired box 9 (PAX9) has been linked to several human disorders; however, its relevance in Head And Neck Squamous Cell Carcinoma (HNSCC) remains unknown.

Methods

The difference in PAX9 mRNA expression in pan-cancer was analyzed utilizing The Cancer Genome Atlas (TCGA), and the level of PAX9 protein expression across various types of cancer was assessed utilizing the Human Protein Atlas (HPA) and UALCAN databases, as well as the cellular localization of PAX9. UALCAN studied the methylation levels of PAX9 in pan-cancer. The predictive significance of PAX9 in pan-cancer was assessed utilizing the Kaplan-Meier Plotter website. Functional enrichment analysis was carried out with the “cluster Profiler” program. By employing CCK8 and colony formation methods, the influence of PAX9 on the growth of HNSCC cells was evaluated. By conducting a transwell experiment, we assessed the influence of PAX9 on the migration of HNSCC cells. Western blotting was used to determine the levels of Bax and Bcl-2, two proteins involved in the regulation of apoptosis. A nude mouse model was established to study the impact of PAX9 overexpression on the growth of subcutaneous HNSCC tumors.

Results

In HNSCC, the expression of PAX9 was found to be low, while levels of promoter methylation rose considerably. Low PAX9 expression has been linked to a decrease in overall survival (OS) rates among individuals with HNSCC. Furthermore, overexpressing the PAX9 gene decreased HNSCC cell proliferation, migration, and invasion while boosting apoptosis rates.

Conclusion

The abnormal expression of PAX9 is linked to various cancers. In HNSCC, PAX9 is a potential tumor suppressor, inhibiting tumor invasion and migration. The results reveal a potentially significant new therapeutic target for HNSCC.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240328109241205084841
2025-01-15
2025-03-15
Loading full text...

Full text loading...

References

  1. Johnson D.E. Burtness B. Leemans C.R. Lui V.W.Y. Bauman J.E. Grandis J.R. Head and neck squamous cell carcinoma. Nat. Rev. Dis. Primers 2020 6 1 92 10.1038/s41572‑020‑00224‑3 33243986
    [Google Scholar]
  2. Jayawickrama S.M. Ranaweera P.M. Pradeep R. Jayasinghe Y.A. Senevirathna K. Hilmi A.J. Rajapakse R.M.G. Kanmodi K.K. Jayasinghe R.D. Developments and future prospects of personalized medicine in head and neck squamous cell carcinoma diagnoses and treatments. Cancer reports 2024 7 3 e2045
    [Google Scholar]
  3. Saada-Bouzid E. Peyrade F. Guigay J. Molecular genetics of head and neck squamous cell carcinoma. Curr. Opin. Oncol. 2019 31 3 131 137 10.1097/CCO.0000000000000536 30893149
    [Google Scholar]
  4. Solomon B. Young R.J. Rischin D. Head and neck squamous cell carcinoma: Genomics and emerging biomarkers for immunomodulatory cancer treatments. Semin. Cancer Biol. 2018 52 Pt 2 228 240 10.1016/j.semcancer.2018.01.008 29355614
    [Google Scholar]
  5. Morse D.E. Psoter W.J. Cleveland D. Cohen D. Mohit-Tabatabai M. Kosis D.L. Eisenberg E. Smoking and drinking in relation to oral cancer and oral epithelial dysplasia. Cancer Causes Control 2007 18 9 919 929 10.1007/s10552‑007‑9026‑4 17647085
    [Google Scholar]
  6. Tanadini-Lang S. Balermpas P. Guckenberger M. Pavic M. Riesterer O. Vuong D. Bogowicz M. Radiomic biomarkers for head and neck squamous cell carcinoma. Strahlenther Onkol. 2020 196 10 868 878
    [Google Scholar]
  7. Leemans C.R. Snijders P.J.F. Brakenhoff R.H. The molecular landscape of head and neck cancer. Nat. Rev. Cancer 2018 18 5 269 282 10.1038/nrc.2018.11 29497144
    [Google Scholar]
  8. Liang F. Wang R. Du Q. Zhu S. An epithelial–mesenchymal transition hallmark gene-based risk score system in head and neck squamous-cell carcinoma. Int. J. Gen. Med. 2021 14 4219 4227 10.2147/IJGM.S327632 34393501
    [Google Scholar]
  9. Affolter A. Lammert A. Kern J. Scherl C. Rotter N. Precision medicine gains momentum: Novel 3D models and stem cell-based approaches in head and neck cancer. Front. Cell Dev. Biol. 2021 9 666515 10.3389/fcell.2021.666515 34307351
    [Google Scholar]
  10. Gong S.Q. Xu M. Xiang M.L. Shan Y.M. Zhang H. The expression and effection of MicroRNA-499a in high-tobacco exposed head and neck squamous cell carcinoma: A bioinformatic analysis. Front. Oncol. 2019 9 678 10.3389/fonc.2019.00678 31417866
    [Google Scholar]
  11. Chen X. Li Y. Paiboonrungruang C. Li Y. Peters H. Kist R. Xiong Z. PAX9 in cancer development. Int. J. Mol. Sci. 2022 23 10 5589 10.3390/ijms23105589 35628401
    [Google Scholar]
  12. Liu J. Yang M. Su M. Liu B. Zhou K. Sun C. Ba R. Yu B. Zhang B. Zhang Z. Fan W. Wang K. Zhong M. Han J. Zhao C. FOXG1 sequentially orchestrates subtype specification of postmitotic cortical projection neurons. Sci. Adv. 2022 8 21 eabh3568 10.1126/sciadv.abh3568 35613274
    [Google Scholar]
  13. Li R. Chen Z. Yu Q. Weng M. Chen Z. The function and regulatory network of Pax9 gene in palate development. J. Dent. Res. 2019 98 3 277 287 10.1177/0022034518811861 30583699
    [Google Scholar]
  14. Bhol C.S. Patil S. Sahu B.B. Patra S.K. Bhutia S.K. The clinical significance and correlative signaling pathways of paired box gene 9 in development and carcinogenesis. Biochim. Biophys. Acta Rev. Cancer 2021 1876 1 188561 10.1016/j.bbcan.2021.188561 33965511
    [Google Scholar]
  15. Bonczek O. Balcar V.J. Šerý O. >PAX9 gene mutations and tooth agenesis: A review. Clin. Genet. 2017 92 5 467 476 10.1111/cge.12986 28155232
    [Google Scholar]
  16. Šerý O. Bonczek O. Hloušková A. Černochová P. Vaněk J. Míšek I. Krejčí P. Izakovičová Hollá L. A screen of a large Czech cohort of oligodontia patients implicates a novel mutation in the PAX9 gene. Eur. J. Oral Sci. 2015 123 2 65 71 10.1111/eos.12170 25683653
    [Google Scholar]
  17. Zhao Z. Szczepanski A.P. Tsuboyama N. Abdala-Valencia H. Goo Y.A. Singer B.D. Bartom E.T. Yue F. Wang L. PAX9 determines epigenetic state transition and cell fate in cancer. Cancer Res. 2021 81 18 4696 4708 10.1158/0008‑5472.CAN‑21‑1114 34341073
    [Google Scholar]
  18. Shi M. Ren S. Chen H. Li J. Huang C. Li Y. Han Y. Li Y. Sun Z. Chen X. Xiong Z. Alcohol drinking inhibits NOTCH – PAX9 signaling in esophageal squamous epithelial cells. J. Pathol. 2021 253 4 384 395 10.1002/path.5602 33314197
    [Google Scholar]
  19. Soto J.A. Rodríguez-Antolín C. Vera O. Pernía O. Esteban-Rodríguez I. Dolores Diestro M. Benitez J. Sánchez-Cabo F. Alvarez R. De Castro J. Ibanez de Cáceres I. Transcriptional epigenetic regulation of Fkbp1/Pax9 genes is associated with impaired sensitivity to platinum treatment in ovarian cancer. Clin. Epigenetics 2021 13 1 167 10.1186/s13148‑021‑01149‑8 34454589
    [Google Scholar]
  20. Liu J. Wang Y.Q. Niu H.B. Zhang C.X. PAX9 functions as a tumor suppressor gene for cervical cancer via modulating cell proliferation and apoptosis. Kaohsiung J. Med. Sci. 2022 38 4 357 366 10.1002/kjm2.12489 34931758
    [Google Scholar]
  21. Tan L. Li W. Su Q. The comprehensive analysis of the prognostic and functional role of N-terminal methyltransferases 1 in pan-cancer. PeerJ 2023 11 e16263 10.7717/peerj.16263 37901469
    [Google Scholar]
  22. Colwill K. Gräslund S. Graslund S. A roadmap to generate renewable protein binders to the human proteome. Nat. Methods 2011 8 7 551 558 10.1038/nmeth.1607 21572409
    [Google Scholar]
  23. Chandrashekar D.S. Karthikeyan S.K. Korla P.K. Patel H. Shovon A.R. Athar M. Netto G.J. Qin Z.S. Kumar S. Manne U. Creighton C.J. Varambally S. UALCAN: An update to the integrated cancer data analysis platform. Neoplasia 2022 25 18 27 10.1016/j.neo.2022.01.001 35078134
    [Google Scholar]
  24. Tang Z. Kang B. Li C. Chen T. Zhang Z. GEPIA2: an enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Res. 2019 47 W1 W556 W560 10.1093/nar/gkz430 31114875
    [Google Scholar]
  25. Nagy Á. Munkácsy G. Győrffy B. Pancancer survival analysis of cancer hallmark genes. Sci. Rep. 2021 11 1 6047 10.1038/s41598‑021‑84787‑5 33723286
    [Google Scholar]
  26. Razavi Vakhshourpour S. Nateghpour M. Shahrokhi N. Motevalli Haghi A. Mohebali M. Hanifian H. Potential of RH5 antisense on Plasmodium falciparum proliferation abatement. Iran. J. Parasitol. 2022 17 4 525 534 10.18502/ijpa.v17i4.11280 36694567
    [Google Scholar]
  27. Badri M. Ghaffarifar F. Hassan Z.M. Dalimi A. Cortes H. Immunoregulatory effects of somatic extract of Toxocara canis on airway inflammations in murine model. Iran. J. Parasitol. 2020 15 4 500 510 10.18502/ijpa.v15i4.4855 33884007
    [Google Scholar]
  28. Cui Z. Guo Y. Zhou Y. Mao S. Yan X. Zeng Y. Ding C. Chan H. Tang S. Tang L. Chen J. Transcriptomic analysis of the developmental similarities and differences between the native retina and retinal organoids. Invest. Ophthalmol. Vis. Sci. 2020 61 3 6 10.1167/iovs.61.3.6 32150248
    [Google Scholar]
  29. Doescher J. Veit J.A. Hoffmann T.K. [The 8th edition of the AJCC Cancer Staging Manual : Updates in otorhinolaryngology, head and neck surgery]. HNO 2017 65 12 956 961 10.1007/s00106‑017‑0391‑3 28717958
    [Google Scholar]
  30. Lydiatt W.M. Patel S.G. O’Sullivan B. Brandwein M.S. Ridge J.A. Migliacci J.C. Loomis A.M. Shah J.P. Head and Neck cancers-major changes in the American Joint Committee on cancer eighth edition cancer staging manual. CA Cancer J Clin. 2017 67 2 122 137
    [Google Scholar]
  31. Glastonbury C.M. Critical changes in the staging of head and neck cancer. Radiol. Imaging Cancer 2020 2 1 e190022 10.1148/rycan.2019190022 33778691
    [Google Scholar]
  32. Burtness B. Harrington K.J. Greil R. Soulières D. Tahara M. de Castro G. Jr Psyrri A. Basté N. Neupane P. Bratland Å. Fuereder T. Hughes B.G.M. Mesía R. Ngamphaiboon N. Rordorf T. Wan Ishak W.Z. Hong R.L. González Mendoza R. Roy A. Zhang Y. Gumuscu B. Cheng J.D. Jin F. Rischin D. Lerzo G. Tatangelo M. Varela M. Zarba J.J. Boyer M. Gan H. Gao B. Hughes B. Mallesara G. Rischin D. Taylor A. Burian M. Fuereder T. Greil R. Barrios C.H. de Castro Junior D.O. Castro G. Franke F.A. Girotto G. Lima I.P.F. Nicolau U.R. Pinto G.D.J. Santos L. Victorino A-P. Chua N. Couture F. Gregg R. Hansen A. Hilton J. McCarthy J. Soulieres D. Ascui R. Gonzalez P. Villanueva L. Torregroza M. Zambrano A. Holeckova P. Kral Z. Melichar B. Prausova J. Vosmik M. Andersen M. Gyldenkerne N. Jurgens H. Putnik K. Reinikainen P. Gruenwald V. Laban S. Aravantinos G. Boukovinas I. Georgoulias V. Psyrri A. Kwong D. Al-Farhat Y. Csoszi T. Erfan J. Horvai G. Landherr L. Remenar E. Ruzsa A. Szota J. Billan S. Gluck I. Gutfeld O. Popovtzer A. Benasso M. Bui S. Ferrari V. Licitra L. Nole F. Fujii T. Fujimoto Y. Hanai N. Hara H. Matsumoto K. Mitsugi K. Monden N. Nakayama M. Okami K. Oridate N. Shiga K. Shimizu Y. Sugasawa M. Tahara M. Takahashi M. Takahashi S. Tanaka K. Ueda T. Yamaguchi H. Yamazaki T. Yasumatsu R. Yokota T. Yoshizaki T. Kudaba I. Stara Z. Wan Ishak W.Z. Cheah S.K. Aguilar Ponce J. Gonzalez Mendoza R. Hernandez Hernandez C. Medina Soto F. Buter J. Hoeben A. Oosting S. Suijkerbuijk K. Bratland A. Brydoey M. Alvarez R. Mas L. Caguioa P. Querol J. Regala E.E. Tamayo M.B. Villegas E.M. Kawecki A. Karpenko A. Klochikhin A. Smolin A. Zarubenkov O. Goh B.C. Cohen G. du Toit J. Jordaan C. Landers G. Ruff P. Szpak W. Tabane N. Brana I. Iglesias Docampo L. Lavernia J. Mesia R. Abel E. Muratidu V. Nielsen N. Cristina V. Rordorf T. Rothschild S. Hong R-L. Wang H-M. Yang M-H. Yeh S-P. Yen C-J. Ngamphaiboon N. Soparattanapaisarn N. Sriuranpong V. Aksoy S. Cicin I. Ekenel M. Harputluoglu H. Ozyilkan O. Harrington K. Agarwala S. Ali H. Alter R. Anderson D. Bruce J. Burtness B. Campbell N. Conde M. Deeken J. Edenfield W. Feldman L. Gaughan E. Goueli B. Halmos B. Hegde U. Hunis B. Jotte R. Karnad A. Khan S. Laudi N. Laux D. Martincic D. McCune S. McGaughey D. Misiukiewicz K. Mulford D. Nadler E. Neupane P. Nunnink J. Ohr J. O’Malley M. Patson B. Paul D. Popa E. Powell S. Redman R. Rella V. Rocha Lima C. Sivapiragasam A. Su Y. Sukari A. Wong S. Yilmaz E. Yorio J. Pembrolizumab alone or with chemotherapy versus cetuximab with chemotherapy for recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-048): a randomised, open-label, phase 3 study. Lancet 2019 394 10212 1915 1928 10.1016/S0140‑6736(19)32591‑7 31679945
    [Google Scholar]
  33. Seiwert T.Y. Burtness B. Mehra R. Weiss J. Berger R. Eder J.P. Heath K. McClanahan T. Lunceford J. Gause C. Cheng J.D. Chow L.Q. Safety and clinical activity of pembrolizumab for treatment of recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-012): an open-label, multicentre, phase 1b trial. Lancet Oncol. 2016 17 7 956 965 10.1016/S1470‑2045(16)30066‑3 27247226
    [Google Scholar]
  34. Ferris R.L. Blumenschein G. Jr Fayette J. Guigay J. Colevas A.D. Licitra L. Harrington K. Kasper S. Vokes E.E. Even C. Worden F. Saba N.F. Iglesias Docampo L.C. Haddad R. Rordorf T. Kiyota N. Tahara M. Monga M. Lynch M. Geese W.J. Kopit J. Shaw J.W. Gillison M.L. Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N. Engl. J. Med. 2016 375 19 1856 1867 10.1056/NEJMoa1602252 27718784
    [Google Scholar]
  35. Mehanna H. Robinson M. Hartley A. Kong A. Foran B. Fulton-Lieuw T. Dalby M. Mistry P. Sen M. O’Toole L. Al Booz H. Dyker K. Moleron R. Whitaker S. Brennan S. Cook A. Griffin M. Aynsley E. Rolles M. De Winton E. Chan A. Srinivasan D. Nixon I. Grumett J. Leemans C.R. Buter J. Henderson J. Harrington K. McConkey C. Gray A. Dunn J. Moleron R. McArdle O. Dyker K. Al Booz H. O’Toole L. Cook A. Husband D. Loo V. Soe W. Aynsley E. Sridhar T. Jankowska P. Joseph M. Geropantas K. Vaidya D. Griffin M. Hartley A. Vijayan R. Hwang D. Harrington K. Pettit L. Whitaker S. De Winton E. Rolles M. Brennan S. Sen M. Mendes R. Forster M. Chan A. Evans M. Buter J. Srinivasan D. Foran B. Nankivell P. Bryant J. Sharma N. Spruce R. Brooks J. Batis N. Roques T. Bidmead M. Yang H. Nutting C. Tyler J. Henderson J. Baines H. Gasnier A. Miles E. Clark C. Evans M. Radiotherapy plus cisplatin or cetuximab in low-risk human papillomavirus-positive oropharyngeal cancer (De-ESCALaTE HPV): an open-label randomised controlled phase 3 trial. Lancet 2019 393 10166 51 60 10.1016/S0140‑6736(18)32752‑1 30449623
    [Google Scholar]
  36. Gillison M.L. Trotti A.M. Harris J. Eisbruch A. Harari P.M. Adelstein D.J. Jordan R.C.K. Zhao W. Sturgis E.M. Burtness B. Ridge J.A. Ringash J. Galvin J. Yao M. Koyfman S.A. Blakaj D.M. Razaq M.A. Colevas A.D. Beitler J.J. Jones C.U. Dunlap N.E. Seaward S.A. Spencer S. Galloway T.J. Phan J. Dignam J.J. Le Q.T. Radiotherapy plus cetuximab or cisplatin in human papillomavirus-positive oropharyngeal cancer (NRG Oncology RTOG 1016): a randomised, multicentre, non-inferiority trial. Lancet 2019 393 10166 40 50 10.1016/S0140‑6736(18)32779‑X 30449625
    [Google Scholar]
  37. Wang C.W. Biswas P.K. Islam A. Chen M.K. Chueh P.J. The use of immune regulation in treating Head and Neck Squamous Cell Carcinoma (HNSCC). Cells 2024 13 5 413 10.3390/cells13050413 38474377
    [Google Scholar]
  38. Hashim D. Genden E. Posner M. Hashibe M. Boffetta P. Head and neck cancer prevention: from primary prevention to impact of clinicians on reducing burden. Ann. Oncol. 2019 30 5 744 756 10.1093/annonc/mdz084 30840052
    [Google Scholar]
  39. Newman J.G. Hall M.A. Kurley S.J. Cook R.W. Farberg A.S. Geiger J.L. Koyfman S.A. Adjuvant therapy for high‐risk cutaneous squamous cell carcinoma: 10‐year review. Head Neck 2021 43 9 2822 2843 10.1002/hed.26767 34096664
    [Google Scholar]
  40. Chi N. Epstein J.A. Getting your Pax straight: Pax proteins in development and disease. Trends Genet. 2002 18 1 41 47 10.1016/S0168‑9525(01)02594‑X 11750700
    [Google Scholar]
  41. Kendall J. Liu Q. Bakleh A. Krasnitz A. Nguyen K.C.Q. Lakshmi B. Gerald W.L. Powers S. Mu D. Oncogenic cooperation and coamplification of developmental transcription factor genes in lung cancer. Proc. Natl. Acad. Sci. USA 2007 104 42 16663 16668 10.1073/pnas.0708286104 17925434
    [Google Scholar]
  42. Sánchez R.S. Sánchez S.S. Characterization of pax1, pax9, and uncx sclerotomal genes during Xenopus laevis embryogenesis. Dev. Dyn. 2013 242 5 572 579 10.1002/dvdy.23945 23401059
    [Google Scholar]
  43. Short S. Holland L.Z. The evolution of alternative splicing in the Pax family: the view from the Basal chordate amphioxus. J. Mol. Evol. 2008 66 6 605 620 10.1007/s00239‑008‑9113‑5 18473110
    [Google Scholar]
  44. Xiong Z. Ren S. Chen H. Liu Y. Huang C. Zhang Y.L. Odera J.O. Chen T. Kist R. Peters H. Garman K. Sun Z. Chen X. PAX9 regulates squamous cell differentiation and carcinogenesis in the oro‐oesophageal epithelium. J. Pathol. 2018 244 2 164 175 10.1002/path.4998 29055049
    [Google Scholar]
  45. Manier S. Liu C.J. Avet-Loiseau H. Park J. Shi J. Campigotto F. Salem K.Z. Huynh D. Glavey S.V. Rivotto B. Sacco A. Roccaro A.M. Bouyssou J. Minvielle S. Moreau P. Facon T. Leleu X. Weller E. Trippa L. Ghobrial I.M. Prognostic role of circulating exosomal miRNAs in multiple myeloma. Blood 2017 129 17 2429 2436 10.1182/blood‑2016‑09‑742296 28213378
    [Google Scholar]
  46. Jin M.Z. Jin W.L. The updated landscape of tumor microenvironment and drug repurposing. Signal Transduct. Target. Ther. 2020 5 1 166 10.1038/s41392‑020‑00280‑x 32843638
    [Google Scholar]
  47. Zafari N. Khosravi F. Rezaee Z. Esfandyari S. Bahiraei M. Bahramy A. Ferns G.A. Avan A. The role of the tumor microenvironment in colorectal cancer and the potential therapeutic approaches. J. Clin. Lab. Anal. 2022 36 8 e24585 10.1002/jcla.24585 35808903
    [Google Scholar]
  48. Zhong Z. Vong C.T. Chen F. Tan H. Zhang C. Wang N. Cui L. Wang Y. Feng Y. Immunomodulatory potential of natural products from herbal medicines as immune checkpoints inhibitors: Helping to fight against cancer via multiple targets. Med. Res. Rev. 2022 42 3 1246 1279 10.1002/med.21876 35028953
    [Google Scholar]
  49. Ferrer G. Álvarez-Errico D. Esteller M. Biological and molecular factors predicting response to adoptive cell therapies in cancer. J. Natl. Cancer Inst. 2022 114 7 930 939 10.1093/jnci/djac088 35438170
    [Google Scholar]
  50. Bruno A. Ferlazzo G. Albini A. Noonan D.M. A think tank of TINK/TANKs: tumor-infiltrating/tumor-associated natural killer cells in tumor progression and angiogenesis. J. Natl. Cancer Inst. 2014 106 8 1 13 10.1093/jnci/dju200 25178695
    [Google Scholar]
  51. O’Melia M.J. Rohner N.A. Manspeaker M.P. Francis D.M. Kissick H.T. Thomas S.N. Quality of CD8 + T cell immunity evoked in lymph nodes is compartmentalized by route of antigen transport and functional in tumor context. Sci. Adv. 2020 6 50 eabd7134 10.1126/sciadv.abd7134 33310857
    [Google Scholar]
  52. Sato K. Yamashita N. Yamashita N. Baba M. Matsuyama T. Regulatory dendritic cells protect mice from murine acute graft-versus-host disease and leukemia relapse. Immunity 2003 18 3 367 379 10.1016/S1074‑7613(03)00055‑4 12648454
    [Google Scholar]
  53. Song J.K. Yin S.Y. Li W. Li X.D. Luo Y. Luo Y. Xing M. Li B. Kuai L. An update on the role of long non-coding RNAs in psoriasis. Chin. Med. J. (Engl.) 2021 134 4 379 389 10.1097/CM9.0000000000001243 33323820
    [Google Scholar]
  54. Neufeld M.J. Lutzke A. Pratx G. Sun C. High‐ Z metal–organic frameworks for x‐ray radiation‐based cancer theranostics. Chemistry 2021 27 10 3229 3237 10.1002/chem.202003523 32902003
    [Google Scholar]
  55. Carpenter R. Brady M.F. Gene B.A.X. BAX Gene. StatPearls StatPearls Publishing: Treasure Island (FL) 2023
    [Google Scholar]
  56. Nigam S.K. Bush K.T. Bhatnagar V. Poloyac S.M. Momper J.D. The systems biology of drug metabolizing enzymes and transporters: Relevance to quantitative systems pharmacology. Clin. Pharmacol. Ther. 2020 108 1 40 53 10.1002/cpt.1818 32119114
    [Google Scholar]
  57. Colin Garner R. The role of DNA adducts in chemical carcinogenesis. Mutat. Res. 1998 402 1-2 67 75 10.1016/S0027‑5107(97)00283‑2 9675247
    [Google Scholar]
  58. Allmann S. Mayer L. Olma J. Kaina B. Hofmann T.G. Tomicic M.T. Christmann M. Benzo[a]pyrene represses DNA repair through altered E2F1/E2F4 function marking an early event in DNA damage-induced cellular senescence. Nucleic Acids Res. 2020 48 21 12085 12101 10.1093/nar/gkaa965 33166399
    [Google Scholar]
  59. Luo J. Chen J.W. Zhou J. Han K. Li S. Duan J.L. Cao C.H. Lin J.L. Xie D. Wang F.W. TBX20 inhibits colorectal cancer tumorigenesis by impairing NHEJ‐mediated DNA repair. Cancer Sci. 2022 113 6 2008 2021 10.1111/cas.15348 35348274
    [Google Scholar]
  60. Basu A. Damage D.N.A. Mutagenesis and Cancer. Int. J. Mol. Sci. 2018 19 4 970 10.3390/ijms19040970 29570697
    [Google Scholar]
  61. Khodadadian A. Darzi S. Haghi-Daredeh S. sadat Eshaghi F. Babakhanzadeh E. Mirabutalebi S.H. Nazari M. Genomics and transcriptomics: The powerful technologies in precision medicine. Int. J. Gen. Med. 2020 13 627 640 10.2147/IJGM.S249970 32982380
    [Google Scholar]
  62. Al-Gabri N.A. Saghir S.A.M. Al-Hashedi S.A. El-Far A.H. Khafaga A.F. Swelum A.A. Al-wajeeh A.S. Mousa S.A. Abd El-Hack M.E. Naiel M.A.E. El-Tarabily K.A. Therapeutic potential of thymoquinone and its nanoformulations in pulmonary injury: A comprehensive review. Int. J. Nanomedicine 2021 16 5117 5131 10.2147/IJN.S314321 34349511
    [Google Scholar]
  63. Liu X. Chu W. Shang S. Ma L. Jiang C. Ding Y. Wang J. Zhang S. Shao B. Preliminary study on the anti-apoptotic mechanism of Astragaloside IV on radiation-induced brain cells. Int. J. Immunopathol. Pharmacol. 2020 34 2058738420954594 10.1177/2058738420954594 32902354
    [Google Scholar]
  64. Dogan S. Mason M.C. Govindaraju A. Belser L. Kaya A. Stokes J. Rowe D. Memili E. Interrelationships between apoptosis and fertility in bull sperm. J. Reprod. Dev. 2013 59 1 18 26 10.1262/jrd.2012‑068 22986927
    [Google Scholar]
  65. Tang D. Zhang S. Shi X. Wu J. Yin G. Tan X. Liu F. Wu X. Du X. Combination of astragali polysaccharide and curcumin improves the morphological structure of tumor vessels and induces tumor vascular normalization to inhibit the growth of hepatocellular carcinoma. Integr. Cancer Ther. 2019 18 1534735418824408 10.1177/1534735418824408 30762443
    [Google Scholar]
  66. Klein C.A. Cancer progression and the invisible phase of metastatic colonization. Nat. Rev. Cancer 2020 20 11 681 694 10.1038/s41568‑020‑00300‑6 33024261
    [Google Scholar]
  67. Zhang T. Prasad P. Cai P. He C. Shan D. Rauth A.M. Wu X.Y. Dual-targeted hybrid nanoparticles of synergistic drugs for treating lung metastases of triple negative breast cancer in mice. Acta Pharmacol. Sin. 2017 38 6 835 847 10.1038/aps.2016.166 28216624
    [Google Scholar]
  68. van Attekum M.H.A. Eldering E. Kater A.P. Chronic lymphocytic leukemia cells are active participants in microenvironmental cross-talk. Haematologica 2017 102 9 1469 1476 10.3324/haematol.2016.142679 28775118
    [Google Scholar]
  69. Das S. Sarrou E. Podgrabinska S. Cassella M. Mungamuri S.K. Feirt N. Gordon R. Nagi C.S. Wang Y. Entenberg D. Condeelis J. Skobe M. Tumor cell entry into the lymph node is controlled by CCL1 chemokine expressed by lymph node lymphatic sinuses. J. Exp. Med. 2013 210 8 1509 1528 10.1084/jem.20111627 23878309
    [Google Scholar]
  70. Bai G. Song J. Yuan Y. Chen Z. Tian Y. Yin X. Niu Y. Liu J. Systematic analysis of differentially methylated expressed genes and site‐specific methylation as potential prognostic markers in head and neck cancer. J. Cell. Physiol. 2019 234 12 22687 22702 10.1002/jcp.28835 31131446
    [Google Scholar]
  71. Smetannikova N.A. Evdokimov A.A. Netesova N.A. Abdurashitov M.A. Akishev A.G. Dubinin E.V. Pozdnyakov P.I. Vihlyanov I.V. Nikitin M.K. Topolnitsky E.B. Karpov A.B. Kolomiets S.A. Degtyarev S.K. Application of GLAD-PCR assay for study on DNA methylation in regulatory regions of some tumor-suppressor genes in lung cancer. Zhongguo Fei Ai Za Zhi 2019 22 9 551 561 31526458
    [Google Scholar]
  72. Rani L. Mathur N. Gupta R. Gogia A. Kaur G. Dhanjal J.K. Sundar D. Kumar L. Sharma A. Genome-wide DNA methylation profiling integrated with gene expression profiling identifies PAX9 as a novel prognostic marker in chronic lymphocytic leukemia. Clin. Epigenetics 2017 9 1 57 10.1186/s13148‑017‑0356‑0 28572861
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240328109241205084841
Loading
/content/journals/cmm/10.2174/0115665240328109241205084841
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: apoptosis ; PAX9 ; HNSCC ; pan-cancer analysis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test